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Abstract: In traditional association rule mining algorithms, if the minimum support is settoo high, many valuable rules will be lost.
However, if the value is set too low, then numerous trivial rules will be generated. To overcome the difficulty of setting minimum
support values, global and local patterns are mined herein. Owing to thetemporal factor in association rule mining, an itemset may
not occur frequently in the entire dataset (meaning that it is not a global pattern), but it may appear frequently over specific intervals
(meaning that it is a local pattern). This paper proposed a temporal association rule mining algorithm for interval frequent-patterns,
called GLFMiner, which automatically and efficiently generates all intervals without prior domain knowledge in an efficient manner.
GLFMiner considers not only global frequent-patterns, but also localfrequent-patterns. Using the same value of minimum support,
it can locate many valuable temporal rules without losing the rules that traditional algorithms may find. Experimental results reveal
that our novel algorithm mines more temporal frequent-patterns than traditional association rule mining algorithms and is effective in
real-world applications such as market basket analysis and intrusion detection systems.
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1 Introduction

In recent years, association rule mining has been
extensively used in knowledge discovery in various fields.
The process of association rule mining involves
discovering all rules whosesupportandconfidenceare at
least the user-defined minimumsupport and minimum
confidence thresholds, respectively. For example,
examination of the dataset of a supermarket in traditional
association rule mining [1,2] for market basket analysis
may yield an association rule such as “Turkey→ Pumpkin
pie (support = 0.0001, confidence = 0.05)”, meaning
that 0.01% of all transactions contain both turkey and
pumpkin pie, and 5% of all transactions that contain
turkey also contain pumpkin pie.

The association rule “Turkey→ Pumpkin pie” raises
three problems. First, the above rule cannot be regarded
as a prominent association rule because itssupportand
confidenceare both too low. Therefore, a turkey and a
pumpkin pie are seldom associated in the entire dataset of
transactions and many transactions that contain turkey do
not contain pumpkin pie. Second, since the association

rule “Turkey → Pumpkin pie” is not prominent, the
minimum support threshold must be set low enough for
the above rule to be found. Consequently, too many
association rules that are not very useful may be found,
overwhelming data analysis. Third, if, in the summer, a
shopkeeper launches a sale promotion that is based on the
discovered rule, such as providing a 10% discount for
buying a turkey and a pumpkin pie together, he is bound
to fail because the right time to apply the “Turkey →
Pumpkin pie” rule is well known to be during the weeks
before Thanksgiving holiday.

If only the transactions in a specific time interval,
such as the week before Thanksgiving, are considered,
then most will be found to contain both turkey and
pumpkin pie. Accordingly, the rule “turkey→ pumpkin
pie” has high support and highconfidencein the week
before Thanksgiving. From this example, an itemset may
not be frequent in the entire dataset but it may be frequent
in specific intervals. Therefore, effectively finding these
intervals in which patterns are frequent is important.

In intrusion detection systems [3,4], association rule
mining is used to identify malicious activity by analyzing
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network traffic data. In this application, the goal of
applying association rules is to find relationships between
the various attack signatures and IP addresses that
constitute real attacks in the network environment. The
generation of more association rules corresponds to more
accurate attack detection. To prevent loss of any alarm, as
many association rules as possible must be generated. A
useful means of so doing is to set thesupport value
relatively low, while enforcing a highconfidence
constraint on the result set. However, properly setting
these thresholds is critical to successful detection and
difficult to do. Most attackers leave tails behind them and
their behaviors can be determined by analysis to be
related to their malicious activities. One of the important
features of the effective analysis is the capture of
temporal data. For example, many intrusions occur late at
night to reduce the likelihood that people will notice
degraded system performance or malfunctions that might
be associated with the unusual activity. Other potential
temporal considerations include special dates or
occasions, such as the release of new products or services.
As in the market basket analysis, too many useless rules
may waste processing time and too few rules may make
detection ineffective. In this study, temporal factors are
considered to find more meaningful rules with higher
efficiency to improve the effectiveness of the intrusion
detection system.

Li et al. [5] proposed the calendar-based script to find
time intervals. However, devising this script requires
domain knowledge. In this study, the intervals of
association rules will be automatically generated without
the need for any domain knowledge. The proposed
GLFMiner (Global and Local Frequent-patterns Miner)
algorithm finds frequent patterns in intervals in which the
minimum support is higher and the likelihood of the
application of discovered rules is greater. GLFMiner
firstly transforms the transaction dataset into a bit-map
representation, and then recursively joins(k-1) itemsets to
form k itemsets in depth-first (DF) order. After joining the
itemsets, GLFMiner generates the intervals of frequent
itemsets.

The rest of this paper is organized as follows. Section
2 describes the temporal association rule mining problem
and reviews related works on mining temporal association
rules. Section 3 describes the three stages of GLFMiner
algorithm, which are as follows. (1) Read the dataset and
transform transactions into the bit-map representation. (2)
Localize bit-map representations of all non-global
frequent-items to construct an initial Interval-Tree. (3)
Recursively join the(k-1) nodes of the Interval-Tree to
generate k nodes and identify local and global
frequent-itemsets. Section 4 presents experimental results
obtained using real and synthetic datasets and compares
the performance of GLFMiner with that of other
algorithms. Section 5 discusses the correctness and
computational complexity of our proposed algorithm.
Finally, Section 6 draws conclusions.

2 Background and Related Works

2.1 Association rule mining

In recent years, an increasing number of researchers [6,7]
have worked on association rule mining because it is an
important part of data mining. Agrawalet al. were the first
to consider the problem of association rule mining, which
is formally defined as follows.

Let DB be a transaction dataset that contains a set of
transactions{t1, t2, t3, · · · , tn}. Let I = {i1, i2, · · · , im}
be a set of items. Lett = (T id, t − itemset) be a
transaction. Tid is a transaction number and t-itemset
contains a set of items. Let X be a set of items. A
transaction t contains X if and only ifX ⊆ t. The length
of a transaction that containsk items is denoted byk. The
two important measurements in association rule mining
aresupportandconfidence. Supportis the frequency with
which patterns occur in DB andconfidenceis the strength
of implication. The definitions are as follows.

(1) Support(X) = |T (x)|
|DB| ,

(2)Confidence(X → Y ) = Support(X∪Y )
Support(X) ,

where DB represents the dataset;|DB| is the number of
transactions in DB, andT (α) represents the set of all
transactions that containα in DB.

In a support-confidenceframework, ifX → Y is an
interesting relation, then X and Y must occur frequently.
Two conditions define a frequent relation:

Support(X ∪ Y ) ≥ MinSup

and
Confidence(X → Y ) ≥ MinConf

where MinSup is the minimumsupport threshold and
MinConf is the minimumconfidencethreshold.

2.2 Related works

In recent decades, various algorithms have been proposed
to discover efficiently frequent itemsets in various
applications. These methods include level-wise
algorithms [1,8,9,10,11,12] and pattern-growth methods
[2,13]. Temporal association rule mining is an extension
of association rule generation. Several temporal
association rule mining algorithms have been developed
for mining more meaningful frequent patterns, temporal
association rules, and up-to-date association rules than
conventional association rule mining algorithms.

Hong et al. [14] studied up-to-date association rules.
The main purpose of such a rule concerns an itemset that
may not be frequent in an entire dataset, but which may
be largely up-to-date because items that rarely occur
earlier in the dataset may often occur later. An up-to-date
pattern comprises an itemset and its up-to-date lifetime,
which must satisfy the user-defined minimumsupport
threshold.

Interesting associations with highconfidence, albeit
with small support, can be found. Ale and Rossi [15]

c© 2014 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.8, No. 4, 1879-1890 (2014) /www.naturalspublishing.com/Journals.asp 1881

limited the total transactions to those that belong to the
lifetime of the items. Therefore, those associations would
be discovered as they would have sufficientsupport.
Those authors extended the notion of association rules by
incorporating time into the frequent itemsets. Every item
in the dataset has a period of lifetime or lifespan that
explicitly represents the temporal duration of the
information about the item which is the time during
which the item is relevant to the user.

Lee et al. [16,17] studied a new problem of mining
general temporal association rules from publication
datasets. A publication dataset is a set of transactions,
where each transaction is a set of items of which each
item contains an individual exhibition period. The authors
claimed that the current model of association rule mining
cannot handle the publication dataset because of the
following fundamental problems: (1) lack of
consideration of the exhibition period of each individual
item and (2) lack of an equitable basis for determining the
support of the items. The authors proposed the
Progressive-Partition-Miner (PPM) algorithm. The basic
concept of PPM is firstly to partition the publication
dataset in light of the exhibition periods of items, and
then progressively accumulates the occurrence count of
each 2-itemset candidate based on intrinsic partitioning
characteristics. Anjanaet al. [18] proposed an innovative
algorithm that combines the Progressive Partition
approach with Counting Inference method (PPCI) to
discover association rules in a temporal database.

Abdullah and Susan [19] examined the discovery of
association rules in temporal data. They incorporated an
enumeration operation into the relational algebra to
prepare the data for the discovery of association rules and
applied knowledge discovery techniques to a series of
datasets over consecutive time intervals, rather than to the
entire database. However, their algorithm requires that the
interval size to be determined in advance. The
contribution of this work is the generation of an interval
without predefining the interval size.

Tsai [20] proposed a framework for mining data
stream, called the weighted sliding window model. The
model allows a user to specify the number of windows for
mining, the size of each window, and the weight of each
window. The weighted sliding window model emphasizes
temporality and gives a greater weight to more recent
events.

Gharib et al. [21] used the concept of temporal
association rules to solve handling time series by
incorporating time expressions into their algorithm. Their
proposed algorithm is incremental and uses the results of
earlier mining to obtain the final mining output. Their
proposed algorithm reduces the time required to generate
new candidates by storing 2-itemset candidates and
includes a means of updating previously generated
candidates rather than re-generating them from scratch.

Li et al. [5] studied the problem of mining association
rules with reference to the time intervals in which an
association rule holds. To identify meaningful time
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Fig. 1: Interval-Tree

intervals, they used calendar schemas and calendar-based
patterns. An example of a calendar schema is (year,
month, day); a calendar-based pattern within the schema
is (*, 3, 15), which represents the set of time intervals
each of which is the 15th day in March.

Li et al. [5], Gharibet al. [21] and Vermaet al. [22]
assumed that transactions are time-stamped, enabling
determination of whether a transaction occurs in a
particular interval. Other researchers [14,15,17,20] do
not take this approach. GLFMiner does not assume that a
transaction is time-stamped. Rather, it uses the sequence
of transactions as the temporal basis for generating all of
the intervals of the itemsets. The main contribution of
GLFMiner is that it not only finds global
frequent-patterns throughout the dataset but also identify
local frequent-patterns in particular intervals.

3 Proposed GLFMiner Algorithm

3.1 Definitions

A frequent pattern is an itemset whose frequency in DB is
larger than or equal toMinSup. This study proposes the
concept of local and global frequent-patterns. GLFMiner
performs a search for a frequent pattern set over the
search space of a novel Interval-Tree as presented in Fig.
1. The following section will formally define the
Interval-Tree. Each node in the Interval-Tree, represented
by a datum of the form< itemset, T idSegmentSet >,
is a prefix-based class. All children, with lengthk, of a
given node are in the same class because they all share the
same prefix. Therefore, all the children in the same class
can be joined to form(k+1) frequent patterns. Next, some
terms that are used in the proposed algorithm are defined.

Let I = {i1, i2, i3, · · · , im} be a set of distinct items.
An itemset is a subset of I. For example, in Table 1,
I = {a, b, c, d, e, f}. Pattern{a, b} is an itemset that
specifies coexistence of items “a” and “b” in the
transaction. Aninterval is a set of consecutive transaction
IDs and is denoted as [begin, end] where “begin” is the
ID of the first transaction in the interval and “end” is the
final one. For example, Interval [3, 5] is the range of
transactions from Transaction ID 3 to Transaction ID 5.
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Table 1: Sample dataset
Tid Transaction Time Items
1 2009/07/01 a,b,d,f
2 2009/07/16 a,b,d,f
3 2009/08/03 c,d,f
4 2009/08/09 c,f
5 2009/09/10 a,f
6 2009/09/30 f
7 2009/10/03 e
8 2009/10/18 a,b,c
9 2009/11/08 a,b,c,d,e
10 2009/11/27 a,f

Let α be an itemset. ATidSegment recordsα in a
specific interval as [begin, end](bitmap):count where
[begin, end] represents an interval. The bitmap ofα is a
bit string of 1s and 0s, where a 1-bit indicates the
corresponding transaction containsα and a 0-bit indicates
the corresponding transaction does not containα. The
count ofα is the number of the transactions that contain
α. For example, in Fig. 1, the TidSegment of the itemset
“a”, [1,10](1100100111):6, reveals that the itemset “a”
appears in the interval [1,10]; the corresponding bitmap is
(1100100111), where Transaction ID 1 represents the
“begin” ID; Transaction ID 10 represents the “end” ID,
and the count of occurrence is 6. The itemset “ab”
comprises two TidSegments, [1,2](11):2 and [8,9](11):2,
meaning that itemset “ab” appears in two intervals, [1,2]
and [8,9], and that the corresponding bitmap is (11), and
the frequency of occurrence is 2. ATidSegmentSetis the
set of TidSegments that belongs to the same itemset. For
example, the TidSegment of “ab” [1,2](11):2, and
TidSegment of “ab” [8,9](11):2, have the same itemset
“ab”, and form a TidSegmentSet, which is denoted as
{[1,2](11):2,[8,9](11):2}. A node comprises an
itemset-TidSegmentSet pair, and is denoted as
< itemset, T idSegmentSet >, where TidSegmentSet is
the set of TidSegments that correspond to the itemset. For
example, a node,< ab, {[1, 2](11) : 2, [8, 9](11) : 2} >,
indicates that the itemset is “ab” and its corresponding
TidSegmentSet is{[1,2](11):2, [8,9](11):2}.

Definition 1.Interval-Tree of {Node1, Node2, · · · ,
Noden} is a prefix-based tree. The root node of the
Interval-Tree is null. The other nodes contain
itemset-TidSegmentSet pairs. IfNoden is the parent of
Nodem, |Nodem| = |Noden| + 1, and the itemset of
Noden is the prefix of the itemset ofNodem, where
|Nodem| is the height ofNodem in the Interval-Tree.

Figure 1 presents an example of an Interval-Tree. Each
node contains an itemset-TidSegmentSet pair. The itemset
“a” of Nodea is the prefix of the itemset “ab” ofNodeab.
The itemset “b” ofNodeb is the prefix of the itemset “bc”
of Nodebc. Nodeab contains a set of two TidSegments.

Definition 2.An itemset α is called a global
frequent-pattern (GFP) in DB if

(1) Support(α) = |T (α)|
|DB| , and

(2) Support(α) ≥ MinSup

The definition of global frequent-patterns is the same
as that of frequent patterns in a conventional association
rule mining algorithm. For example, based on
MinSup = 0.5, item a[1,10] in Table 1 is a globally
frequent 1-itemset for the entire dataset, where the first
transaction that contains “a” is TID=1 and the final
transaction that contains “a” is TID=10. Next, the
definition of local frequent-patterns in specific intervalsis
presented.

Definition 3.The minimum length of a TidSegment is
denoted as MinLen.

If an interval is less thanMinLen× |DB|, then this interval
is not sufficiently prominent and is therefore deleted. For
example, based on the DB of Table 1,MinLen = 15% is
set. If the interval is 1, then thesupportof this interval is
100% and theconfidenceis also100%. Since 1 is less than
MinLen × |DB| = 1.5, this interval can be regarded as
noise and deleted.

Definition 4.An item set α is called a local
frequent-pattern (LFP) in a DBi if

(1) Support(α) = |Ti(α)|
|DBi|

,

(2) Support(α) ≥ MinSup,
(3) |Ti(α)| ≥ Minlen × |DB| and
(4) α is not a global frequent-pattern, whereTi(α) is

the set of all transactions that containsα in the dataset DB
in a particular interval i.

Given a MinSup, local frequent-patterns are those
whose number is larger thanMinSup only in particular
intervals. For example, ifMinSup = 0.5, then the itemset
“e” is a local frequent 1-itemset in the intervali=[7,9]
because|Ti(e)| = 2, |DBi| = 3 and |Ti(e)|

|DBi|
= 0.67 .

However, it is not a global frequent-itemset for
MinSup = 0.5.

Definition 5.Two consecutive TidSegments are
“mergeable” if and only if the following condition is met;
TidSegmentn.count+TidSegmentn−1.count

T idSegmentn.end−TidSegmentn−1.begin+1 ≥ MinSup,

where T idSegmentn−1[begin, end] : count and
T idSegmentn[begin, end] : count are two consecutive
intervals ofα.

For example, forT idSegmentn−1[4, 4](1) : 1 and
T idSegmentn[7, 9](111) : 3,
TidSegmentn.count+TidSegmentn−1.count

T idSegmentn.end−TidSegmentn−1.begin+1 = 3+1
9−4+1 =

0.67 ≥ MinSup ; therefore, they can be merged. The
order of merging is right side first if both the current left
interval and the current right interval can be merged.
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Definition 6.The merging of consecutive TidSegments is
defined as follows.

newTidSegment = Merge( T idSegmentn−1,

T idSegmentn)

where

newTidSegment.begin = T idSegmentn−1.begin,

newTidSegment.end = T idSegmentn.end,

newTidSegment.count = T idSegmentn−1.count+

T idSegmentn.count,

and the two bitmaps merged are defined as below:

newTidSegment.bitmap = T idSegmentn−1.bitmap

+ fill(0, T idSegmentn.begin

− T idSegmentn−1.end− 1)

+ T idSegmentn.bitmap.

Here, the function “fill” generates a consecutive “0”
bitmap, while the second parameter represents the
number of “0”s to be generated.

For example, given two intervals,T idSegmentn−1

[4, 4](1) : 1 andT idSegmentn[7, 9](111) : 3,
Merge(T idSegmentn−1, T idSegmentn)=
T idSegmentn−1[4, 9](100111) : 4.

Definition 7.The nodes of itemsetsα and β are called
node-joinable if and only if both nodes share one parent
node in the Interval-Tree.

Definition 8.TheT idSegmentn in the itemsetα and the
T idSegmentm in the itemsetβ are called TidSegment-
disjoinable if and only if

(1) T idSegmentn.begin > TidSegmentm.end, or
(2) T idSegmentm.begin > TidSegmentn.end.

Definition 9.The join of TidSegments,T idSegmentn and
T idSegmentm, is defined as

newTidSegment = Join(T idSegmentn, T idSegmentm),

where

newTidSegment.begin = Max( T idSegmentn.begin,

T idSegmentm.begin),

newT idSegment.end = Min( T idSegmentn.end,

T idSegmentm.end),

newT id Segment.bitmap = AND(

T idSegmentn[newTidSegment.begin,

newTidSegment.end].bitmap,

T idSegmentm[newTidSegment.begin,

newTidSegment.end].bitmap)

For example,newTidSegmentSet = Join{[1, 2](11),
[1, 5](11001)} = [1, 2](11)

Definition 10.The joining of nodesα andβ is defined as
follows:

< γ, T idSegmentSetγ >= Join(

< α, T idSegmentSetα >,< β, T idSegmentSetβ >)

where
γ = α ∪ β as in the traditional definition of join.

T idSegmentsofT idSegmentSetγ = Join(

T idSegmentsofT idSegmentSetα,

T idSegmentsofT idSegmentSetβ).

The nodes ofα andβ are node-joinable; therefore, they
have the same parent node in the Interval-Tree, andα and
β differ by only one item. Ifα = {I1, I2, I3, .., Ik, Im}
and β = {I1, I2, I3, .., Ik, In}, then γ = {I1, I2, I3,
.., Ik, Im, In}.

For example,
< γ, T idSegmentSetγ >= Join(< ab, [1, 2](11) >,<
af, {[1, 5](11001), [8, 9](11)} >) = < abf, [1, 2](11) >,
where

T idSegmentγ1=Join([1, 2](11), [1, 5](11001))
= [1, 2](11),

T idSegmentγ2=Join( [1,2](11), [8,9](11)) →
TidSegment-disjoinable.

Table 2 lists the possible results of joining two
patterns. The joining of two GFPs yields three possible
results, which are GFP, LFP, and IFP. Here GFP means
the global frequent-pattern, LFP means the local
frequent-pattern and IFP means the infrequent pattern.

Table 2: The possible results of joining two patterns
Pattern 1 Pattern 2 Join(Patttern1, Pattern2)

GFP GFP GFP, LFP, IFP
GFP LFP LFP, IFP
LFP LFP LFP, IFP

3.2 GLFMiner Algorithm

The proposed algorithm has three main steps. First, it
scans the dataset to find the global frequency of each item
and converts all items into a bit-map to speed up
processing. Second, it localizes each item that is not
globally frequent and constructs the initial Interval-Tree.
Third, it recursively joins each node in DF order on the
Interval-Tree. Then, it localizes the joined TidSegment to
find the frequent intervals and adds them to the
Interval-Tree. The frequent nodes are output as temporal
frequent-itemsets. Figure 2 presents the pseudo code of
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Main_Program of GLFMiner

Input: (1) DB (2) MinSup (3) MinLen

Output:(1) Global and Local Frequent-patterns

Begin

1)  BitMaps=ScanDataBase(DB)

2)  Interval_Tree=Construct_Initial_Interval_Tree(BitMaps, MinSup, MinLen)

3)  FreqSet = RecursiveJoin(Interval_Tree)

End

Fig. 2: Main program of GLFMiner

Function Construct_Initial_Interval_Tree

Input:  (1) BitMaps (2) MinSup (3) MinLen

Output: (1) Interval_Tree

Begin

1)   Interval_Tree ← Create Root Node

2)   Candidate_Items  ← getItemFrequency (BitMaps)

3)   for (each item in Candidate_Items)

4)     Begin

5)        newNode = new Node(item)

6)        if newNode is not GlobalFrequent

7)            LocalizeNode(newNode, MinSup, MinLen)

8)            if newNode is LocalFrequent

9)              Interval_Tree.addChild(newNode)

10)       else 

11)           Interval_Tree.addChild(newNode)

12)     End

13)  Return Interval_Tree

Fig. 3: Pseudo code for constructing initial Interval-Tree

a(1100100111), b(1100000110), c(0011000110), d(1110000010), e(0000001010), 

f(1111110001)

Fig. 4: Bitmap representation of every item in Table 1

the GLFMiner algorithm. The following section will
elucidate in detail the steps of the GLFMiner algorithm.

Step 1: GLFMiner scans the dataset and transforms all
items into a bit-map representation. The dataset in Table 1
with MinSup = 0.5 is used to generate the bitmap
representation of every item in Fig. 4.

Step 2: GLFMiner verifies whether each item is
globally frequent. If it is not, then the Localize function is
used to determine local frequent-intervals. GLFMiner
adds global and local frequent-items into the
Interval-Tree to construct an initial Interval-Tree.

In this step, GLFMiner localizes the nodes that
contain TidSegments that are not globally frequent.
Localizing a TidSegment comprises three steps. First, the
bitmap of a TidSegment is partitioned to find the local
frequent-intervals of the corresponding itemset. Second,
the algorithm checks whether the two consecutive
TidSegments can be merged to form a larger local
frequent-interval. Third, GLFMiner prunes the
TidSegments whose intervals are shorter thanMinLen ×
|DB|. For example, the bitmap representation of item “a”
is (1100100111). The number of item “a” is 6, which is
larger thanMinSup × |DB| = 0.5 × 10 = 5; therefore,
“a” is a global frequent-itemset. The bitmap
representation of item “c” is (0011000110). The number
of item “c” is 4, which is below theMinSup threshold.
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Fig. 5: Pseudo code of RecursiveJoin

Therefore, “c” is not a global frequent-itemset and must
be localized.

Step 2-1: Partition the bitmap representation of a
TidSegment.
For example, itemset “c” is not a global frequent-itemset.
Table 3 presents the procedure for partitioning itemset “c”
with MinSup = 0.5.

Table 3: Procedure for partitioning the TidSegment of Itemset
“c”

N bit Interval Support Action
10 0 Skip
9 1 [9,9]:1 (1/0.5 = 2) >= (9− 9 + 1)
8 1 [8,9]:2 (2/0.5 = 4) >= (9− 8 + 1)
7 0 [8,9]:2 (2/0.5 = 4) >= (9− 7 + 1)
6 0 [8,9]:2 (2/0.5 = 4) >= (9− 6 + 1)
5 0 [8,9]:2 (2/0.5 = 4) < (9− 5 + 1)

Add A New TidSegment [8,9](11):2
4 1 [4,4]:1 (1/0.5 = 2) >= (4− 4 + 1)
3 1 [3,4]:2 (2/0.5 = 4) >= (4− 3 + 1)
2 0 [3,4]:2 (2/0.5 = 4) >= (4− 2 + 1)
1 0 [3,4]:2 (2/0.5 = 4) >= (4− 1 + 1)

Add A New TidSegment [3,4](11):2

Step 2-2: Merge pairs of consecutive intervals to form
a larger interval from the final interval to the first.

For example, consider c1[3,4](11):2 and
c2[8,9](11):2; since
(c1.count+c2.count)
(c2.end−c1.begin+1) = (2+2)

(9−3+1) = 4
7 > MinSup,

c1[3,4](11):2 and c2[8,9](11):2 are merged into
c1[3,9](100111):4.

Step 2-3: Prune the TidSegment whose interval is
shorter than MinLen × |DB| to eliminate trivial
intervals.

For example, ifMinLen = 15% and the length of
TidSegmentd2 [9,9]:1 is 1, which is less thanMinLen ×
|DB| = 15% × 10 = 1.5, the TidSegmentd2 [9,9]:1 is
removed.
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a(1100100111):6, b(1100000110):4, c(0011000110):3, d(1110000010):4, e(0000001010):2, f(1111110001):7

Bitmap representation of every item in Table 1

Step 1

<a,[1,10](1100100111):6>, <b,{[1,2](11):2, [8,9](11):2}>,<c,{[3,4](11):2, [8,9](11):2}>,
 <d,{[1,3](111):3, [9,9](1):1}>, <e,[7,9](101):2>, <f,[1,10](1110110101):7>

Step 2-1 Partition

Step 2-2 Merge
<a,[1,10](1100100111):6>, <b,{[1,2](11):2, [8,9](11):2}>, <c,[3,9](1100011):4>,
 <d,{[1,3](111):3, [9,9](1):1}>, <e,[7,9](101):2>, < f,[1,10](1111110001):7}>

Step 2-3 Prune
<a,[1,10](1100100111):6>, <b,{[1,2](11):2, [8,9](11):2}>, <c,[3,9](1100011):4>, 
<d,[1,3](111):3>, <e,[7,9](101):2>, <f,[1,10](1111110001):7>

Step 3-1 Join(<a,[1,10](1100100111),*)
<ab,{[1,2](11):2, [8,9](11):2}>, <ac,[8,9](11):2>, <ad,[1,2](11):2>,
 <af,[1,10](1100100001):4>

Step 3-2 Localize

Step 3-3 Add node

Step 3-4 Add to Frequent set

<ab,{[1,2](11):2, [8,9](11):2}>, <ac,[8,9](11):2>, <ad,[1,2](11):2>,
 <af,[1,5](11001):3>

<ab,{[1,2](11):2, [8,9](11):2}>, <ac,[8,9](11):2>, <ad,[1,2](11):2>, 
<af,[1,5](11001):3>

<ab,{[1,2](11):2, [8,9](11):2}>, <ac,[8,9](11):2>, <ad,[1,2](11):2>, 
<af,[1,5](11001):3>

Step 3-1 Join(<ab,{[1,2](11),[8,9](11)}>,*) <abc,[8,9](11):2>, <abd,[1,2](11):2>, <abf,[1,2](11):2>

Step 3-2 Localize

Step 3-3 Add node

Step 3-4 Add to Frequent set

<abc,[8,9](11):2>, <abd,[1,2](11):2>, <abf,[1,2](11):2>

<abc,[8,9](11):2>, <abd,[1,2](11):2>, <abf,[1,2](11):2>

<abc,[8,9](11):2>, <abd,[1,2](11):2>, <abf,[1,2](11):2>

Step 3-1 Join(<abc,[8,9](11)>,*)

Fig. 6: Deployment of GLFMiner
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Fig. 7: Complete Interval-Tree based on Table 1

Step 3: Recursively join the itemsets in DF order from
the root. Figure 5 presents the pseudo code. The node of
length (k-1) joins all of the right siblings to generate a
combined itemset of lengthk. Every joining procedure
comprises the following steps.

Step 3-1:Node1 joinsNode2 (right sibling).

For example,
SonNode = Join(< a, [1, 10](1100100111) : 6 > , <

b, {[1, 2](11) : 2, [8, 9](11) : 2} >) = < ab, {[1, 2](11) :
2, [8, 9](11) : 2} >

Step 3-2: Localize SonNode.

Step 3-3: If SonNode is frequent, add it toNode1 as a
child.

Step 3-4: AddNode1 to the frequent itemset, FreqSet.
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3.3 A complete Example

The dataset in Table 1 is used withMinSup = 0.5 and
MinLen = 15% to demonstrate the procedure of the
GLFMiner algorithm. The three steps of the GLFMiner
algorithm are as follows.
Step 1: Transform each item in DB into a bitmap
representation.
Step 2: Perform Localize function for non-global
frequent-items to construct an initial Interval-Tree.
Repeat

Step 3-1: SonNode =Node1 joinsNode2
Step 3-2: Localize SonNode
Step 3-3: If SonNode is frequent, then add it toNode1

as a child
Step 3-4:AddNode1 to the frequent itemset, FreqSet

Fig. 6 presents the procedures for deploying
GLFMiner to mine the dataset in Table 1. The procedure
for constructing the leftmost branch of the Interval-Tree is
provided. Fig. 7 presents the complete Interval-Tree.

4 Experimental Results

This section describes in detail the experiments of the
GLFMiner algorithm. The algorithm was implemented in
JAVA on personal computer with an Intel Core Duo
Processor at 1.99 GHz with 4 GB RAM. The synthetic
dataset of T10I4D100K from the IBM dataset generator
and the real dataset Chess were used to validate
effectiveness of the proposed algorithm. In T10I4D100K,
the size of a transaction is T=10, the size of a potential
maximal frequent itemset is I=4, and the total number of
transactions is D=100000. Multiple sets of such dataset
are generated to perform the experiments. The resultant
values are averaged to yield the final outcome.

Of the most popular association rule mining
algorithms that have been used in recent decades [1,2],
Apriori is still used extensively and has many extensions
under study. The performance of GLFMiner is compared
with that of Apriori although this classical method does
not consider temporal intervals.

In the first experiment, the relation between execution
time andMinSup settings is determined by varying the
MinSupthresholds. Figure 8 presents the results obtained
using the T10I4D100K dataset whereMinLen = 60%
andMinSup = 0.09 to 0.02. Figure 9 displays the results
obtained using the Chess dataset withMinLen = 60%
and MinSup = 0.9 to 0.7. In both experiments, the
execution time increased as theMinSupdecreased, as it
did for Apriori. Lower MinSup thresholds yield more
temporal interval patterns, especially when they are below
0.04 and 0.8 for T10I4D100K and Chess respectively.
Therefore, MinSup is one of the main factors that
influence the execution time. Another important factor is
the total number of transactions.

Fig. 8: Relationship between execution time andMinSup for
T10I4D100K dataset

Fig. 9: Relationship between execution time andMinSup for
Chess dataset

Although GLFMiner exhibits a similar relationship
between execution time andMinSupto that of Apriori, it
performs well in finding more frequent patterns when
MinSup is low than Apriori. This effect is significant
since most local frequent-patterns are found with a
smaller MinSup. Figures 10 and 11 present the
relationships between the number of frequent patterns and
the MinSup thresholds. Figure 10 shows the result
obtained for T10I4D100K withMinLen = 1% and
MinSup = 0.1 to 0.9. Figure 11 shows the result obtained
for Chess withMinLen = 60% andMinSup = 0.7 to
0.9. Clearly, for a givenMinSup, GLFMiner discovers
more frequent patterns than does the conventional method
Apriori, for both datasets T10I4D100K and Chess. The
experiments herein reveal that GLFMiner finds more
potential association rules than Apriori. In particular,
GLFMiner outperforms Apriori by a factor of seven to
fifteen whenMinSup is less than 0.1 and 0.7 in Fig. 10
(T10I4D100K) and Fig. 11 (Chess) respectively.

To confirm that GLFMiner performs well in finding
local frequent-patterns, the following experiment
elucidates the relationship between the number of local
frequent-patterns and theMinSupthreshold in Fig. 12. A
smaller MinSup yields more local frequent-patterns. At
this point, the consistency between the mined local
frequent-patterns and the distribution of the generated
transactions’ pattern length must be checked. Figure 13
plots the number of local frequent-patterns of length one
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Fig. 10: Comparison of the number of frequent patterns
discovered by GLFMiner and Apriori using T10I4D100K dataset
for MinSupfrom 0.1 to 0.9

Fig. 11: Comparison of the number of frequent patterns
discovered by GLFMiner and Apriori using Chess dataset for
MinSupfrom 0.7 to 0.9

to seven for T10I4D100K withMinSup = 0.6 and
MinLen = 10%. The local frequent 4-patterns are found
in the greatest number since the size of potential maximal
frequent itemset was set to I=4.

When the length of a time interval is less thanMinLen
× |DB| number of frequent patterns that are found by
GLFMiner is compared with that found by Apriori for
T10I4D100K withMinSup = 0.4 andMinLen = 0.1%
to 0.9%. As shown in Fig. 14, GLFMiner always finds
more frequent patterns than does Apriori, especially when
the MinLen threshold is small. When the GLFMiner
algorithm is used, higherMinSup thresholds can be set,
and a suitableMinLen can be used to mine valuable
frequent patterns.

Lastly, we compare the GLFMiner algorithm with
Up-To-Date [14] and Apriori algorithms by using the
same T10I4D100K dataset. UsingMinLen=0.1% (purple
color) andMinLen=0.2% (green color) for GLFMiner, the
relationships between the number of frequent 1-itemsets
for differentMinSupthresholds are shown in Figure 15. It
is clear that the number of frequent-itemsets discovered
by the GLFMiner algorithm for LFP and GFP was larger
than that of Up-To-Date and Apriori algorithms. The
relationships between the number of frequent 2-itemsets
and 3-itmesets for differentMinSupthresholds are shown

Fig. 12: Relationship between the number of local frequent-
patterns and variousMinSupthresholds for T10I4D100K dataset

Fig. 13: Relationship between the number of local frequent-
patterns and the length of patterns for T10I4D100K dataset

Fig. 14: Comparison of the number of frequent patterns
discovered by GLFMiner and Apriori for variousMinLen
thresholds

in Figures 16 and 17, respectively. It can be observed that
the number of the frequent 2-itemsets and 3-itemsets
using Apriori algorithm are close to zero when the
support thresholds were set at 1% and above. By the
GLFMiner algorithm for GFP and LFP, the number of
frequent-itemsets discovered are much more than that of
the Up-To-Date algorithm (and the same for Apriori).
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Fig. 15: Comparison of the number of frequent 1-itemsets
discovered by Apriori, Up-To-Date and GLFMiner algorithms

Fig. 16: Comparison of the number of frequent 2-itemsets
discovered by Apriori, Up-To-Date and GLFMiner algorithms

Fig. 17: Comparison of the number of frequent 3-itemsets
discovered by Apriori, Up-To-Date and GLFMiner algorithms

5 Discussion

In this section, we prove the correctness of our GLFMiner
and analyze its computational complexities.

5.1 Proof of correctness for GLFMiner

When theMinLen threshold is less than 100%, the GFPs
are kept in every node to form TidSegmentsets with LFPs.
By Definitions 9 and 10, the nodes are merged in the depth-
first order. By using the result of Table 2, a GFP joins with

a GFP may generate another GFP. The joined GFPs are the
same as the GFPs generated from traditional association
rule mining algorithms. In other cases of joining a GFP
with a GFP or a GFP with a LFP or a LFP with a LFP,
they all follow Definition 9 to generate LFPs. Therefore,
GLFMiner can generate GFPs and LFPs correctly.

When theMinLen threshold is equal to 100%, by
Definition 4, there will be no LFP. The frequent-patterns
we get from GLFMiner are the same as the GFPs
generated from tradition association rule mining
algorithms. End of the proof.

5.2 Computational Complexity Analysis

Let m andn denote the size of a database and the number
of items in the database respectively. According to the
main program of GLFMiner in Fig. 2, we discuss the
computational complexity for each of the three steps and
then sum them up to get the total complexity.

After reading a record, GLFMiner has to map each
item tom buckets. Therefore, the time complexity of first
step is O(m× n). In the second step, GLFMiner processes
the bitmaps ofn items and every bitmap has to be further
partitioned if it is not a globally frequent. Because the
length of each bitmap ism, the time complexity of second
step is O(m× n).

In the third step, GLFMiner joins the bitmaps of node
with its sibling nodes in depth-first order. Because every
node contains a TidSegmentSet, the join of two nodes
consists of lots of joins of TidSegments. The time cost of
the third step comes from the cost of joins. Every node
has to join with its right siblings except leaf-nodes. The
time complexity of the number of joins can be expressed
as

O(
∑NL

i=1(NTS(Ni) ×
∑NSi

j=1 NTS(RSj(Ni))))

NL represents the number of non-leaf nodes in an
Interval-Tree. The non-leaf nodes are numbered from 1 to
NL andNi represents thei-th non-leaf node.NTS is the
function to get the number of TidSegments in nodeNi .
RSj is the function to get thej-th right sibling node.NSi
represents the number of the right siblings ofNi .

6 Conclusions

This work proposed the concept of global and local
frequent-patterns and demonstrated the efficient
implementation of the GLFMiner algorithm to discover
patterns in temporal datasets. Market basket analysis and
intrusion detection are considered as two illustrative
examples of the use of the proposed algorithm.
Experimental results show that the GLFMiner algorithm
can mine more interesting patterns than conventional
mining methods for givenMinSupthresholds. The value
of the proposed GLFMiner algorithm is as follows.
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–The results mined using GLFMiner include all of the
rules that can be mined by using conventional
association rule algorithms.

–GLFMiner can discover association rules that are
frequent in some intervals but not throughout the
entire dataset.

–The mined association rules include time attributes that
make them more useful.

–Valuable rules can still be mined by using larger
MinSupthresholds.

–GLFMiner automatically generates the intervals of
frequent patterns.

In the future, appropriate data structures may be used
to further improve the execution time of GLFMiner and
more real-world datasets will be used to confirm its
effectiveness.
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