
Appl. Math. Inf. Sci.8, No. 4, 1865-1877 (2014) 1865

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/080445

Reducing False Positives of a Bloom Filter using
Cross-Checking Bloom Filters

Hyesook Lim1, Nara Lee1, Jungwon Lee1 and Changhoon Yim2,∗

1 Department of Electronics Engineering, Ewha W. University, Seoul, Korea
2 Department of Internet and Multimedia Engineering, Konkuk University, Seoul, Korea

Received: 14 Aug. 2013, Revised: 16 Nov. 2013, Accepted: 17 Nov. 2013
Published online: 1 Jul. 2014

Abstract: A Bloom filter is a compact data structure that supports membership queries on a set, allowing false positives. The simplicity
and the excellent performance of a Bloom filter make it a standard data structure of great use in many network applications. In reducing
the false positive rate of a Bloom filter, it is well known that the size of a Bloomfilter and accordingly the number of hash indices
should be increased. In this paper, we propose a new architecture reducing the false positive rate of a Bloom filter more efficiently.
The proposed architecture uses cross-checking Bloom filters that arequeried in case of positives of a main Bloom filter to cross-check
the results. If every cross-checking Bloom filters produce negatives, the positive of the main Bloom filter can be determined as a false
positive. The main Bloom filter is not necessarily large to reduce the false positive rate, since more numbers of the false positives of the
main Bloom filter are identified by cross-checking Bloom filters. Simulation results show that the false positive of the proposed scheme
converges to zero faster, while requiring the total memory size for Bloomfilters smaller, than that of a single Bloom filter architecture.

Keywords: Internet, router, network, algorithm, Bloom filter, false positive, cross-checking Bloom filters.

1. Introduction

The amount of data handled by Internet users is growing
fast in recent years, and accordingly, the amount of traffic
has been significantly increased [1]–[3]. In order to
handle a large amount of data safely and efficiently,
filtering out unnecessary data is useful in many
applications. A Bloom filter is a simple and efficient data
structure identifying whether an input is a member of a
given set. It is used in filtering out inputs not included in a
set. Bloom filters have been used in many applications
since its emergence in 1970 [4]. Recently they are
popularly used in networking areas such as IP address
lookup [5]–[8], packet classification [9] traffic
measurement [10], [11], peer-to-peer systems [12], [13],
firewall [14], intrusion detection [15]–[17], and web
caching [18]–[20]. Therefore, a small improvement
related to a Bloom filter can give a large impact on many
applications.

A Bloom filter has an intrinsic problem of false
positives, which identifies an input as a member even
though the input is not actually a member of the set. It is
well-known that the false positive rate can be controlled

by increasing the size of a Bloom filter and the number of
hash indices. However, when a given set is large,
increasing the size of a Bloom filter is limited by the
required memory amount since Bloom filters are usually
implemented using an on-chip memory for fast
processing.

Researches to improve the performance of Bloom
filters have been carried out in [21]–[24]. It is not easy to
improve the performance, while maintaining the
processing simplicity and the storage efficiency of a
Bloom filter. In a dual Bloom filter structure [22], two
Bloom filters are serially connected. Both Bloom filters
are programmed for the same set of elements using
different hash functions. The second Bloom filter is
queried only when the first Bloom filter produces a
positive. If the second Bloom filter produces a negative,
then the positive of the first Bloom filter is a false
positive, since both Bloom filters were programmed using
the same set. In order to reduce the hardware complexity
caused by using different hash functions, the dual Bloom
filter structure uses one’s complemented values of the
elements in programming the second Bloom filter. Since
both Bloom filters are programmed by the entire elements

∗ Corresponding author e-mail:cyim@konkuk.ac.kr

c© 2014 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/080445

1866 H. Lim et. al. : Reducing False Positives of a Bloom Filter using...

of a given set, this structure does not provide a flexibility
in required memory amount for implementing Bloom
filters.

This paper is motivated to improve the performance
of a Bloom filter by reducing the false positive rate and
still maintain the processing simplicity and the storage
efficiency. Our proposed approach is to use
cross-checking Bloom filters, each of which is
programmed for a subset of the elements and queried
when the main Bloom filter produces a positive. In our
proposed approach, since more numbers of false positives
can be identified by the cross-checking Bloom filters, the
main Bloom filter does not have to be large enough, and
hence the required memory size for Bloom filters is more
flexible. Moreover, since elements can be grouped
depending on their characteristics such as priority in
programming into cross-checking Bloom filters, the
characteristics as well as the membership of inputs can be
identified by finding out which cross-checking Bloom
filter produces a positive result for the input.

This paper is organized as follows. Section 2
describes a Bloom filter with the detailed description of
the false positive. Section 3 proposes a new architecture
to reduce the false positive of a Bloom filter. In Section 4,
simulation result and the performance comparison with
related works are shown. Section 5 gives a brief
conclusion.

2. Bloom Filter

A Bloom filter is a bit-vector based data structure used in
storing and identifying the membership of each element
of a set. It has two operations; programming and
querying. LetU represent the universe set. A Bloom filter
is used to represent a setS = {x1,x2, · · · ,xn} of n
elements from the universe U [25]. Let
H = {h1,h2, · · · ,hk} be the set of hash functions, wherek
is the number of hash functions. Them-bit Bloom filter
(BF) is initialized as zero. The programming procedure
for a setSwith n elements is shown as follows [5].

BFProgramming
for (j = 1 ton)

for (i = 1 tok)
BF[hi(x j)] = 1;

For x j ∈ S, j = 1, · · · ,n, hi(x j) for i = 1, · · · ,k are
obtained, where 0≤ hi(x j) < m, and the corresponding
bits to the hash indices, BF[hi(x j)], are set for the
element.

The procedure of querying whether an inputy is the
member of the setS is as follows [5].

BFQuery(y)
for (i = 1 tok)

if (BF[hi(y)] == 0) return negative;
return positive;

For an inputy, k hash indices,hi(y) for i = 1, · · · ,k,
are obtained, where 0≤ hi(y) < m. If at least a bit of the
Bloom filter corresponding to the indices, BF[hi(y)], is 0,
the input is not a member of the set and it is called
negative. If every bit of the Bloom filter corresponding to
the hashed indices is 1, the input is a member of the set
with a high probability. This is calledpositive.

An intrinsic problem of a Bloom filter is that it may
produce positive even though an input is not a member of
the set, and it is calledfalse positive. The false positive is
generated since hashing is used in programming and
querying a Bloom filter, and the hashing does not
guarantee one-to-one mapping between an element and a
group of indices. In other words, an index can be mapped
by multiple elements. Therefore, for an input, even
though all queried bits were 1, it cannot be sure that every
bit was programmed by the queried input. Even though a
hash function making one-to-one correspondence
between each element of a set and a bit of a Bloom filter
is assumed in programming a Bloom filter, the universe
set of inputs used in membership query can be much
larger or it can be infinite in worst-case. Since the space
of a Bloom filter is finite, it is impossible to have a Bloom
filter which does not have a false positive.

The false positive of Bloom filters gives negative
effects on overall system performance. Many network
systems perform a next step of processing in case that an
input is a member of a set by accessing an off-chip hash
table storing the elements of the set [26]. Accessing the
off-chip hash table takes longer processing time. Hence it
is important to reduce the false positive rate of a Bloom
filter and accordingly the number of off-chip hash table
accesses for improving the overall system performance.

To discuss the false positive of a Bloom filter in detail,
let A = {a1,a2, · · · ,am} be the set of addresses, wherem
is the number of addresses (bits) in a Bloom filter. For
x ∈ S, hi(x) is the hashing indices ofx andhi(x) ∈ A. Let
V(hi(x)) represent the value at the indiceshi(x), and
V(hi(x)) ∈ {1,0}. Initial values ofV(hi(x)) are all 0. In
programming, ifx is mapped tohi(x) by hash functionhi ,
thenV(hi(x)) is set to 1.

Let p represent the probability that a specific bit is still
0 after all elements ofS are hashed into the Bloom filter
by k hash functions. If hash functions are assumed to be
perfectly random, it can be calculated as [5], [25]

p= (1−
1
m
)kn. (1)

For large values ofm, it can be approximated as

p≈ e−kn/m. (2)

If V(hi(x)) = 1 for all i = 1, · · · ,k, x is a positive and
is accepted as a candidate ofx ∈ S by the Bloom filter.
Let F (S) be the set ofx such thatV(hi(x)) = 1 for all
i = 1, · · · ,k, where the Bloom filter was programmed by
the setS. We callF (S) as the set of positives or the set of
candidates ofSby the Bloom filter.

c© 2014 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.8, No. 4, 1865-1877 (2014) /www.naturalspublishing.com/Journals.asp 1867

If x∈Sis queried, thenV(hi(x))= 1 for all i = 1, · · · ,k,
andx∈ F (S), since the Bloom filter was programmed by
the setS. HenceS⊂ F (S). There might be somex ∈ U
andx 6∈ Ssuch thatV(hi(x)) = 1 for all i = 1, · · · ,k. In this
case,x∈ F (S) andx 6∈ S, i.e.,x∈ F (S)−S. We call the
setF (S)−S as the false positive set ofS. Note that the
false positive set cannot be identified just by querying a
Bloom filter.

Figure 1 Set diagram forF (S) includingSandF (S)−S.

The set diagram forF (S) including S is shown in
Fig. 1. In Fig. 1, F (S) = S ∪ (F (S) − S) and
S∩ (F (S)− S) = /0. For an elementx that is not inS
(x 6∈ S), the probability fS that V(hi(x)) = 1 for all
i = 1, · · · ,k can be calculated as [5], [25]

fS= (1− p)k = (1− (1−
1
m
)kn)k ≈ (1−e−kn/m)k. (3)

The probabilityfS in (3) is termed as the false positive
probability in [5], [25]. Note that the probabilityfS is
calculated with the assumptionx 6∈ S. Let P(·) represent
the probability andSc represent the complement set ofS.
We define the probabilityfS as the conditional false
positive probability givenSc as

fS= P(F (S)|Sc) (4)

which is the probability thatx is included inF (S) given
x∈ Sc.

If the conditional false positive probabilityfS is
minimized with respect tok, thenk = (m/n) · (ln2) [5],
[25]. In this case,fS can be approximated as [5], [25]

fS= (1/2)k ≈ (0.6185)(m/n). (5)

In (5), if m→ ∞, then fS → 0. Hence ifm approaches to
infinity, then the false positive set,F (S)−S, approaches
to an empty set. In other words, as the Bloom filter sizem

becomes large, the setF (S) shrinks and converges to the
setS.

Now we consider the false positive probability without
assumingx∈Sc. P(S) is the probability ofSin the universe
setU with 0≤P(S)≤P(U) = 1. The probability ofF (S),
which isP(F (S)), can be formulated as

P(F (S)) = P(S)P(F (S)|S)+P(Sc)P(F (S)|Sc). (6)

SinceS⊂ F (S),

P(F (S)|S) =
P(F (S)∩S)

P(S)
=

P(S)
P(S)

= 1. (7)

From (4), (6), and (7),

P(F (S)) = P(S)+(1−P(S)) fS. (8)

The P(F (S)) in (8) represents the probability that all
V(hi(x)) = 1 for all i = 1, · · · ,k for an elementx∈U .

SinceF (S) = S∪(F (S)−S) andS∩(F (S)−S) = /0,

P(F (S)−S) = P(F (S))−P(S). (9)

From (8) and (9),

P(F (S)−S) = P(S)+(1−P(S)) fS−P(S)

= (1−P(S)) fS. (10)

The probabilityP(F (S)−S) in (10) represents the false
positive probability ofS for an elementx ∈ U . Note that
the false positive probabilityP(F (S) − S) in (10) is
formulated without the condition ofSc. If we consider the
false positive probability with the condition ofSc (x 6∈ S),
then P(S) = 0 and the false positive probability
P(F (S) − S) in (10) is equal to the conditional false
positive probabilityfS in (3) and (4).

3. Proposed Architecture

In this section, we propose a new architecture reducing
the rate of false positive while maintaining the simplicity
and the storage efficiency of a Bloom filter. The proposed
architecture uses cross-checking Bloom filters to identify
the false positive of a main Bloom filter.

As an example of the proposed architecture, we
consider the setS in U as the union of two disjoint setsA
and B as S = A∪ B, A∩ B = /0. In other words, the
example structure of the proposed architecture has two
cross-checking Bloom filters as shown in Fig.2. There is
no constraint in the number of cross-checking Bloom
filters, and we discuss here the case that there are two
cross-checking Bloom filters for simplicity. In Figure2,
the first Bloom filter is the main Bloom filter which is
programmed for the entire elements of a given setS. The
second and the third Bloom filters are the cross-checking
Bloom filters, and they are programmed for a subsetA
andB, respectively. The cross-checking filters are queried
only when the main filter produces positive. Our proposed

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

1868 H. Lim et. al. : Reducing False Positives of a Bloom Filter using...

Figure 2 The proposed architecture with two cross-checking
Bloom filters.

idea is that sinceS= A∪B, if both cross-checking filters
produce negatives, the positive of the main filter is a false
positive, since there is no false negative in Bloom filters.

We describe the false positive of our proposed
architecture as follows. The set diagram withF (A),
F (B), andF (S) is represented in Fig.3 as an extension
of Fig. 1. The setF (A) can be decomposed into two
disjoint setsA andF (A)−A. The setF (A)−A can be
decomposed further into two disjoint sets as
(F (A)− A) ∩ F (S) and (F (A)− A) ∩ (F (S))c. Since
A ⊂ S ⊂ F (S), (F (S))c ⊂ Ac. Hence the set
(F (A) − A) ∩ (F (S))c can be simplified as
(F (A) ∩ Ac) ∩ (F (S))c = F (A) ∩ (F (S))c =
F (A)−F (S). Hence the setF (A) is decomposed into
three disjoint sets A, (F (A) − A) ∩ F (S), and
F (A)− F (S) as in Fig. 3. Similarly, the setF (B) is
decomposed into three disjoint sets B,
(F (B)−B)∩F (S), andF (B)−F (S).

In the proposed architecture, ifx∈ (F (S))c, then it is
firstly filtered out by the main Bloom filter and is not
queried to the cross-checking Bloom filters. Since
(F (A) − F (S)) ⊂ (F (S))c and
(F (B) − F (S)) ⊂ (F (S))c, inputs in those sets are
firstly filtered out by the main Bloom filter. Hence
F (A)−F (S) andF (B)−F (S) need not be queried to
the cross-checking Bloom filters.

If x ∈ F (S), then it would be further queried to the
cross-checking Bloom filters. The setF (S) can be
decomposed into five disjoint sets as in Fig.3, A, B,
(F (A) − A) ∩ F (S), (F (B) − B) ∩ F (S), and
F (S)−F (A)−F (B).

If x ∈ F (S), x 6∈ F (A), and x 6∈ F (B), i.e., x ∈
F (S)∩ (F (A))c∩ (F (B))c = F (S)−F (A)−F (B), it
is queried and filtered out by the cross-checking Bloom
filters in our proposed architecture. In other words, the set

Figure 3 Set diagram withF (A), F (B), andF (S).

F (S)−F (A)−F (B) represents the positive in the main
filter but the negatives in both the cross-checking filters,
and elements in the set are filtered out by the
cross-checking Bloom filters.

Let the setE be the union of((F (A)−A)∩F (S))
and((F (B)−B)∩F (S)). The setE is the false positive
set of our proposed architecture, and we will present that
it is converged to an empty set when the sizes of cross-
checking Bloom filters are increased even though the size
of a main Bloom filter is not large enough.

We first assume thatF (A) and F (B) are disjoint.
Then the two sets composing the setE are disjoint, i.e.,
((F (A)−A)∩F (S))∩ ((F (B)−B)∩F (S)) = /0.

In the following statements of this section, we
formulate the probability of the setE, and analyze the
relationship of the probability of the setE with the sizes
of cross-checking Bloom filters and the main Bloom filter.

Let ηA, ηB, andηS represent the probabilities ofA, B,
andS, respectively, i.e.,ηA = P(A), ηB = P(B), andηS=
P(S). SinceS= A∪B andA∩B= /0,

ηS= P(S) = P(A)+P(B) = ηA+ηB. (11)

Hence
P(Sc) = 1−P(S) = 1−ηA−ηB. (12)

Let fA and fB represent the conditional false positive
probabilities ofA andB given Ac andBc, respectively, as
(4), i.e., fA = P(F (A)|Ac) and fB = P(F (B)|Bc).

Since the setE is the false positive set of our proposed
architecture, the probability of the setE represent the false
positive probability where the main Bloom filter ofS is
firstly queried and then the cross-checking Bloom filters
of A andB are queried.

Lemma 1.The probability of the set E can be formulated
as

P(E) = (ηB+(1−ηA−ηB) fS) fA
+ (ηA+(1−ηA−ηB) fS) fB.

c© 2014 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.8, No. 4, 1865-1877 (2014) /www.naturalspublishing.com/Journals.asp 1869

Proof: The probability P(F (A) − A) can be
formulated as

P(F (A)−A) = P(F (A)∩Ac)

= P(Ac)P(F (A)|Ac)

= (1−ηA) fA. (13)

Similarly,
P(F (B)−B) = (1−ηB) fB. (14)

The probability ofF (S) can be formulated as

P(F (S)) = P(S)P(F (S)|S)+P(Sc)P(F (S)|Sc). (15)

From (7), (11), (12), and (15),

P(F (S)) = ηA+ηB+(1−ηA−ηB) fS. (16)

The probabilityP(F (A)−F (S)) can be calculated as

P(F (A)−F (S)) = P(F (A)∩ (F (S))c) (17)

= P((F (S))c)P(F (A)|(F (S))c).

SinceA ⊂ S⊂ F (S), (F (S))c ⊂ Ac. In other words, if
x∈ (F (S))c, thenx∈ Ac. Hence

P(F (A)|(F (S))c) = P(F (A)|Ac) = fA. (18)

From (16),

P((F (S))c) = 1−P(F (S)) (19)

= 1−ηA−ηB− (1−ηA−ηB) fS.

From (17), (18), and (19)

P(F (A)−F (S))

= (1−ηA−ηB− (1−ηA−ηB) fS) fA. (20)

Since F (A) − A is the union of two disjoint sets
(F (A)−A)∩F (S) andF (A)−F (S) as in Fig.3,

P((F (A)−A)∩F (S))

= P(F (A)−A)−P(F (A)−F (S)). (21)

From (13), (20), and (21)

P((F (A)−A)∩F (S))

= (1−ηA) fA− (1−ηA−ηB− (1−ηA−ηB) fS) fA
= (ηB+(1−ηA−ηB) fS) fA. (22)

Similarly,

P((F (B)−B)∩F (S)) = (ηA+(1−ηA−ηB) fS) fB.
(23)

Since the two sets composing the setE are disjoint,

P(E) = P((F (A)−A)∩F (S))

+ P((F (B)−B)∩F (S)). (24)

From (22), (23), and (24),

P(E) = (ηB+(1−ηA−ηB) fS) fA
+ (ηA+(1−ηA−ηB) fS) fB. (25)

The probabilityP(E) in Lemma1 represents the false
positive probability ofS for an elementx ∈ U in our
proposed architecture.

Now we consider the false positive probability given
Sc (x 6∈ S).

P(E|Sc) =
P(E∩Sc)

P(Sc)

SinceE ⊂ Sc, P(E∩Sc) = P(E).
GivenSc, P(Sc) = 1, P(S) = 0, andηA = ηB = 0 from

(11). GivenSc, the false positive probability in Lemma1
is simplified as

P(E|Sc) = fS(fA+ fB). (26)

In (26), fA+ fB = P(F (A)|Ac)+P(F (B)|Bc). Since
Sc ⊂ Ac and Sc ⊂ Bc, fA = P(F (A)|Sc) and
fB = P(F (B)|Sc). If F (A) andF (B) are disjoint,

P(F (A)∩F (B)|Sc) = 0. (27)

Hence

fA+ fB = P(F (A)|Sc)+P(F (B)|Sc)

= P(F (A)∪F (B)|Sc). (28)

The termfA+ fB in (26) is the probability ofF (A)∪F (B)
givenSc, whenF (A) andF (B) are disjoint.

We consider the case thatF (A) and F (B) are not
disjoint as

P(F (A)∪F (B)|Sc) = P(F (A)|Sc)+P(F (B)|Sc)

− P(F (A)∩F (B)|Sc). (29)

Since the eventsF (A) given Sc andF (B) given Sc are
independent,

P(F (A)∩F (B)|Sc) = P(F (A)|Sc)P(F (B)|Sc) = fA fB
(30)

If F (A) and F (B) are not disjoint, (26) needs to be
modified as

P(E|Sc) = fS(fA+ fB− fA fB). (31)

In (31), we can see that the conditional false positive
probabilityP(E|Sc) is the multiplication of two terms:fS
and fA + fB − fA fB. The fS term is related to the main
Bloom filter and fA + fB − fA fB term is related to the
cross-checking Bloom filters. It would be possible to
control the false positive probabilityP(E|Sc) to be very
small by adjusting thefA+ fB− fA fB term to be small.

To be more specific, we consider the relationship
between Bloom filter sizes and the false positive
probability. LetmA, mB, andmS represent the Bloom filter
sizes (the numbers of bits) for setsA, B, and S,
respectively. LetnA, nB, andnS represent the numbers of
elements in setsA, B, andS, respectively. LetkA, kB, and
kS represent the numbers of hash functions for setsA, B,
and S, respectively. Similar to Eq. (3), the false positive

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

1870 H. Lim et. al. : Reducing False Positives of a Bloom Filter using...

probabilities fS, fA, and fB can be represented
approximately as

fS ≈ (1−e−kSnS/mS)kS, (32)

fA ≈ (1−e−kAnA/mA)kA, (33)

fB ≈ (1−e−kBnB/mB)kB. (34)

From (31), (32), (33), and (34), the conditional false
positive probability P(E|Sc) can be represented
approximately as

P(E|Sc) ≈ (1−e−kSnS/mS)kS

· ((1−e−kAnA/mA)kA +(1−e−kBnB/mB)kB

− (1−e−kAnA/mA)kA(1−e−kBnB/mB)kB). (35)

In (33) and (34), if mA → ∞ andmB → ∞, then fA → 0
and fB → 0, respectively. In other words, as the sizes of
cross-checking Bloom filters,mA andmB, becomes large,
fA and fB converge to 0 theoretically and the setE shrinks
to an empty set.

In (3), as them is increased to a large value and the
correspondingk is increased, thefs would converge to 0
theoretically. In other words, as the Bloom filter size and
the corresponding number of hash functions are
increased, the false positive rate should be continuously
decreased as in (3). However, the false positive
performance depends on the randomness of the hash
indices used in programming a Bloom filter, and
implementing the hash functions providing the
theoretically achievable performance in the false positive
rate is not feasible [28]. In our simulations that we will
present in Section 4, it is shown thatfs is saturated with a
small value even thoughm and k are increased, mainly
because of the limitation of the hash functions.

The saturation phenomenon would also happen in the
cross-checking Bloom filters, but the overall false positive
rate would be much smaller in the proposed architecture.
For example, if thefS, fA, and fB values are saturated in
10−4 with some moderately large values ofmS, mA, and
mB, then the false positive rate in the proposed
architecture would converge to
10−4(10−4 + 10−4 − 10−410−4) ≈ 2 · 10−8 as in (31),
while the false positive rate with a single Bloom filter
would converge to the saturated value of 10−4. Note that
the saturated false positive rate can be obtained with some
moderate sizes of Bloom filters. Hence the proposed
architecture with two-stage Bloom filters can achieve
much smaller saturated value of false positive rate
compared to the conventional architecture with a single
Bloom filter.

4. Performance Evaluation

In this section, we compare the number of false positives
of our proposed architecture according to the required
number of bits in Bloom filters with other structures: a

single Bloom filter structure (single-BF) and a dual
Bloom filter structure (dual-BF) [22].

Instead of using multiple different hash functions, we
use a hash function based on a cyclic redundancy check
(CRC) generator of 64 bits and obtain multiple hash
indices from a CRC-64 code. There are several
advantages of using a CRC generator as a hash generator.
A fixed-length CRC code is obtained regardless of the
length of each element of a set, and hence hash indices of
elements with various lengths can be obtained using a
single CRC generator. Any numbers of hash indices can
be obtained from a single CRC code by combining
different bits of the CRC code. Figure4 shows an
example of an 8-bit CRC generator. All the registers of
the CRC generator are initially set to 0. Once an element
with an arbitrary length is serially entered to the CRC
generator, a fixed-length CRC code is obtained. By
selecting a set of registers or multiple sets of registers
from the code, we obtain as many hash indices in any
length as desired.

Figure 4 CRC-8 generator.

In our simulation, hashing indices for the main filter is
obtained directly from a CRC code, and hashing indices
for cross-checking Bloom filters are obtained from the
string of the CRC code XORed with each input to give a
variety in hashing indices. Similarly, for the single-BF
implementation, the half number of hash indices are
obtained directly from the CRC code itself and the
remaining half are obtained from the string of a CRC
code XORed with each input. For the dual-BF
implementation, the second Bloom filter is programmed
using the hash indices obtained from the CRC code of
one’s complemented values of inputs.

In evaluating the performance of a Bloom filter, any
kind of data sets can be used. We have used the sets
composed of nodes in binary tries of two routing data.
The routing data are downloaded from actual backbone
routers [29]. A binary trie is a tree-based data structure
used in an IP address lookup. Each routing prefix resides
in a node of the trie, in which the level and the path of the
node from the root node correspond to the prefix length
and the value, respectively, where each left edge
represents bit 0 and each right edge represents bit 1.
Figure 5 shows the binary trie for an example set of
routing prefixes{0∗,1∗,11∗,101∗}, which has maximum
of 3-bit prefixes for simplicity, even though prefixes can

c© 2014 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.8, No. 4, 1865-1877 (2014) /www.naturalspublishing.com/Journals.asp 1871

Figure 5 The binary trie for an example set of prefixes.

be up to 32 bits in real routing data. In Fig.5, black nodes
represent prefixes, and white nodes represent internal
nodes.

In our simulation of the single-BF and the dual-BF
implementations, the Bloom filters are programmed for
entire nodes of a binary trie. For the simulation of our
proposed architecture, the nodes of a binary trie are
separated into two subsets: prefix node set and internal
node set. The main Bloom filter is programmed for the
entire nodes of the trie, and cross-checking Bloom filters
A and B are programmed for prefix nodes and internal
nodes, respectively. The Bloom filters are queried to
identify whether an input is a node of the binary trie.

In our example,S= {∗,0∗,1∗,11∗,101∗,10∗}, and
two subsets,A = {0∗,1∗,11∗,101∗}, B = {∗,10∗}. The
setS is the union of two disjoint setsA andB. The Bloom
filters programmed for these sets using the hash indices
obtained from the CRC-8 generator are shown in
Figure6. We define the basic size of a Bloom filter,N =
2⌈log2 n⌉, wheren is the number of elements in a set. The
Bloom filters shown in Figure6 are the cases of 4N.

Figure 6 The proposed architecture programmed for the binary
trie of Fig.5.

Table1 shows the number of prefixes, the number of
internal nodes, and the basic size of each Bloom filter for
two different routing data that were used for our

simulation. For the single-BF structure, the Bloom filter
was programmed for every node. For the dual-BF
structure, the first Bloom filter was programmed for every
node, and the second Bloom filter was programmed for
one’s complemented value of every node. For the
proposed structure, the main Bloom filter was
programmed for entire nodes, and the cross-checking
Bloom filters were programmed for prefix nodes and
internal nodes, respectively.

Table2 shows the number of hash indices according
to the size of each Bloom filter. The multipleM related
to the basic size is defined asM = m/N, wherem is the
size (number of bits) of a Bloom filter. Hence the size of
each Bloom filter is obtained asm= MN. Note that the
size of each Bloom filter can be independently controlled
by the multipleM times the basic size. The number of hash
indices is calculated byk= M · (ln2) as in [5], [25].

The input traces for querying each structure consist of
variable-length strings, of which each string is not
included as a node of the binary tries. This condition
corresponds to the assumption ofSc in the conditional
probability formulation ofP(E|Sc) in Eq. (26). Hence, the
querying result should be always negative. Every positive
result is a false positive.

For the MAE-WEST routing data, 538916 input
strings were applied. The size of each Bloom filter, the
number of false positives, and the required memory
amount is shown in Table3. The number in the column of
BF size in Table3 represents the multipleM of the basic
size.

Since the size of each Bloom filter is increased by the
multiples of the basic size, the required memory amount
cannot be controlled exactly the same for all three
structures. Hence we compare the number of false
positives of three structures for several combinations.
Each row of Table3 represents the combination which
has a similar amount of memory for Bloom filters. If a
combination does not exist for a specific memory amount,
it is represented as NA, which meansnot available.

When the memory amount used for implementing
Bloom filters is small, the proposed structure shows more
number of false positives than the single-BF structure or
the dual-BF structure, mainly because the main Bloom
filter as well as the cross-checking Bloom filters are too
small. However, when the memory amount is increased,
the cross-checking Bloom filters in our proposed structure
effectively remove the false positives. Hence the number
of false positives is decreased much faster in our proposed
structure than other structures. When the required
memory amount is 448KB, the number of false positives
of our proposed structure is 0, while other structures still
have false positives even when the required memory
amount is bigger. In case of the single-BF structure, even
though the size of the Bloom filter is increased to 32
times of the basic size and the memory size is 512KB, the
number of false positives is still more than 300, mainly
because of the lack of variety in hashing indices
generated by CRC-64.

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

1872 H. Lim et. al. : Reducing False Positives of a Bloom Filter using...

Table 1 Characteristics of routing data and the basic size of each Bloom filter used for simulation

No. of nodes Single-BF Dual-BF Proposed multi-BF
total Prefixes Internal NS First BF Second BF Main BF Cross-checking BFs
(nS) (nA) (nB) (bit) NS(bit) NS(bit) NS(bit) NA(bit) NB(bit)

MAE-WEST 76989 14553 62436 131072 131072 131072 131072 16384 65536
Telstra 452905 227223 225682 524288 524288 524288 524288 262144 262144

Table 2 Number of hash indices according to the size of a Bloom filter

Multiples of basic size (M) 2 4 8 16 32 64
No. of hash index (k) 1 3 6 11 22 44

Table 3 Number of false positives according to the size of Bloom filters using hashindices from CRC-64 generator for MAE-WEST

Single-BF Dual-BF Proposed multi-BF
No. of false Memory BF No. of false Memory BF No. of false Memory

M positives size(KB) size positives size(KB) size positives size(KB)
NA NA NA 2-4 6346 96 4-4-4 5560 104
8 1482 128 4-4 1205 128 4-8-4 3541 112

NA NA NA NA NA NA 4-8-8 740 144
16 331 256 8-8 11 256 8-16-16 3 288
NA NA NA 8-16 7 384 8-32-16 2 320
NA NA NA NA NA NA 16-16-16 1 416
32 328 512 16-16 7 512 8-32-32 0 448

50 100 150 200 250 300 350 400 450 500 550
−6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

Memory size (KB)

lo
g 10

 o
f f

al
se

 p
os

iti
ve

 r
at

e

MAE−WEST

Single−BF
Dual−BF
Proposed

Figure 7 False positive rate in log10 scale according to the
memory size of Bloom filters using hash indices from CRC
generator for MAE-WEST.

The performance evaluation result depending on the
Bloom filter memory size for MAE-WEST is shown in
Fig. 7. The false positive rate is obtained by dividing the
number of false positives with the number of input strings
applied. When the false positive rate becomes smaller
(e.g., less than 10−3), it is hard to distinguish visually in
graph. Hence it is displayed in log scale, i.e., log10 of
false positive rate is displayed in Fig.7. When the false

positive rate approaches to 0, log10 of false positive rate
approaches to minus infinity, hence it can not be
displayed in Fig.7. Hence we have used 1 instead of 0
and connected by a dotted line in order to denote in the
figure.

We can see that the proposed architecture results in
better performance compared to other single-BF and
dual-BF structures, especially at large memory sizes.

For Telstra routing data, the input trace of 1358712 bit
strings was applied. Every positive result is a false
positive as in the case of MAE-WEST data. The size of
each Bloom filter, the number of false positives, and the
required memory size are shown in Table4. It is shown
that the dual-BF structure shows better performance than
our proposed structure up to 512KB, but if the memory
usage is bigger, the proposed structure shows better
performance. When the memory usage is extremely large,
which is 4096KB, the number of false positive is zero in
our proposed structure, but it is still more than several
ten-thousands in the single-BF structure and several
thousands in the dual-BF structure. The log10 of false
positive rate according the size of Bloom filters for Telstra
is depicted in Fig.8. In Fig. 8, we can see that the
proposed architecture outperforms other architectures,
especially at large memory sizes.

As shown in Table3 and Table4, the numbers of false
positives in the single-BF structure and the dual-BF
structure are not converged to 0 even though the size of
the Bloom filter is significantly increased. It is mainly

c© 2014 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.8, No. 4, 1865-1877 (2014) /www.naturalspublishing.com/Journals.asp 1873

Table 4 Number of false positives according to the size of Bloom filters using hashindices from CRC-64 generator for Telstra

Single-BF Dual-BF Proposed multi-BF
No. of false Memory BF No. of false Memory BF No. of false Memory

M positives size(KB) size positives size(KB) size positives size(KB)
4 163015 256 2-2 188941 256 2-2-2 274864 256

NA NA NA 2-4 57954 384 2-4-4 98313 384
8 60381 512 4-4 24172 512 4-4-4 38535 512
16 50584 1024 8-8 7820 1024 8-8-8 3225 1024
32 50510 2048 16-16 7184 2048 16-16-16 127 2048
64 50428 4096 32-32 7164 4096 32-32-32 0 4096

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−6

−5

−4

−3

−2

−1

0

Memory size (KB)

lo
g 10

 o
f f

al
se

 p
os

iti
ve

 r
at

e

Telstra

Single−BF
Dual−BF
Proposed

Figure 8 False positive rate in log10 scale according to the
memory size of Bloom filters using CRC generator for Telstra.

because of the limitation using the CRC-64 generator as
the hash function. We found out that extracting 22 or 44
hash indices from a 64-bit CRC code does not give much
randomness in hash indices, and some inputs repeatedly
produce false positives even though the size of the Bloom
filter is increased. In other words, increasing the size of
the Bloom filter (and accordingly the number of hash
indices) does not effectively reduce the number of false
positives for some of the input strings because of the lack
of the variety in hash indices.

Therefore, we have performed another simulation
using a different hash function: the random function
provided in ANSI C. Using random function gives an
advantage that the size of a Bloom filter does not have to
be the power of 2 since we can obtain a hash index by
performing the modulo operation with the size of a
Bloom filter after generating a big random number. Hence
we have used the size of Bloom filters as the multiples of
the number of total nodes (and prefix nodes or internal
nodes in our multi-BF structure) in this simulation. The
simulation results are shown in Table5 and Table6 for
the MAE-WEST and for the Telstra, respectively.

As shown, the filtering performance of the Bloom
filters are better in every structure compared with the case

that the CRC-64 is used as a hash function. The proposed
multi-BF structure consistently shows better performance
in the number of false positives than the single-BF and
the dual-BF structures.

The log10 scales in the false positive rate according to
the size of Bloom filters for the MAE-WEST and the
Telstra are depicted in Fig.9 and Fig.10, respectively,
when the random function is used as a hash generator. We
can see that the proposed architecture still outperforms
other architectures as the total size of Bloom filter is
increased.

50 100 150 200 250 300 350
−6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

Memory size (KB)

lo
g 10

 o
f f

al
se

 p
os

iti
ve

 r
at

e

MAE−WEST

Single−BF
Dual−BF
Proposed

Figure 9 False positive rate in log10 scale according to the
memory size of Bloom filters using hash indices obtained from a
random function for MAE-WEST.

The comparison of false positive rate between
simulation and probability model calculation for the
proposed architecture is shown in Fig.11 and Fig.12.
Figure11 and Figure12 are also displayed in log scale,
since it is easier to distinguish when the false positive rate
becomes small. The dotted lines represented by
simulation(modi f ied) are for the cases that the number of
false positives becomes zero. They are denoted by using 1
instead of 0 in the number of false positives since log of 0
converges to minus infinity. The false positive rate for
probability model is obtained by Eq. (31). In these

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

1874 H. Lim et. al. : Reducing False Positives of a Bloom Filter using...

Table 5 Number of false positives according to the size of Bloom filters using hashindices obtained from a random function for
MAE-WEST

Single-BF Dual-BF Proposed multi-BF
No. of false Memory BF No. of false Memory BF No. of false Memory

M positives size(KB) size positives size(KB) size positives size(KB)
NA NA NA 2-4 25856 56.4 NA NA NA
8 11661 75.2 4-4 8752 75.2 4-4-4 16966 75.2

NA NA NA NA NA NA 4-8-4 7905 82.3
NA NA NA NA NA NA 4-8-8 103 112.8
16 271 150.4 8-8 245 150.4 NA NA NA
NA NA NA 8-16 144 225.6 8-16-16 0 225.6
NA NA NA NA NA NA 8-32-16 0 254.0
32 46 300.7 16-16 4 300.7 NA NA NA

Table 6 Number of false positives according to the size of Bloom filters using hashindices obtained from a random function for Telstra

Single-BF Dual-BF Proposed multi-BF
No. of false Memory BF No. of false Memory BF No. of false Memory

M positives size(KB) size positives size(KB) size positives size(KB)
4 198897 221.1 2-2 208669 221.1 2-2-2 332055 221.1

NA NA NA 2-4 77212 331.7 2-4-4 143324 331.7
8 29495 442.3 4-4 28279 442.3 4-4-4 52465 442.3
16 1137 884.6 8-8 760 884.6 8-8-8 1233 884.6
32 552 1769.2 16-16 12 1769.2 16-16-16 4 1769.2
64 528 3538.3 32-32 9 3538.3 32-32-32 1 3538.3

0 500 1000 1500 2000 2500 3000 3500 4000
−6

−5

−4

−3

−2

−1

0

Memory size (KB)

lo
g 10

 o
f f

al
se

 p
os

iti
ve

 r
at

e

Telstra

Single−BF
Dual−BF
Proposed

Figure 10 False positive rate in log10 scale according to the
memory size of Bloom filters using hash indices obtained from a
random function for Telstra.

figures, we can see that the false positive rate of
simulation decreases in a similar way to that of
probability model calculation as the memory size
becomes larger.

5. Conclusion

A Bloom filter is popularly used in many applications
because of its storage efficiency and operation simplicity.
However, it has an intrinsic issue of false positives.
Improving the false positive performance of a Bloom
filter will give positive impacts to various fields which
have Bloom filter applications.

The proposed structure of this paper has
cross-checking Bloom filters which identify the false
positive of a main Bloom filter. Simulation results show
that the proposed structure has a smaller number of false
positives when the memory usage is similar to the
single-BF structure or the dual-BF structure. The
performance difference is large when the sizes of
simulation sets are large. It is also shown that the
proposed structure has a better flexibility in required
memory amount.

Our proposed architecture has an additional
advantage. Since elements in a given set are grouped in a
proposed structure, if we group the elements in their
characteristics, the characteristics of inputs also can be
identified by finding out which group the input belongs to
as well as the membership of the input. For example, if
some of the elements in a set have higher priorities than
other elements, we can create a subset of higher priorities.
The priority of each input can be identified by finding out
the membership of inputs for the priority group.

c© 2014 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.8, No. 4, 1865-1877 (2014) /www.naturalspublishing.com/Journals.asp 1875

100 150 200 250 300 350 400 450
−9

−8

−7

−6

−5

−4

−3

−2

−1

Memory size (KB)

lo
g 10

 o
f f

al
se

 p
os

iti
ve

 r
at

e

Mae−West (Comparison)

Probability model
Simulation
Simulation (modified)

(a)

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−14

−12

−10

−8

−6

−4

−2

0

Memory size (KB)

lo
g 10

 o
f f

al
se

 p
os

iti
ve

 r
at

e

Telstra (Comparison)

Probability model
Simulation
Simulation (modified)

(b)

Figure 11 Comparison of false positive rate between simulation
(CRC-64 generator) and probability model calculation for the
proposed architecture. (a) MAE-WEST. (b) Telstra.

Acknowledgement

The research of the first author (H. Lim) was supported
by the National Research Foundation of Korea (NRF)
grant funded by the Korea government (MEST)
(2012-005945). This research was also supported by the
MKE (The Ministry of Knowledge Economy), Korea,
under the ITRC support program supervised by the NIPA
(NIPA-2013-H0301-13-1002).

The research of the corresponding author (C. Yim) was
supported by Basic Science Research Program through the
National Research Foundation of Korea (NRF) funded by
the Ministry of Education, Science and Technology (2011-
0009426).

References

[1] Lim, Jae S., Two-dimensional signal and image processing,
ADS, 710 (1990).

[2] Kane Yee, Numerical solution of initial boundary value
problems involving maxwell’s equations in isotropic media,

60 80 100 120 140 160 180 200 220 240 260
−6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

Memory size (KB)

lo
g 10

 o
f f

al
se

 p
os

iti
ve

 r
at

e

Mae−West (Comparison)

Probability model
Simulation
Simulation (modified)

(a)

0 500 1000 1500 2000 2500 3000 3500 4000
−14

−12

−10

−8

−6

−4

−2

0

Memory size (KB)

lo
g 10

 o
f f

al
se

 p
os

iti
ve

 r
at

e

Telstra (Comparison)

Probability model
Simulation

(b)

Figure 12 Comparison of false positive rate between simulation
(random function) and probability model calculation for the
proposed architecture. (a) MAE-WEST. (b) Telstra.

Antennas and Propagation, IEEE Transactions on,14, 302-
307 (1966)

[3] Emre Telatar, Capacity of Multi-antenna Gaussian Channels,
European Transactions on Telecommunications, European
Transactions on Telecommunications,10, 585-595 (1999).

[4] B. Bloom, Space/Time Tradeoffs in Hash Coding with
Allowable Errors,Communications of the ACM, 13, 422–426
(1970).

[5] S. Dharmapurikar, P. Krishnamurthy, and D. E. Taylor,
Longest prefix matching using Bloom filters,IEEE/ACM
Trans. Networking,14, 397–409 (2006).

[6] H. Song, S. Dharmapurikar, J. Turner, and J. Lockwood, Fast
Hash Table Lookup Using Extended Bloom Filter: an Aid
to Network Processing,Proc. ACM SIGCOMM, 181–192,
(2005).

[7] H. Song, F. Hao, M. Kodialam, and T. Lakshman, IPv6
Lookups Using Distributed and Load Balanced Bloom
Filters for 100Gbps Core Router Line Cards,Proc. IEEE
INFOCOM, 2518–2526 (2009).

[8] H. Lim, K. Lim, N. Lee, and K. Park, On Adding Bloom
Filters to Longest Prefix Matching Algorithms,IEEE Trans.
Computers, IEEE Early Access, (2012).

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

1876 H. Lim et. al. : Reducing False Positives of a Bloom Filter using...

[9] H. Lim and S. Kim, Tuple pruning using Bloom filters for
packet classification,IEEE Micro, 30, 784–794 May/June
(2010).

[10] A. Kumar, J. Xu, J. Wang, O. Spatschek, and L.
Li, Space-Code Bloom Filter for Efficient Per-Flow
Traffic Measurement,IEEE Journal on Selected Areas in
Communications, 24, 2327–2339 (2006).

[11] Y. Lu and B. Prabhakar, Robust Counting via Counter
Braids: an Error-Resilient Network Measurement
Architecture,Proc. of IEEE INFOCOM, 522–530 (2009).

[12] P. Reynolds and A. Vahdat, Efficient Peer-to-Peer
Keyword Searching,Proc. ACM/IFIP/USENIX International
Conference on Middleware, 21–40 (2003).

[13] A. Kumar, J. Xu, and E. Zegura, Efficient and Scalable
Query Routing for Unstructured Peer-to-Peer Networks,
Proc. of IEEE INFOCOM, 1162–1173 (2005).

[14] L. Maccari, R. Fantacci, P. Neira, and R. Gasca, Mesh
Network Firewalling with Bloom Filters,IEEE International
Conference on Communications, 1546–1551 (2007).

[15] S. Dharmapurikar, P. Krishnamurthy, T. S. Sproull, and J.
W. Lockwood, Deep Packet Inspection Using Parallel Bloom
Filters,IEEE Micro, 52–61 (2004).

[16] S. Dharmapurikar and J. W. Lockwood, Fast and Scalable
Pattern Matching for Network Intrusion Detection Systems,”
IEEE Journal on Selected Areas in Communications, 24,
1781–1792 (2006).

[17] D. Suresh, Z. Guo, B. Buyukkurt, and W. Najjar, Automatic
Compilation Framework for Bloom Filter Based Intrusion
Detection, Reconfigurable Computing: Architectures and
Applications, 3985, 413–418 (2006).

[18] F. Chang, F. Wu-chang, and L. Kang, Approximate Caches
for Packet Classification,Proc. IEEE INFOCOM, 2196–2207
(2004).

[19] L. Fan, P. Cao, J. Almeida, and A. Broder, Summary cache:
A scalable wide-area web cache sharing protocol,Proc. ACM
SIGCOMM, 254–265 (1998).

[20] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, Summary
cache: a scalable wide-area Web cache sharing protocol,
IEEE/ACM Transactions on Networking, 8, 281–293 (2000).

[21] Y. Qiao, T. Li, and S. Chen, One Memory Access Bloom
Filters and Their Generalization,IEEE INFOCOM, 1745–
1753 (2011).

[22] F. Tabataba and M. Hashemi, Improving False Positive
In Bloom Filter, 19th Iranian Conference on Electrical
Engineering(ICEE), 1–5 (2011).

[23] O. Rottenstreich and I. Keslassy, The Bloom paradox:When
not to use a Bloom filter?,IEEE INFOCOM, 1638–1646
(2012).

[24] D. Kim, D. Oh, and W. Ro, Design of power-efficient
parallel pipelined bloom filter,Electronics Letters, 48, 367–
369 (2012).

[25] M. Mitzenmacher, “Compressed Bloom filters”,IEEE/ACM
Trans. Networking,10, 604–612 (2002).

[26] H. Song, J. Turner, S. Dharmapurikar, and J. Lockwood,
Fast Hash Table Lookup Using Extended Bloom Filter:
An Aid to Network Processing,Proc. of Applications,
Technologies, Architectures, and Protocols for Computer
Communications, 181-192 (2005).

[27] K. Lim, K. Park and H. Lim, Binary search on levels using
a Bloom filter for IPv6 address lookup,IEEE/ACM ANCS,
185–186 (2009).

[28] A. Kirsch and M. Mitzenmacher, Less Hashing, Same
Performance: Building a Better Bloom Filter,Lecture Notes
in Computer Science 4168,456–467 (2006).

[29] http://www.potaroo.net

Hyesook Lim received
the B.S. and the M.S.
degrees at the Department of
Control and Instrumentation
Engineering in Seoul
National University, Seoul,
Korea, in 1986 and 1991,
respectively. She got the
Ph.D. degree at the Electrical
and Computer Engineering

from the University of Texas at Austin, Texas, in 1996.
From 1996 to 2000, she had been employed as a member
of technical staff at Bell Labs in Lucent Technologies,
Murray Hill, NJ. From 2000 to 2002, she had worked as a
hardware engineer for Cisco Systems, San Jose, CA. She
is currently a professor in the Department of Electronics
Engineering, Ewha Womans University, Seoul, Korea,
where she does research on router design issues such as
IP address lookup, packet classification, and deep packet
inspection and on hardware implementation of various
network protocols such as TCP/IP and Mobile IPv6.

Nara Lee received
the B.S. degree and the M.S.
degree from the Department
of Electronics Engineering
at Ewha Womans University,
Seoul, Korea, in 2009
and 2012, respectively.
She is currently working
as a research engineer for IP
Technical Team of DTV SoC

Department at SIC Lab. in LG Electronics Inc. Her
research interests include various network algorithms
such as IP address lookup, packet classification,
web caching, and Bloom filter application to various
distributed algorithms.

Jungwon Lee received the
B.S. degree from the Department
of Mechatronics Engineering
at Korea Polytechnic University,
Gyeonggi-do, Korea, and
received the M.S. degree from
the Department of Electronics
Engineering at Ewha Womans
University, Seoul, Korea, in 2011
and 2013, respectively. She is

currently pursuing a Ph.D. degree from the same university.
Her research interests include address lookup and packet
classification algorithms and packet forwarding technology at
content centric networks.

c© 2014 NSP
Natural Sciences Publishing Cor.

http://www.potaroo.net

Appl. Math. Inf. Sci.8, No. 4, 1865-1877 (2014) /www.naturalspublishing.com/Journals.asp 1877

Changhoon Yim
received the B.Eng. degree
from the Department of
Control and Instrumentation
Engineering, Seoul National
University, Korea, in 1986,
the M.S. degree in Electrical
Engineering from Korea
Advanced Institute of Science
and Technology, Korea, in

1988, and the Ph.D. degree in Electrical and Computer
Engineering from the University of Texas at Austin, USA,
in 1996. He was a research engineer working on HDTV at
Korean Broadcasting System, Korea, from 1988 to 1991.
From 1996 to 1999, he was a member of technical staff in
HDTV and Multimedia Division, Sarnoff Corporation,
NJ, USA. From 1999 to 2000, he worked at Bell Labs,
Lucent Technologies, NJ, USA. From 2000 to 2002, he
was a software engineer in KLA-Tencor Corporation, CA,
USA. From 2002 to 2003, he was a principal engineer in
Samsung Electronics, Suwon, Korea. He is currently a
professor in the Department of Internet and Multimedia
Engineering, Konkuk University, Seoul, Korea. His
research interests include digital image processing, video
compression, multimedia network, and multimedia
communication.

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	Bloom Filter
	Proposed Architecture
	Performance Evaluation
	Conclusion

