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Abstract: In traditional association rule mining algorithms, if the minimum support is@&ehigh, many valuable rules will be lost.
However, if the value is set too low, then numerous trivial rules will beegated. To overcome the difficulty of setting minimum
support values, global and local patterns are mined herein. Owing teiti@oral factor in association rule mining, an itemset may
not occur frequently in the entire dataset (meaning that it is not a glattdrp), but it may appear frequently over specific intervals
(meaning that it is a local pattern). This paper proposed a tempoxatiagen rule mining algorithm for interval frequent-patterns,
called GLFMiner, which automatically and efficiently generates all intervésowt prior domain knowledge in an efficient manner.
GLFMiner considers not only global frequent-patterns, but also Ifseguent-patterns. Using the same value of minimum support,
it can locate many valuable temporal rules without losing the rules that traalitadgorithms may find. Experimental results reveal
that our novel algorithm mines more temporal frequent-patterns thditidorzal association rule mining algorithms and is effective in
real-world applications such as market basket analysis and intrusiectide systems.

Keywords: association rule, local frequent-pattern, global frequent-pattermpdehfrequent-pattern

1 Introduction rule “Turkey — Pumpkin pi& is not prominent, the
minimum supportthreshold must be set low enough for

In recent years, association rule mining has beerfhe above rule to be found. Consequently, too many
extensively used in knowledge discovery in various fields.association rules that are not very useful may be found,
The process of association rule mining involves overwhelming data analysis. Third, if, in the summer, a
discovering all rules whossupportandconfidenceare at ~ Shopkeeper launches a sale promotion that is based on the
least the user-defined minimusupportand minimum  discovered rule, such as providing a 10% discount for
confidence thresholds, respectively. For example, buying a turkey and a pumpkin pie together, he is bound
examination of the dataset of a supermarket in traditionafO fail because the right time to apply thdurkey —
association rule miningl{2] for market basket analysis Pumpkin pié rule is well known to be during the weeks
may yield an association rule such &sitkey— Pumpkin ~ before Thanksgiving holiday.
pie (support = 0.0001, con fidence = 0.05)", meaning If only the transactions in a specific time interval,
that 0.01% of all transactions contain both turkey andsuch as the week before Thanksgiving, are considered,
pumpkin pie, and 5% of all transactions that containthen most will be found to contain both turkey and
turkey also contain pumpkin pie. pumpkin pie. Accordingly, the rulettirkey — pumpkin
The association ruleTurkey— Pumpkin pié raises  pi€’ has highsupportand highconfidencein the week
three problems. First, the above rule cannot be regardefiefore Thanksgiving. From this example, an itemset may
as a prominent association rule becausesitpportand  nhot be frequent in the entire dataset but it may be frequent
confidenceare both too low. Therefore, a turkey and a in specific intervals. Therefore, effectively finding these
pumpkin pie are seldom associated in the entire dataset dntervals in which patterns are frequent is important.
transactions and many transactions that contain turkey do In intrusion detection system8,§], association rule
not contain pumpkin pie. Second, since the associatiomrmining is used to identify malicious activity by analyzing

* Corresponding author e-madlyang@fcu.edu.tw

© 2014 NSP
Natural Sciences Publishing Cor.


http://dx.doi.org/10.12785/amis/080446

1880 NS 2 K. C.Yin et. al. : Association Rule Mining Considering Local Frequent Paste

network traffic data. In this application, the goal of 2 Background and Related Works

applying association rules is to find relationships between

the various attack signatures and IP addresses thg?.1 Association rule mining

constitute real attacks in the network environment. The

generation of more association rules corresponds to morgn recent years, an increasing number of researcléers [
accurate attack detection. To prevent loss of any alarm, aave worked on association rule mining because it is an
many association rules as possible must be generated. inportant part of data mining. Agrawat al. were the first
useful means of so doing is to set tisepportvalue  to consider the problem of association rule mining, which
relatively low, while enforcing a highconfidence is formally defined as follows.

constraint on the result set. However, properly setting Let DB be a transaction dataset that contains a set of
these thresholds is critical to successful detection andransactiongt;,to,t3, - ,tn}. Letl = {iy,ig, - ,ip}
difficult to do. Most attackers leave tails behind them andbe a set of items. Let = (T%d,t — itemset) be a
their behaviors can be determined by analysis to beransaction. Tid is a transaction number and t-itemset
related to their malicious activities. One of the important contains a set of items. Let X be a set of items. A
features of the effective analysis is the capture oftransaction t contains X if and only ¥ C t. The length
temporal data. For example, many intrusions occur late abf a transaction that contaitkstems is denoted bi. The
night to reduce the likelihood that people will notice two important measurements in association rule mining
degraded system performance or malfunctions that migharesupportandconfidenceSupportis the frequency with

be associated with the unusual activity. Other potentialwhich patterns occur in DB antbnfidences the strength
temporal considerations include special dates orof implication. The definitions are as follows.

occasions, such as the release of new products or services. (1) Support(X) = 2@l

As in the market basket analysis, too many useless rules ) DB Support(XUY)

may waste processing time and too few rules may make (2) Confidence(X —Y) = “Support(X)

detection ineffective. In this study, temporal factors arewhere DB represents the datasé®B| is the number of
considered to find more meaningful rules with higher transactions in DB, and’(«) represents the set of all
efficiency to improve the effectiveness of the intrusion transactions that containin DB.

detection system. In a support-confidenc&amework, if X — Y is an

. . . interesting relation, then X and Y must occur frequently.
Li et al. [5] proposed the calendar-based script to find Two conditions define a frequent relation:

time intervals. However, devising this script requires .

. e . t(XuUY)> M
domain knowledge. In this study, the intervals of Support(X UY') = MinSup
association rules will be automatically generated without Confidence(X — Y) > MinConf

the need for any domain knowledge. The propose : : e
GLFMiner (Global and Local Frequent-patterns Miner)q&?:é%ng?#grlsir;(irr].suggmgemnilé%?g;ggesmld and
algorithm finds frequent patterns in intervals in which the '

minimum support is higher and the likelihood of the
application of discovered rules is greater. GLFMiner
firstly transforms the transaction dataset into a bit-mapz'2 Related works

representation, and then recursively jofksl) itemsets to In recent decades, various algorithms have been proposed
form k itemsets in depth-first (DF) order. After joining the to discover efficiently frequent itemsets in various

::gngi’ GLFMiner generates the intervals of frequentapplications. These methods include level-wise

algorithms [,8,9,10,11,12] and pattern-growth methods

The rest of this paper is organized as follows. Section[2,13]. Temporal association rule mining is an extension
2 describes the temporal association rule mining problenof association rule generation. Several temporal
and reviews related works on mining temporal associatiorassociation rule mining algorithms have been developed
rules. Section 3 describes the three stages of GLFMinefor mining more meaningful frequent patterns, temporal
algorithm, which are as follows. (1) Read the dataset andassociation rules, and up-to-date association rules than
transform transactions into the bit-map representat@n. ( conventional association rule mining algorithms.
Localize bit-map representations of all non-global Hong et al. [14] studied up-to-date association rules.
frequent-items to construct an initial Interval-Tree. (3) The main purpose of such a rule concerns an itemset that
Recursively join the(k-1) nodes of the Interval-Tree to may not be frequent in an entire dataset, but which may
generate k nodes and identify local and global be largely up-to-date because items that rarely occur
frequent-itemsets. Section 4 presents experimentaltsesul earlier in the dataset may often occur later. An up-to-date
obtained using real and synthetic datasets and compargsattern comprises an itemset and its up-to-date lifetime,
the performance of GLFMiner with that of other which must satisfy the user-defined minimusapport
algorithms. Section 5 discusses the correctness anthreshold.

computational complexity of our proposed algorithm. Interesting associations with higtonfidence albeit
Finally, Section 6 draws conclusions. with small support can be found. Ale and Rossig]
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limited the total transactions to those that belong to the Root
lifetime of the items. Therefore, those associations would
be discovered as they would have sufficietpport v 3 v

b

Those authors extended the notion of association rules by a H
[1,10](1100100111):6 ||[1.2](11):2 ,

incorporating time into the frequent itemsets. Every item
in the dataset has a period of lifetime or lifespan that

C
[8,9](11):2‘ ‘[3.9](1100011):4 ‘

explicitly represents the temporal duration of the v v Y
information about the item which is the time during ab ac be
[1,2](11):2, [8.9](11):2] |[8.9](11):2 | |[8.9](11):2

which the item is relevant to the user.

Lee et al [16,17] studied a new problem of mining
general temporal association rules from publication
datasets. A publication dataset is a set of transactions,
where each transaction is a set of items of which each

item contains an individual exhibition period. The authors intervals, they used calendar schemas and calendar-based
claimed that the current njod.el of association rule mi”ingpatterns. An example of a calendar schema is (year,
cannot handle the publication dataset because of thgonth, day); a calendar-based pattern within the schema
following fundamental ~ problems: (1) lack ~of g (« 3 15) which represents the set of time intervals
consideration of the exhibition period of each individual g5ch of which is the 15th day in March.
item and (2) lack of an equitable basis for determining the | ot a1 [5], Gharibet al. [21] and Vermaet al. [27]
support of the items. The authors proposed the ssumed that transactions are time-stamped, enabling
Progressive-Partition-Miner (PPM) algorithm. The basic yetermination of whether a transaction occurs in a
concept_of PPM is firstly to partition the publication particular interval. Other researchers4[15,17,20] do
dataset in light of the exhibition periods of items, and o take this approach. GLFMiner does not assume that a
then progressively accumulates the occurrence count ofansaction is time-stamped. Rather, it uses the sequence
each 2-itemset candidate based on intrinsic partitioningyt yransactions as the temporal basis for generating all of
characteristics. Anjanet al. [18] proposed an innovative  the intervals of the itemsets. The main contribution of
algorithm that combines the Progressive Partitiong| Eminer is  that it  not only finds global
approach with Counting Inference method (PPCI) t0fequent-patterns throughout the dataset but also igentif
discover association rules in a temporal database. local frequent-patterns in particular intervals.
Abdullah and SusanlP] examined the discovery of
association rules in temporal data. They incorporated an
enumeration operation into the relational algebra to . .
prepare the data for the discovery of association rules ang’ Proposed GLFMiner Algorithm
applied knowledge discovery techniques to a series of o
datasets over consecutive time intervals, rather thareto th3.1 Definitions
entire database. However, their algorithm requires that th
interval size to be determined in advance. TheA frequent pattern is an itemset whose frequency in DB is
contribution of this work is the generation of an interval larger than or equal tMinSup This study proposes the
without predefining the interval size. concept of local and global frequent-patterns. GLFMiner
Tsai [20] proposed a framework for mining data performs a search for a frequent pattern set over the
stream, called the weighted sliding window model. The search space of a novel Interval-Tree as presented in Fig.
model allows a user to specify the number of windows forl. The following section will formally define the
mining, the size of each window, and the weight of eachinterval-Tree. Each node in the Interval-Tree, repregsknte
window. The weighted sliding window model emphasizesby a datum of the form< itemset, TidSegmentSet >,
temporality and gives a greater weight to more recentis a prefix-based class. All children, with lengthof a
events. given node are in the same class because they all share the
Gharib et al. [21] used the concept of temporal same prefix. Therefore, all the children in the same class
association rules to solve handling time series bycan be joined to fornfk+1) frequent patterns. Next, some
incorporating time expressions into their algorithm. Thei terms that are used in the proposed algorithm are defined.
proposed algorithm is incremental and uses the results of Let I = {iy,i2,43,-- , i, } be a set of distinct items.
earlier mining to obtain the final mining output. Their An itemset is a subset of |. For example, in Table 1,
proposed algorithm reduces the time required to generaté = {a,b,c,d, e, f}. Pattern{a, b} is an itemset that
new candidates by storing 2-itemset candidates andpecifies coexistence of items “a” and “b” in the
includes a means of updating previously generatedransaction. Aninterval is a set of consecutive transaction
candidates rather than re-generating them from scratch. IDs and is denoted as [begin, end] where “begin” is the
Li et al. [5] studied the problem of mining association ID of the first transaction in the interval and “end” is the
rules with reference to the time intervals in which an final one. For example, Interval [3, 5] is the range of
association rule holds. To identify meaningful time transactions from Transaction ID 3 to Transaction ID 5.

Fig. 1: Interval-Tree
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__ Table 1: Sample dataset Definition 2.An  itemset o is called a global
Tid | Transaction Time| Items frequent-pattern (GFP) in DB if

1 2009/07/01 a,b,d,f 1) S Ha) = [T@] gnq

2 2009/07/16 | a,b,df (1) Support(a) = Tppr, an

3 | 2000/08/03 | cdf (2) Support(a) = MinSup

4 2009/08/09 c,f . .

5 5009/09/10 af The definition of global frequent-patterns is the same
6 5009/09/30 f as that of frequent patterns in a conventional association
v 5009/10/03 e rule mining algorithm. For example, based on
8 5009/10/18 ab.c MinSup = 0.5, item a[1,10] in Table 1 is a globally

9 2009/11/08 | ab.cde frequent 1-itemset for the entire dataset, where the first
10 5009/11/27 af transaction that contains “a” is TID=1 and the final

transaction that contains “a” is TID=10. Next, the
definition of local frequent-patterns in specific intervisls
presented.

Let o be an itemset. ATidSegment recordso in a  Definition 3.The minimum length of a TidSegment is

specific interval as [begin, end](bitmap):count where denoted as MinLen.

[begin, end] represents an interval. The bitmapadé a

bit string of 1s and Os, where a 1-bit indicates the Ifanintervalis lessthaMinLenx |DB|, then this interval

corresponding transaction containgnd a 0-bit indicates  is not sufficiently prominent and is therefore deleted. For

the corresponding transaction does not containThe  example, based on the DB of TableMjnLen = 15% is

count ofa is the number of the transactions that containset. If the interval is 1, then theupportof this interval is

«. For example, in Fig. 1, the TidSegment of the itemset100% and theconfidences also100%. Since 1 is less than

“a”, [1,10](1100100111):6, reveals that the itemset “a” MinLen x |DB| = 1.5, this interval can be regarded as

appears in the interval [1,10]; the corresponding bitmap isnoise and deleted.

(1100100111), where Transaction ID 1 represents the

“begin” ID; Transaction ID 10 represents the “end” ID, Definition 4.An item set «

and the count of occurrence is 6. The itemset “ab”frequent-pattern (LFP) in a DBif

comprises two TidSegments, [1,2](11):2 and [8,9](11):2, (1) Support(e) = “TDI‘(B“)‘\,

meaning that itemset “ab” appears in two intervals, [1,2] e

and [8,9], and that the corresponding bitmap is (11), and 2) Sypport(a) 2 MinSup,

the frequency of occurrence is 2. AdSegmentSets the (3) |Tl.(a>| > Minlen x |DB| and .

set of TidSegments that belon s to the same itemset. F (4) o is not a global frequent-pattern, whei(a) is
g . 9 . i - "Qhe set of all transactions that containsn the dataset DB

example, the TidSegment of “ab” [1,2](11):2, and in a particular interval i

TidSegment of “ab” [8,9](11):2, have the same itemset '

“ab”, and form a TidSegmentSet, which is denoted as

{[1,2](11):2,[8,9](11):2. A node comprises an

itemset-TidSegmentSet pair, and is denoted a o _ ;

< itemset, Tz’dSegmentSet >, where TidSegmgntSet is &:t‘r;t”eir;/azlis.l(l):garl ef)r(sgzgﬁ{ ml{zi,?esgget iOn'St’htg eirr:tg:\e/;?? é’]et

the set of TidSegments that correspond to the itemset. For B B ITu(e)|

example, a nodes ab, {[1,2](11) : 2,[8,9)(11) : 2} >,  Pecaus€ly(e)| = 2, [DB;| = 3 and 755 = 0.67 .

indicates that the itemset is “ab” and its correspondingHowever, it is not a global frequent-itemset for

TidSegmentSet i§[1,2](11):2, [8,9](11):2. MinSup = 0.5.

is called a local

Given a MinSup local frequent-patterns are those
whose number is larger thadinSuponly in particular

Definition 5.Two  consecutive  TidSegments  are

“mergeable” if and only if the following condition is met;
_ TidSegment,,.count+TidSegment,, _1.count > MinS
nodes contain TidSegment,.end—TidSegment, _1.begintl = oUp,
where TidSegment,,_1[begin, end) count and
TidSegment,[begin, end] : count are two consecutive

intervals ofa.

Definition 1.Interval-Tree  of {Node;, Nodes, - -,

Node,} is a prefix-based tree. The root node of the
Interval-Tree is null. The other
itemset-TidSegmentSet pairs. NMode,, is the parent of
Node,, |Node,,| = |Node,| + 1, and the itemset of
Node,, is the prefix of the itemset aVode,,, where
|Node,,| is the height ofV ode,,, in the Interval-Tree.

For example, forTidSegment,_1[4,4](1) 1 and

; _ idSegment,|7,9](111 : 3,

Figure 1 prese_nts an example of an Interv_al Treg. Eacﬂ;i dSegmen tn_;gm ; J!;l 4 Sggmm b veount a1
node contains an itemset-TidSegmentSet pair. The iteMset;qscgment,, .cnd—TidSegmentn 1 begint1 9—4+1

“a” of Node, is the prefix of the itemset “ab” aVode,;.
The itemset “b” of Nodey, is the prefix of the itemset “bc”
of Nodey.. Node,, contains a set of two TidSegments.

0.67 > MinSup ; therefore, they can be merged. The
order of merging is right side first if both the current left
interval and the current right interval can be merged.

© 2014 NSP
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Definition 6.The merging of consecutive TidSegments isFor examplenewTidSegmentSet = Join{[1,2](11),

defined as follows.

Merge( TidSegment,_1,
TidSegment,,)

newTidSegment =

where

newTidSegment.begin = TidSegment,,_1.begin,
newTidSegment.end = TidSegment,,.end,
newTidSegment.count = TidSegment,,_1.count +

TidSegment,,.count,

and the two bitmaps merged are defined as below:

newTidSegment.bitmap = TidSegment,_1.bitmap
+ fill(0, TidSegment,, .begin
— TidSegment,_i.end — 1)
+ TidSegment,, .bitmap.

Here, the function “fill” generates a consecutive “0”

[1,5](11001)} = [1,2](11)

Definition 10.The joining of nodes: and 3 is defined as
follows:
< v, TidSegmentSet.,, >= Join(

< a,TidSegmentSet, >, < 3, TidSegmentSets >)

where
v = a U S as in the traditional definition of join.

TidSegmentsofTidSegmentSet, = Join(
TidSegmentsofTidSegmentSet,,
TidSegmentsofTidSegmentSetg).

The nodes ofv and 3 are node-joinable; therefore, they
have the same parent node in the Interval-Tree,candd
g differ by only one item. Ifa = {I1, 1o, I3, .., I, [}
and B = {11712,13,..,I]€,In}, then’}/ = {11,12713,
"7Ik7]ma In}

For example,

bitmap, while the second parameter represents the<7,TidSegmentSet, >= Join(< ab,[1,2](11) >,

number of “0”s to be generated.

For example, given two interval$idSegment,, 1
[4,4](1) : 1 andTidSegment,[7,9](111) : 3,
Merge(TidSegment,,_1, TidSegment,, )=
TidSegment,_1[4,9](100111) : 4.

Definition 7.The nodes of itemsets and 5 are called

node-joinable if and only if both nodes share one parent

node in the Interval-Tree.

Definition 8. TheT'idSegment,, in the itemsetr and the

TidSegment,,
disjoinable if and only if
(1) TidSegment,,.begin > TidSegment,,.end, Or
(2) TidSegment,,.begin > TidSegment,, .end.

Definition 9.The join of TidSegment$;dSegment,, and
TidSegment,,, is defined as

newTidSegment = Join(TidSegment,,, TidSegment,,),

where

newT'idSegment.begin = Max( T idSegment,, .begin,
T idSegment,,

newT'idSegment.end = Min( T idSegment,,.end,
T idSegment,,.end),

newTid Segment.bitmap = AN D(
TidSegment,[newTidSegment.begin,
newT'idSegment.end].bitmap,
TidSegment,, [newTidSegment.begin,
newTidSegment.end).bitmap)

in the itemsets are called TidSegment-

.begin),

o {[L.5)(11001) (5. 9)(11)) =) < abf. [1.2(11) >
where

TidSegmenty,=Join([1,2](11),[1,5](11001))
— [1,2)(11),

TidSegmenty,=Join(
TidSegment-disjoinable.
Table 2 lists the possible results of joining two
patterns. The joining of two GFPs yields three possible
results, which are GFP, LFP, and IFP. Here GFP means
the global frequent-pattern, LFP means the local

frequent-pattern and IFP means the infrequent pattern.

[1,2](11), [8,9](11)) —

Table 2: The possible results of joining two patterns

Pattern 1| Pattern 2| Join(Pattternl, Pattern2)
GFP GFP GFP, LFP, IFP
GFP LFP LFP, IFP
LFP LFP LFP, IFP

3.2 GLFMiner Algorithm

The proposed algorithm has three main steps. First, it
scans the dataset to find the global frequency of each item
and converts all items into a bit-map to speed up
processing. Second, it localizes each item that is not
globally frequent and constructs the initial Interval-@re
Third, it recursively joins each node in DF order on the
Interval-Tree. Then, it localizes the joined TidSegment to
find the frequent intervals and adds them to the
Interval-Tree. The frequent nodes are output as temporal
frequent-itemsets. Figure 2 presents the pseudo code of

© 2014 NSP
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Main_Program of GLFMiner

Input: (1) DB (2) MinSup (3) MinLen

Output:(1) Global and Local Frequent-patterns

Begin

1) BitMaps=ScanDataBase(DB)

2) Interval_Tree=Construct_Initial_Interval_Tree(BitMaps, MinSup, MinLen)
3) FreqSet = RecursiveJoin(Interval_Tree)

End

Fig. 2: Main program of GLFMiner

Function Construct_Initial_Interval Tree
Input: (1) BitMaps (2) MinSup (3) MinLen
Output: (1) Interval_Tree
Begin
1) Interval_Tree < Create Root Node
2) Candidate_Items « getltemFrequency (BitMaps)
3) for (each item in Candidate_Items)
Begin
newNode = new Node(item)
if newNode is not GlobalFrequent
LocalizeNode(newNode, MinSup, MinLen)
if newNode is LocalFrequent
Interval_Tree.addChild(newNode)
else
11) Interval_Tree.addChild(newNode)
12) End
13) Return Interval_Tree

10)

Fig. 3: Pseudo code for constructing initial Interval-Tree

a(1100100111), b(1100000110), ¢(0011000110), d(1110000010), ¢(0000001010),
£f(1111110001)

Fig. 4: Bitmap representation of every item in Table 1

the GLFMiner algorithm. The following section will
elucidate in detail the steps of the GLFMiner algorithm.

Function RecursiveJoin

Input: (1) ParentNode

Output: (1) FreqSet

Begin

1)for (each node; e ParentNode ) {

2) for (each node, « Right Siblings of node; )
3) 4

4) SonNode = Join(node;, node,)

5) If SonNode is not GlobalFrequent

6)  LocalizeNode (SonNode, MinSup, MinLen)
7) Else

8)  node;.addChild (SonNode)

9}

10) FreqSet=FreqSet . node;

11) FreqSet=FreqSet . Recursiveloin (node;)
12) ParentNode.RemoveChild (node;) }

End

Fig. 5: Pseudo code of RecursiveJoin

Therefore, “c”

be localized.
Step 2-1: Partition the bitmap representation of a

TidSegment.

For example, itemset “c” is not a global frequent-itemset.

Table 3 presents the procedure for partitioning itemset “c”

with MinSup = 0.5.

is not a global frequent-itemset and must

Table 3: Procedure for partitioning the TidSegment of ltemset
“er

Step 1: GLFMiner scans the dataset and transforms a

items into a bit-map representation. The dataset in Table
with  MinSup 0.5 is used to generate the bitmap
representation of every item in Fig. 4.

Step 2: GLFMiner verifies whether each item is
globally frequent. If it is not, then the Localize functia i
used to determine local frequent-intervals. GLFMiner
adds global and local frequent-items into the
Interval-Tree to construct an initial Interval-Tree.

In this step, GLFMiner localizes the nodes that
contain TidSegments that are not globally frequent.

N | bit | Interval Support Action
10| O Skip
9 | 1 | 991 | (1/0.5=2)>=(9—-9+1)
8 | 1 | [89]2 | (2/05=4)>=(9—-8+1)
710 | [89]2 | (2/05=4)>=(9-7T+1)
"6 | 0 [ [B9I2 | (2/05=4)>=(9-6+1)
'570 [ [8912 | (2/05=4<(O—-5+1)
L Add A New TidSegment [8,9](11):2
4 [ 1 [ [B4]1 [ (Q/05=2)>=(4—-4+1)
31| 342 | (2/05=4)>=(4—-3+1)
2 [0 | BA2 | (2/05=4)>=4—-2+1)
10| [BA2 ] (2/05=4)>=4d—-1+1)
Add A New TidSegment [3,4](11):2

Step 2-2: Merge pairs of consecutive intervals to form

Localizing a TidSegment comprises three steps. First, thé larger interval from the final interval to the first.

bitmap of a TidSegment is partitioned to find the local

frequent-intervals of the corresponding itemset. Second¢2

the algorithm checks whether the two consecutive
TidSegments can be merged to form a larger local
frequent-interval.  Third, GLFMiner prunes the
TidSegments whose intervals are shorter th&nLen x
|DB|. For example, the bitmap representation of item “a”
is (1100100111). The number of item “a” is 6, which is
larger thanMinSup x |DB| = 0.5 x 10 = 5; therefore,
“a” is a global frequent-itemset. The bitmap
representation of item “c” is (0011000110). The number
of item “c” is 4, which is below theMinSupthreshold.

For example, consider ¢[3,4](11):2 and

[8,9](11):2; since
'(c1.count+c count) _ (24+2) 4

((’2l end—ci. bzegzn+1) (9—3+1) 7 > MZTLSU]),

c1[3,4](11):2 and cQ[8 9](11):2 are merged
¢1[3,9](100111):4.

Step 2-3: Prune the TidSegment whose interval is
shorter than MinLen x |DB| to eliminate trivial
intervals.

For example, ifMinLen = 15% and the length of
TidSegmentl, [9,9]:1 is 1, which is less thainLen x
|IDB| = 15% x 10 = 1.5, the TidSegmend, [9,9]:1 is
removed.

into
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Bitmap representation of every item in Table 1
Step 1 a(1100100111):6, b(1100000110):4, ¢(0011000110):3, d(1110000010):4, e(0000001010):2, f(1111110001):7
Step 2-1 Partition <a,[1,101(1100100111):6>, <b,{[1,2]1(11):2, [8,91(11):2}>,<c,{[3,4]1(11):2, [8,9](11):2}>,
P <d,{[1,3](111):3, [9,9](1):1}>, <e,[7,91(101):2>, <f,[1,10](1110110101):7>
Step 2-2 M. <a.[1,10](1100100111):6>, <b,{[1,2](11):2, [8,91(11):2}>, <c.[3,9](1100011):4>,
ep erge <d,{[1,31(111):3, [9,9]1(1):1}>, <e,[7,91(101):2>, < £,[1,10](1111110001):7}>
Step 2-3 Prune <a,[1,101(1100100111):6>, <b, {[1,2]1(11):2, [8,9]1(11):2}>, <c,[3,91(1100011):4>,
P <d,[1,3](111):3>, <e,[7,91(101):2>, <f,[1,10](1111110001):7>
. . . <ab,{[1,21(11):2, [8,9]1(11):2}>, <ac,[8,9]1(11):2>, <ad,[1,2](11):2>,
Step 3-1 Join(<a,[1,10](1100100111),*) <af[1,10)(1100100001):4>
} . <ab,{[1,21(11):2, [8,9]1(11):2}>, <ac,[8,9](11):2>, <ad,[1,2](11):2>,
Step 3-2 Localize <af,[1,51(11001):3>
<ab,{[1,21(11):2, [8,91(11):2}>, <ac,[8,9](11):2>, <ad,[1,2](11):2>,
Step 3-3 Add node <af,[1,51(11001):3>
Step 34 Add to Frequent set :2?1{1[2,12(]1(113()):12),:59](11):2}>, <ac,[8,91(11):2>, <ad,[1,2](11):2>,
Step 3-1 Join(<ab,{[1,21(11),[8,91(11)}>,%) | <abe,[8,9](11):2>, <abd,[1,2](11):2>, <abf,[1,2](11):2>
Step 3-2 Localize <abc,[8,91(11):2>, <abd,[1,21(11):2>, <abf,[1,2](11):2>
Step 3-3 Add node <abc,[8,9](11):2>, <abd,[1,21(11):2>, <abf,[1,2](11):2>
Step 3-4 Add to Frequent set <abc,[8,9](11):2>, <abd,[1,2](11):2>, <abf,[1,2](11):2>
Step 3-1 Join(<abc,[8,9]1(11)>,*) ‘

Fig. 6: Deployment of GLFMiner

N S SN

b c e f
s [8,9](11):2‘ ‘[3,9](1100011):4” [1,3](111):3H [7,9](101):4‘ [1,10](1111110001):7‘

a
‘ [1,10](1100100111):6‘ ‘[1,2](11):2

ab
‘ [1,21011):2, [89](11)2‘ ‘[89](11)2 ‘ ‘[1 2112 H[l 5](11001)3‘ [ 2](11)2H 12](11)2‘ ‘[39](11)2‘ ‘ 89](11)2 ‘ ‘[1 3](111)3‘

a abd abf adf
[8, 9](11)2 [1,2](11):2 [1,2](11):2 [1,2](11):2 ‘

abdf
[1,2](11):2

Fig. 7: Complete Interval-Tree based on Table 1

Step 3: Recursively join the itemsets in DF order from b, {[1,2](11) : 2,[8,9](11) : 2} >) = < ab, {[1,2](11) :
the root. Figure 5 presents the pseudo code. The node o, [8,9](11) : 2} >
length (k-1) joins all of the right siblings to generate a
combined itemset of length. Every joining procedure

i X Step 3-2: Localize SonNode.
comprises the following steps.

Step 3-1:Node; joins Nodes (right sibling). Chilgtep 3-3: If SonNode is frequent, add itAode; as a
For example,
SonNode = Join(< a,[1,10](1100100111) : 6 > , < Step 3-4: AddN ode; to the frequent itemset, FregSet.
@© 2014 NSP
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3.3 A complete Example 12,000
é 10,000
The dataset in Table 1 is used williinSup = 0.5 and § 8,000
MinLen = 15% to demonstrate the procedure of the | 5 %
GLFMiner algorithm. The three steps of the GLFMiner § 4,000
algorithm are as follows. 5 2,000
Step 1: Transform each item in DB into a bitmap 0
I‘epl‘esentation 0.09 008 007 006 005 004 003 002
’ . . MinSup Threshold
Step 2: Perform Localize function for non-global P TATesok

frequent-items to construct an initial Interval-Tree.

Repeat Fig. 8: Relationship between execution time aktinSup for
Step 3-1: SonNode ¥ ode; joins Nodes T1014D100K dataset
Step 3-2: Localize SonNode
Step 3-3: If SonNode is frequent, then add iffode;

as a child 8000
Step 3-4:Add N ode; to the frequent itemset, FreqSet 2 7,000

F 6,000

B 5,000

Fig. 6 presents the procedures for deploying| % o0
GLFMiner to mine the dataset in Table 1. The procedure £ 3000
for constructing the leftmost branch of the Interval-Tree i | & 2%

provided. Fig. 7 presents the complete Interval-Tree. g oo

09 0.8 0.7
MinSup Threshold

4 Experimental Results
Fig. 9: Relationship between execution time aktinSup for

This section describes in detail the experiments of the“ness dataset
GLFMiner algorithm. The algorithm was implemented in
JAVA on personal computer with an Intel Core Duo
Processor at 1.99 GHz with 4 GB RAM. The synthetic
dataset of T1014D100K from the IBM dataset generator ~ Although GLFMiner exhibits a similar relationship
and the real dataset Chess were used to validatbetween execution time ardinSupto that of Apriori, it
effectiveness of the proposed algorithm. In T1014D100K, performs well in finding more frequent patterns when
the size of a transaction is T=10, the size of a potentiaMinSup is low than Apriori. This effect is significant
maximal frequent itemset is 1=4, and the total number ofsince most local frequent-patterns are found with a
transactions is D=100000. Multiple sets of such datasesmaller MinSup Figures 10 and 11 present the
are generated to perform the experiments. The resultarfelationships between the number of frequent patterns and
values are averaged to yield the final outcome. the MinSup thresholds. Figure 10 shows the result
Of the most popular association rule mining obtained for T1014D100K withMinLen = 1% and
algorithms that have been used in recent decatlg,[ MinSup = 0.1t0 0.9. Figure 11 shows the result obtained
Apriori is still used extensively and has many extensionsfor Chess withMinLen = 60% and MinSup = 0.7 to
under study. The performance of GLFMiner is compared0.9. Clearly, for a givenMinSup GLFMiner discovers
with that of Apriori although this classical method does more frequent patterns than does the conventional method
not consider temporal intervals. Apriori, for both datasets T10l14D100K and Chess. The
In the first experiment, the relation between executionexperiments herein reveal that GLFMiner finds more
time andMinSup settings is determined by varying the potential association rules than Apriori. In particular,
MinSupthresholds. Figure 8 presents the results obtained>LFMiner outperforms Apriori by a factor of seven to
using the T1014D100K dataset wheldinLen = 60% fifteen whenMinSupis less than 0.1 and 0.7 in Fig. 10
and MinSup = 0.09 to 0.02. Figure 9 displays the results (T1014D100K) and Fig. 11 (Chess) respectively.
obtained using the Chess dataset witfinLen = 60% To confirm that GLFMiner performs well in finding
and MinSup = 0.9 to 0.7. In both experiments, the local frequent-patterns, the following experiment
execution time increased as tMinSupdecreased, as it elucidates the relationship between the number of local
did for Apriori. Lower MinSup thresholds yield more frequent-patterns and thidinSupthreshold in Fig. 12. A
temporal interval patterns, especially when they are belowsmaller MinSup yields more local frequent-patterns. At
0.04 and 0.8 for T10l4D100K and Chess respectively.this point, the consistency between the mined local
Therefore, MinSup is one of the main factors that frequent-patterns and the distribution of the generated
influence the execution time. Another important factor is transactions’ pattern length must be checked. Figure 13
the total number of transactions. plots the number of local frequent-patterns of length one
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Fig. 10: Comparison of the number of frequent patterns
discovered by GLFMiner and Apriori using T1014D100K dataset
for MinSupfrom 0.1 to 0.9
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Fig. 11: Comparison of the number of frequent patterns
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Fig. 12: Relationship between the number of local frequent-

patterns and varioudlinSupthresholds for T1014D100K dataset
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discovered by GLFMiner and Apriori using Chess dataset for _.

MinSupfrom 0.7 to 0.9

to seven for T10l14D100K withMinSup 0.6 and
MinLen = 10%. The local frequent 4-patterns are found
in the greatest number since the size of potential maxima
frequent itemset was set to [=4.

When the length of a time interval is less thdimLen
x |DB| number of frequent patterns that are found by
GLFMiner is compared with that found by Apriori for
T1014D100K with MinSup = 0.4 and MinLen = 0.1%

Fig. 13: Relationship between the number of local frequent-
patterns and the length of patterns for T1014D100K dataset
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Patterns
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0
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Number of Frequent

to 0.9%. As shown in Fig. 14, GLFMiner always finds

MinLen Threshold

more frequent patterns than does Apriori, especially wher
the MinLen threshold is small. When the GLFMiner
algorithm is used, higheMinSupthresholds can be set,
and a suitableMinLen can be used to mine valuable
frequent patterns.

Lastly, we compare the GLFMiner algorithm with
Up-To-Date [L4] and Apriori algorithms by using the
same T1014D100K dataset. UsindinLen=0.1% (purple
color) andMinLen=0.2% (green color) for GLFMiner, the

Fig. 14: Comparison of the number of frequent patterns

discovered by GLFMiner and Apriori for variouMinLen
thresholds

relationships between the number of frequent 1-itemsetén Figures 16 and 17, respectively. It can be observed that
for differentMinSupthresholds are shown in Figure 15. It the number of the frequent 2-itemsets and 3-itemsets
is clear that the number of frequent-itemsets discoveredising Apriori algorithm are close to zero when the
by the GLFMiner algorithm for LFP and GFP was larger support thresholds were set at 1% and above. By the
than that of Up-To-Date and Apriori algorithms. The GLFMiner algorithm for GFP and LFP, the number of
relationships between the number of frequent 2-itemset$requent-itemsets discovered are much more than that of
and 3-itmesets for differelinSupthresholds are shown the Up-To-Date algorithm (and the same for Apriori).
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700 1 == Apriori a GFP may generate another GFP. The joined GFPs are the
600 1 == Up-To-Date same as the GFPs generated from traditional association
500 - 0.2% rule mining algorithms. In other cases of joining a GFP
200 - =H=0.1% with a GFP or a GFP with a LFP or a LFP with a LFP,
300 - ol they all follow Definition 9 to generate LFPs. Therefore,
200 - GLFMiner can generate GFPs and LFPs correctly.
100 - When theMinLen threshold is equal to 100%, by
0 Definition 4, there will be no LFP. The frequent-patterns
1% 2% 3% 4% 5% 6% we get from GLFMiner are the same as the GFPs
MinSup Threshold generated from tradition association rule mining
algorithms. End of the proof.

Counts of 1-itemsets

Fig. 15: Comparison of the number of frequent 1l-itemsets

discovered by Apriori, Up-To-Date and GLFMiner algorithms 5.2 Computational Complexity Analysis

Let mandn denote the size of a database and the number

60000 -

== Apriori of items in the database respectively. According to the
£ 50000 | = Up-To-Date main program of GLFI_\/Iiner in Fig. 2, we discuss the
= 0000 | 0.9% computational complexity for each of the three steps and
_g 30000 1 o1 then sum them up to get the total complexity.
2 After reading a record, GLFMiner has to map each
% 20000 1 item tom buckets. Therefore, the time complexity of first
g 10000 1 step is O x n). In the second step, GLFMiner processes
“ o L —— cac A 4 the bitmaps of items and every bitmap has to be further

1% 2% 3% 4% 5% 6%

partitioned if it is not a globally frequent. Because the
length of each bitmap isy, the time complexity of second
step is O x n).

In the third step, GLFMiner joins the bitmaps of node
with its sibling nodes in depth-first order. Because every
node contains a TidSegmentSet, the join of two nodes
consists of lots of joins of TidSegments. The time cost of

MinSup Threshold

Fig. 16: Comparison of the number of frequent 2-itemsets
discovered by Apriori, Up-To-Date and GLFMiner algorithms

100000

= Apriori the third step comes from the cost of joins. Every node
80000 - =f=Up-To-Date has to join with its right siblings except leaf-nodes. The
50000 - 02% time complexity of the number of joins can be expressed
==0.1% as

40000 -+

O (NTS(Ny) x 32005 NTS(RS;(Ny))))

20000 o

Q '_h_ > b - _—

1% 2% 3% 4% 5% 6%
MinSup Threshold

Counts of 3-itemysets

NL represents the number of non-leaf nodes in an
Interval-Tree. The non-leaf nodes are numbered from 1 to
NL and N; represents théth non-leaf nodeNTSis the
function to get the number of TidSegments in nadg
RS; is the function to get theth right sibling node VS;
represents the number of the right siblings\of

Fig. 17: Comparison of the number of frequent 3-itemsets
discovered by Apriori, Up-To-Date and GLFMiner algorithms

5 Discussion 6 Conclusions

In this section, we prove the correctness of our GLFMinerThis work proposed the concept of global and local
and analyze its computational complexities. frequent-patterns  and demonstrated the efficient
implementation of the GLFMiner algorithm to discover
patterns in temporal datasets. Market basket analysis and
intrusion detection are considered as two illustrative
examples of the use of the proposed algorithm.
When theMinLenthreshold is less than 100%, the GFPs Experimental results show that the GLFMiner algorithm
are kept in every node to form TidSegmentsets with LFPscan mine more interesting patterns than conventional
By Definitions 9 and 10, the nodes are merged in the depthmining methods for giveMinSupthresholds. The value
first order. By using the result of Table 2, a GFP joins with of the proposed GLFMiner algorithm is as follows.

5.1 Proof of correctness for GLFMiner
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—The results mined using GLFMiner include all of the [10] H. Lee, On-line association rules mining with dynamic
rules that can be mined by using conventional support, Knowledge-Based Intelligent Information and
association rule algorithms. Engineering Systems, Lecture Notes in Computer
—GLFMiner can discover association rules that are Science/LANI,4252 896-901 (2006).

frequent in some intervals but not throughout the[11]W. Song, B. Yang and Z. Xu, Index-BitTableFi:

entire dataset. An improved algorithm for mining frequent itemsets,
—The mined association rules include time attributes that _Knowledge-Based Systent, 507-513 (2008).
make them more useful. [12] Y. Tsay and J. Chiang, CBAR: An efficient method for
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