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Abstract: Standard particle swarm optimization algorithm has two drawbacks in engineering application when particles dimension was
high; first is premature convergent and second is low convergent speed. Counting these drawbacks we proposed a novel algorithm with
high convergent speed in high dimensional search place based on particle health degree, and we provided particle health degree concept
and computation method. The algorithm through dynamic monitoring particle health when the particle health value was lower than
given threshold value, we separately use mutation operation on these particles. This method can not only protect the health particles
keep searching the optimum value but also therapy the ill-health particles andenhance the ability of searching optimum value and
jumping out the local optimum. We used many benchmark functions to test our algorithm, and compete with Standard PSO algorithm
and nonlinear inertia weight variation (WPSO). Test results show that the algorithm we proposed has higher convergent speed and
searching efficiency.
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1 Introduction

Particle swarm optimization algorithm was a branch of
evolutionary computation, it was a global random
optimization algorithm based on iteration, first, it was
proposed by American scholars, Kennedy and Eberhart in
1995 [1]. Compared with other evolutionary algorithms,
PSO algorithm was easy to achieve and has lower space
and lower time complexity. It was widely used in various
optimization and control systems [2,3,4]. However basic
PSO algorithm exists low searching efficiency, easy to
stagnation in the local optimum and premature convergent
and other issues. Counting these problems related
scholars have proposed many improved algorithm. Shi et
al. introduced the inertia weight (w) based on the basic
PSO algorithm, this method can better retention of
particles on their own speed, and this method called
standard PSO algorithm. Around the improvement
strategies of inertia weight, Shi et al. proposed a method
to improve standard PSO algorithm based on variation
inertia weight [6]. Chatterjee et al. proposed an inertia
weight nonlinear reduced method [7], and Clerc proposed
compression factor conception etc. [8]. Such improved
algorithms can certain degree melioration the search
performance and enhance the convergent speed of PSO

algorithm. But when the search space was high
dimension, these methods also existed below
disadvantages: low convergent speed, easy to stagnation
in the local optimum.

In recent years, many new types PSO algorithms
came to the fore. Meimei Zhu et al. through chaotic
initialize and detected stagnation times of particles, and
use global mutation strategy to the whole swarm, this
method improved the convergent speed, obtained good
results [9]. Lianguo Wang et al. purposes a hybrid
algorithm of Particle Swarm Optimization (PSO) and
Artificial Fish Swarm Algorithm (AFSA) by combining
the advantages of PSO algorithm and AFSA algorithm
[10]. Hybrid algorithm divided the swarm into two
sub-groups. In each iterationone sub-group evolved using
PSO algorithm, the other sub-group evolved using AFSA,
and two algorithms shared the information of groups
extremum. Ximing Liang et al. analyzed the contradiction
of the global exploration and convergent speed of particle
swarm optimization with dimension mutation operator,
and all improved algorithm (WPSO) was proposed by
modifying PSO with dimension mutation based on
dynamical inertial weight vector [11]. In the proposed
algorithm, the concept of dimension diversity was defined
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and inertial weight vector will be updated dynamically
according to dimension diversity. The mutation operated
on dimension whose dimension diversity is the worst.
Yanmin Liu et al. through analyzing the relationship
between swarm diversity and local optimum presented an
improved particle swarm optimizer based on dynamic
neighbor topology (DPSO for short) [12]. In DPSOthe
neighbor of each particle was dynamically constructed at
several iterationswhich increased the swarm diversity and
improved the ability to escape from local optimum. Min
Zhou proposed a novel method called(k, l) PSO [13].
This method chose one of the top k particles as the global
best particle according to the roulette strategy and tuned
the inertia weight value according to the distance between
the current particle and the global best particle. Yuehong
Liu et al. proposed an improved PSO based on the
diversity of particle symmetrical distribution (sdPSO) is
developed [14]. Through the research of the spatial
distribution of particlesit can be found that the convergent
probability to the global optimum solution was greatly
improved with more symmetrical particle distribution
surrounding the optimum solution of particlesA diversity
population function was proposed and an adjustment
algorithm for the diversity was introduced into the basic
PSOThe spatial distribution of particles varies between
asymmetry and symmetry repeatedly while the population
diversity was adjusted continuallywhich made the
improved algorithm search in a wider range. Shutao Li et
al. proposed a hybrid global optimization strategy
combining PSOs with a modified.

Broyden-Fletcher-Goldfarb-Shanno(BFGS) method
[13]. The modified BFGS method was integrated into the
context of the PSOs to improve the particles’ local search
ability. In addition, in conjunction with the territory
technique, a reposition technique to maintain the diversity
of particles was proposed to the hybrid strategy was that it
could effectively find multiple local solutions or global
solutions to the multimodal functions in a
box-constrained space. Based on these local solutions, a
reconstruction technique can be adopted to further
estimate better solutions. Jiuzhong Zhang et al. proposed
a Multi-Swarm Self-Adaptive and Cooperative Particle
Swarm Optimization (MSCPSO) based on four
subs-warms [16]. In this method several strategies were
employed to avoid falling into local optimum, improved
the diversity and achieved better solution. Particles in
each sub-swarms shared the only global historical best
optimum to enhance the cooperative capability. Besides,
the inertia weight of a particle in each sub-swarm was
modified, which was subject to the fitness information of
all particles, and the adaptive strategy was employed to
control the influence of the historical information to
create more potential search ability. To effectively keep
the balance between the global exploration and the local
exploitation, the particle in each taken advantage of the
shared information to maintain cooperation with each
other and guided its own evaluation. On the other hand, in
order to increase the diversity of the particles and avoid

falling into a local optimum, a various diversity operation
was adopted to guide the particles to jump out of the local
optimum and achieve the global best position smoothly.
Hamidreza Modares et al. proposed a hybrid algorithm by
integrating an improved particle swarm optimization
(IPSO) with successive quadratic programming (SQP),
namely IPSO-SQP for solving nonlinear optimal control
problems [17]. The particle swarm optimization (PSO)
was showed to converge rapidly to a near optimum
solution, but the search process will become very slow
around global optimum. On the contrary, the ability of
SQP was weak to escape local optimum but could achieve
faster convergent speed around global optimum and the
convergent accuracy can be higher. Hence, in the
proposed method, at the beginning stage of search
process, a PSO algorithm was employed to find a near
optimum solution In this case, an improved PSO (IPSO)
algorithm was used to enhance global search ability and
convergent speed of algorithm. When the change in
fitness value was smaller than a predefined value, the
searching process was switched to SQP to accelerate the
search process and found an accurate solution. In this
way, this hybrid algorithm may find an optimum solution
more accurately.

In this paper, we introduced the particle health degree
conception, and given particle health degree definition
and computation method. We dynamically computed
particle health degree simultaneously and taken mutation
operation with low health degree particles. Particle health
degree was a comprehensive reflection of particles in the
iterative process in many ways. When the health of the
single particle reduced to a certain threshold value,
particles mutation began. This was more targeted while
particles mutation. It can not only avoid normal particles
iterative evolution process be force interrupted, but also
through mutation algorithm to effectively reduce the
occurrence of particle precocious stagnation, enhanced
the diversity of particles and improved the global search
ability of PSO. Many simulation experiments showed that
the method in our paper had faster convergent speed and
higher search efficient when dimensions of particle were
high.

2 Standard PSO Algorithm

The mathematical description of Standard Particle Swarm
Optimization (SPSO) is: in the search place which
dimension wasD, each particle was looked as a node in
place. Assumed the swarm was set bym particles,
xi = (xi1,xi2, · · · ,xiD) was thei-th particle D-dimension
position vector, where i = 1,2, · · · ,m,
vi = (vi1,vi2, · · · ,viD) was thei-thparticle velocity vector.
Pi = (Pi1,Pi2, · · · ,PiD) was the best position vector where
the i-th particle had searched,Pg = (Pg1,Pg2, · · · ,PgD) was
the most optimal position where the whole swarm had
searched.
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Fig. 1: Standard PSO Algorithm Flow Chart

Putxi into the objective function to calculate the fitness
value. For thek+1-th iteration, each particle according to
the formulas below updated its speed and position.

vk+1
i =w · vk

i + c1 · rand1 · (Pi − xk
i )

+ c2 · rand2 · (Pg − xk
i ) (1)

xk+1
i = xk

i + vk+1
i (2)

Wherei= 1,2, · · · ,m, w was inertia weight,c1 andc2 were
learning factors, rand1 and rand2 were random numbers,
whenw = 1, was basic PSO algorithm, Figure 1 showed
standard PSO algorithm flow chat.

Because of the standard PSO algorithm did not have
any actual mechanism to control particle velocity. In
order to prevent flight speed too fast that generated
strongly shocked and hard to converge we introduced
Vmax = (Vmax1,Vmax2, · · · ,VmaxD) as the max speed
velocity. In each iteration, particle according to formulas
below updated their new position and speed.

vk+1
id =







Vmaxd v̄k+1
id >Vmaxd

v̄k+1
id −v̄k+1

id ≤ v̄k+1
id ≤Vmaxd

−Vmaxd v̄k+1
id <−Vmaxd

(3)

Wherei = 1,2, . . . ,m, d = 1,2, · · · ,D.

3 Inertia Weight Variation PSO Algorithm

At the beginning of the inertia weight variation PSO
algorithm, the largerw was helpful to enhance the global
search ability of algorithm, and jumped out the local
optimum. At the later of the optimization process, the
smallerw was helpful to improve the local search ability,
and made the algorithm converge. Decreasingw by the
parabolic rule can more effectively control algorithm
exploration ability and exploitation ability. Through thew
fallen by parabolic rule, it can be easily control the
algorithm ability of exploration and exploitation. Base on
above, the inertial weight variation strategy was proposed.
Looked inertia factorw in the standard PSO speed
updated formula (4) as iteration timet function. Changing
as:

w = wmax− (wmax−wmin)

(

t
tmax

)2

(4)

Wheretmaxwas the max iteration,wmax, wmin were the max
and min inertia weight.

The Status of the Particle Oscillation Judgment
Method.

Through the observation to particle trajectory we
found when particle evolution stagnation happened, often
appeared the particle trajectory at one dimension
oscillation condition (Shown as Fig.2).

Trajectory of Particles in movement process can be
usually abstracted six statuses as shown in figure3. It can
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Fig. 2: Particle Trajectories in PSO Optimization Process

Fig. 3: Particle Trajectory Schemes

be concluded that judge particle trajectory appear
oscillation status method:

When particles moving, if continuous two generations
were all satisfied formula5, we can judge particles
trajectory appear oscillation at this dimension. Meaning
that if particle trajectory often showed like Fig.3(c) or
Fig. 3(f), we can judge particle appear oscillation at this
dimension.

max(|xk−2− xk−1|, |xk − xk−1|)
|xk − xk−2|

> 3 (5)

wherexi was the location in situationi.
When particle trajectory appeared oscillation, the

optimization process often happened stagnation, or
premature convergent happened. We can use the method
below to identify particle happened opening oscillation
and convergent oscillation.

If xk − xk−1 and xk − xk−2 were different signals, we
can judge particles happened convergent oscillation.

If xk − xk−1 andxk − xk−2 were same signals, we can
judge particles happened divergent oscillation.

The number of particles oscillation and particles
stagnation.

4 Deterministic particle oscillation number
Nosc

When particle first appeared oscillation, it was said that
particle in moving process, their movement positions
were twice satisfied by the formula5, we considered the
oscillation numberNosc as 1, or considered as 0. If in
situation Nosc > 0, in the next several continuous
generations, once formula5 was satisfied, theNosc
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number was added by 1, until the formula5 was not
satisfied or forced to mutation.

5 Deterministic particle stagnation number
Ns

In each particle iteration process, we used a counter to
record the stagnation number of particle currently. When
detected the optimum didn’t change to the last optimum,
the stagnation number was added by 1, or clear to 0.

Particle health degree can be regard as health merit of
single particle searching optimum process. The main
principle was, if particles in every iteration is closer and
closer to the optimum, their health degrees will be
increased, otherwise if particle appeared stagnation or
oscillation their health degrees will be decreased. After
mutation particles health degree will be reset.

Particle health degree defined as the function
combined with particle stagnation numberNs and particle
oscillation numberNosc. We calculated the function like
the method below:

Hparticle= 100−min(wsNs +woscNosc,100) (6)

Wherews andwosc were the weight of stagnation number
and oscillation number respectively.ws = 3 andwosc = 0.8
HPSO that we proposed in this paper.

6 Fast convergent PSO optimization
algorithm based on health

By analyzing the situation that particles in high level
dimension, particles were easily fallen in local optimum.
We monitored particles health degree real-time and
counted low particles health degrees made mutation to
solve this problem. Firstly, we need to according to
particular matter to ascertain a suitable threshold value
Hth, when detected certain particle health degree lower
than the threshold valueHth, through re-assignment the
local optimum (Pi in formula 1) to change the particle
original movement trajectory. Shown as formula7. Thus
changed the velocity vector that particles updated,
promoted the particles to escape from local optimal.

Pi = rand× (Pg − xi) (7)

WherePi was thei-th particle local optimum location,Pg
was particle swarm global optimum location,Xi was the
i-th particle location. The flowchart of standard PSO
algorithm was shown in Fig.4.

The pseudo-code of fast convergent PSO based on
health degree was proposed in this paper described below:

Step 1. Random Initialize velocities and positions which
particles in swarm.

Step 2. While (not satisfied terminate condition).
Step 3. For Each Particle.
Step 4. According to criterion function calculate fitness
value of each particle.
Step 5. According to formula(1),(2),(3)update velocities
and positions of particles.
Step 6. According to formula (5) calculate oscillation
numbers of particles.
Step 7. Calculating stagnation particles numbers.
Step 8. According to formula (6) update health degrees of
each particles.
Step 9. If (particle health degree≤ threshold valueHth)
then
Step 10. Making the particles mutation, changing its local
optimization position.
Step 11. Resetting the particles health degree was 100,
which had been mutation.
Step 12. End If
Step 13. End for
Step 14. End While
Step 15. End
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Fig. 4: HPSO Algorithm Flow Chart

7 Simulation Experiments

In order to verify the validity of the HPSO algorithm, we
conducted a large number of numerical experiments. To
test the effect of the HPSO algorithm in higher dimension
status, we chose Ackley, Cigar, Ellipse, Griewank,
Rastrigrin, Noncontinuous Rastrigin, Rosenbrock,
Quadric, Sphere these ten variable dimension benchmark

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1814 Q. Jin et. al. : HPSO Algorithm with High Speed Convergent based on...

Table 1: Benchmark Functions
Function Functional Expression Region of Extremum Optimum Optimum

Name i = 1,2, · · · ,n Local Location

Ackley 20+ e−20e
− 1

5

√

1
n

n
∑

i=1
x2

i − e
− 1

n

n
∑

i=1
cos(2πxi)

[−32,32] multi (0, . . . ,0) 0

Cigar x2
i +104

n
∑

i=2
x2

i [−5,5] none (0, . . . ,0) 0

Ellipse
n
∑

i=1

[(

104 i−1
n−1

)

x2
i

]

[−5,5] none (0, . . . ,0) 0

Griewank 1
4000

n
∑

i=1
x2

i −
n
∏
i=1

(

xi√
i

)

+1 [−600,600] multi (0, . . . ,0) 0

n
∑

i=1
(y2

i −10cos(2πyi)+10)

NC-R yi

{

xi |xi|< 0.5
round(2xi)

2 |xi| ≥ 0.5
[−5.12,5.12] multi (0, . . . ,0) 0

i = 1,2, · · · ,n

Quadric
n
∑

i=1

(

i
∑

j=1
x j

)2

[−100,100] none (0, . . . ,0) 0

Rastrigrin 10n+
n
∑

i=1
[x2

i −10cos(2πxi)] [−5.12,5.12] multi (0, . . . ,0) 0

Rosenbrock
n−1
∑

i=1

[

100(x2
i − xi+1)

2+(xi −1)2
]

[−2.5,2.5] multi (1, . . . ,1) 0

Sphere ∑x2
i [−100,100] none (0, . . . ,0) 0

Table 2: Parameters used in the test
Learning factor (c1) 1.5 Particle number(N) 20
Learning factor (c2) 1.5 inertia weight (w) 0.5

precision (eps) 0.0001 Max iteration time (M) 3000

functions (Table1) and repeated test, competed them with
SPSO, WPSO these two common particle swarm
optimization algorithms.

To make a fairer comparison among the algorithms,
pre- generate a set of initial values and use it to initialize
the particles before we run algorithms each time, and thus
effectively eliminating the efficiency of the algorithm on
different particle initial position caused the differences.
Particle numbersN of SPSO, WPSO and HPSO were 30,
inertia weightw was 0.5, learning factorsc1 andc2 were
both 1.5. The inertia weightw of WPSO algorithm was
decrease 0.9 to 0.4. In HPSO algorithm we set the health
degree threshold 85, particle oscillation number weight
wosc was 0.8, particle stagnation numberws was 3. The
public parameters of the three algorithms were shown in
table2.

7.1 Experiment Design

Firstly, we fixed particle dimension when achieved certain
precision (take precisioneps = 0.0001), the iteration
times that SPSO, WPSO and HPSO needed. To avoid the
searching optimum process not fall into drop-dead halt,
we set when particles iteration times was more than 1000,
algorithms were ended, and returned 0. It was mean that

in the provision of iteration times cannot reach required
accuracy. In order to reduce the influence of random
search, each algorithm was run several times and
calculated statistics. The results of the comparisons were
shown in table2. Where particle numbersN of SPSO,
WPSO and HPSO were 30, inertia weight w was 0.5,
learning factors C1 and C2 were 1.5. The inertia weightw
of WPSO algorithm was decrease 0.9 to 0.5. Mean values
and standard deviations in Tables were only counted test
result the particles search accuracy that reach the
accuracy of the provisions, not included algorithm
achieves maximum iterating times but didn’t reach the
required accuracy of test results.

7.2 The convergence test

Convergence test was the test of convergence of the three
algorithms in the specified number of iterations. In this
paper we fixed the dimensions of the particles was 10, the
test results as shown in figure5(a) to figure5(i).

From the figures we can see, except the Rosenbrock
function, for the other benchmark functions, the HPSO
algorithm can search the global optimum in less
iterations.
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   (a) Convergence curve (Ackley function)    (b) Convergence curve (Cigar function) 

 

(c) Convergence curve (Ellipse function)    (d) Convergence curve (Griewank function) 

 

(e) Convergence curve (Noncontinuous 

Rastrigin function)                     

(f) Convergence curve (Quadric function) 

 

   (g) Convergence curve (Rastrigin function)     (h) Convergence curve (Rosenbrock function)

 

 

(i) Convergence curve (Sphere function) 

Fig. 5: Convergence curve
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Table 3: Results for 5-Dimension problems
Benchmark PSOs Best Worst Mean Std. SR

Ackley SPSO -8.88E-16 1.65E+00 8.23E-02 3.68E-01 95%

WPSO -8.88E-16 6.22E-15 2.84E-15 1.40E-15 100%

HPSO -8.88E-16 -8.88E-16 -8.88E-16 0.00E+00 100%
Cigar SPSO 2.50E-308 1.12E-285 5.58E-287 0.00E+00 100%

WPSO 2.07E-176 2.50E+01 1.25E+00 5.59E+00 95%

HPSO 7.67E-302 5.71E-289 6.30E-290 0.00E+00 100%
Ellipse SPSO 6.24E-314 2.52E-290 1.26E-291 0.00E+00 100%

WPSO 2.09E-173 3.11E-164 1.65E-165 0.00E+00 100%

HPSO 1.28E-302 7.05E-288 3.93E-289 0.00E+00100%
Griewank SPSO 0.00E+00 2.22E-16 1.11E-17 4.97E-17 100%

WPSO 0.00E+00 0.00E+00 0.00E+00 0.00E+00 100%

HPSO 0.00E+00 0.00E+00 0.00E+00 0.00E+00 100%
NC-R SPSO 1.00E+00 1.00E+01 3.20E+00 2.09E+00 0%

WPSO 0.00E+00 3.00E+00 1.40E+00 7.54E-01 5%

HPSO 0.00E+00 0.00E+00 0.00E+00 0.00E+00 100%
Quadric SPSO 8.82E-316 5.82E-3002.96E-301 0.00E+00 100%

WPSO 1.96E-174 4.29E-165 2.29E-166 0.00E+00 100%

HPSO 3.48E-307 1.75E-287 8.80E-289 0.00E+00100%
Rastrigrin SPSO 0.00E+00 6.96E+00 3.33E+00 1.78E+00 5%

WPSO 0.00E+00 3.98E+00 1.24E+00 1.11E+00 30%

HPSO 0.00E+00 0.00E+00 0.00E+00 0.00E+00 100%
Rosenbrock SPSO 0.00E+00 3.93E+00 1.97E-01 8.79E-01 95%

WPSO 0.00E+00 4.19E-30 4.19E-31 1.29E-30 100%

HPSO 1.05E-30 5.71E-10 4.74E-11 1.49E-10 100%
Sphere SPSO 1.89E-311 7.94E-2994.00E-300 0.00E+00 100%

WPSO 4.42E-177 4.58E-164 2.30E-165 0.00E+00 100%

HPSO 4.52E-306 5.34E-286 2.67E-287 0.00E+00100%

Table 4: Results for 10-Dimension problems
Benchmark PSOs Best Worst Mean Std. SR

Ackley SPSO 2.44E-03 2.02E+00 5.97E-01 7.53E-01 0%

WPSO 2.81E-06 1.61E-03 2.78E-04 4.25E-04 55%

HPSO -8.88E-16 -8.88E-16 -8.88E-16 0.00E+00 100%

Cigar SPSO 1.15E-01 2.57E+01 4.15E+00 6.14E+00 0%

WPSO 1.57E-08 3.66E-01 1.98E-02 8.16E-02 45%

HPSO 6.68E-291 3.45E-272 1.95E-273 0.00E+00 100%

Ellipse SPSO 8.71E-02 6.79E+00 2.70E+00 2.26E+00 0%

WPSO 3.43E-09 6.96E+01 3.48E+00 1.56E+01 45%

HPSO 8.35E-288 2.61E-273 1.30E-274 0.00E+00 100%

Griewank SPSO 1.81E-05 6.69E-03 1.02E-03 1.50E-03 15%

WPSO 3.96E-11 7.40E-03 3.70E-04 1.65E-03 95%

HPSO 0.00E+00 0.00E+00 0.00E+00 0.00E+00 100%

NC-R SPSO 4.00E+00 2.10E+01 1.16E+01 4.75E+00 0%

WPSO 5.00E+00 1.00E+01 7.35E+00 1.66E+00 0%

HPSO 0.00E+00 0.00E+00 0.00E+00 0.00E+00 100%

Quadric SPSO 6.52E-04 8.54E-02 2.37E-02 2.30E-02 0%

WPSO 1.04E-07 1.46E-03 1.72E-04 3.86E-04 75%

HPSO 5.85E-292 1.23E-277 7.33E-279 0.00E+00 100%

Rastrigrin SPSO 2.12E+00 1.85E+01 1.02E+01 4.18E+00 0%

WPSO 9.95E-01 1.29E+01 5.97E+00 3.16E+00 0%

HPSO 0.00E+00 0.00E+00 0.00E+00 0.00E+00 100%

Rosenbrock SPSO 5.43E+00 9.92E+00 8.06E+00 1.45E+00 0%

WPSO 3.14E-02 7.52E+00 1.97E+00 1.92E+00 0%

HPSO 1.34E-10 6.91E+00 4.91E+00 1.60E+00 5%

Sphere SPSO 3.53E-04 2.11E-02 5.73E-03 6.53E-03 0%

WPSO 3.17E-12 1.96E-06 2.23E-07 5.11E-07 100%

HPSO 1.67E-293 5.89E-278 2.96E-279 0.00E+00 100%
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Table 5: Results for 30-Dimension problems
Benchmark PSOs Best Worst Mean Std. SR

Ackley SPSO 1.08E+00 2.11E+00 1.56E+00 2.68E-01 0%

WPSO 7.36E-02 8.34E-01 3.60E-01 2.02E-01 0%

HPSO -8.88E-16 -8.88E-16 -8.88E-16 0.00E+00 100%

Cigar SPSO 1.53E+03 1.02E+04 5.51E+03 2.63E+03 0%

WPSO 2.85E+01 2.91E+02 7.99E+01 6.26E+01 0%

HPSO 0.00E+00 3.60E-321 3.36E-322 0.00E+00 100%

Ellipse SPSO 3.17E+01 2.46E+02 1.54E+02 6.88E+01 0%

WPSO 1.52E+00 9.38E+01 1.62E+01 2.62E+01 0%

HPSO 0.00E+00 3.11E-322 1.48E-323 0.00E+00 100%

Griewank SPSO 1.35E-02 8.08E-02 3.55E-02 1.63E-02 0%

WPSO 4.37E-03 3.83E-02 1.87E-02 8.48E-03 0%

HPSO 0.00E+00 0.00E+00 0.00E+00 0.00E+00 100%

NC-R SPSO 2.77E+01 1.08E+02 6.42E+01 2.07E+01 0%

WPSO 8.14E+00 7.11E+01 3.57E+01 1.58E+01 0%

HPSO 0.00E+00 0.00E+00 0.00E+00 0.00E+00 100%

Quadric SPSO 5.71E-01 2.37E+00 1.44E+00 5.16E-01 0%

WPSO 5.06E-02 2.55E+00 7.31E-01 5.13E-01 0%

HPSO 0.00E+00 0.00E+00 0.00E+00 0.00E+00 100%

Rastrigrin SPSO 5.27E+01 1.41E+02 9.52E+01 2.18E+01 0%

WPSO 1.07E+01 5.16E+01 2.88E+01 1.03E+01 0%

HPSO 0.00E+00 0.00E+00 0.00E+00 0.00E+00 100%

Rosenbrock SPSO 4.34E+01 1.49E+02 7.84E+01 2.70E+01 0%

WPSO 2.84E+01 3.00E+01 2.90E+01 3.99E-01 0%

HPSO 1.06E-09 2.88E+01 2.13E+01 1.22E+01 20%

Sphere SPSO 2.59E-01 1.47E+00 6.89E-01 3.24E-01 0%

WPSO 1.85E-03 5.29E-01 1.46E-01 1.32E-01 0%

HPSO 0.00E+00 0.00E+00 0.00E+00 0.00E+00 100%

 

(a) Convergence speed contrast       

(Ackley function)                        

(b) Convergence speed contrast (Cigar 

function) 

 

     (c) Convergence speed contrast (Ellipse 

function)                                   

(d) Convergence speed contrast (Griewank 

function) 
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(e) Convergence speed contrast  

         (Noncontinuous Rastrigin function)        

(f) Convergence speed contrast (Quadric 

function) 

 

(g) Convergence speed contrast 

   (Rastrigin function)                        

(h) Convergence speed contrast 

   (Rosenbrock function) 

 

(i) Convergence speed contrast (Sphere function) 

Fig. 6: Convergence speed contrast

7.3 Stable Test

Because of the randomness in the PSO algorithm, we
can’t judge which algorithm was better in one test. We
need to test the stability of the three algorithms. In this
test, for each algorithm, we run each benchmark function
20 times, and then obtained the experiment results by
statistics. Table3 to Table ?? was experiment results
corresponding to the dimensions of the particles 5, 10, 30
respectively. In these tables we listed the statistics were:
best value (Best), worst value (Worst), mean value

(Mean), variance (Std) and success rate (SR). The success
rate was shown in formula8.

SR =
Nsucceed

Ntotal
×100% (8)

Where Ntotal was the total test times.Nsucceed was the
success times. In the specified iterations (M), the optimal
accuracy was higher than the preset accuracy (eps) was
considered successful, otherwise judged to be failures.

From tables above we can see, for all the benchmark
test functions, the success rate of HPSO algorithm was
higher than the other two algorithms, and in most of tests,
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!a" D=5 !b" D=10 

Fig. 7: Comparison optimization Efficiency in Different Dimension

the HPSO algorithm success rate were 100%. Some
standard deviation in the tables were zero was due to the
computer round-off errors.

7.4 Convergence speed test

Increased problem dimension from 2 to 30, and tested
these three algorithms in each dimension. The searching
precisioneps was 0.0001. In each dimension we tested 10
times. The results were shown in Fig.6(a) to Fig.6(i).

In the figures above we can see, HPSO proposed by
this paper was better than the other two algorithms. Along
with the dimension increasing SPSO and WPSO cannot
convergent in limited iterations. However HPSO can
convergent in limited iterations and precision achieve
0.0001 except benchmark functions Rosenbrock and
Schwefel. We use high-dimension and multi-modal
function Ackley as an instance, comparison these three
algorithm optimization efficiency in different dimensions.
Shown as Fig.7.

Fig. 7 (a, b) were the alteration lines that particles
global optimum in optimization searching; three
optimization algorithms tested to Ackley function in
dimension 5 and 10 respectively. Table4 shown in
different dimensions condition these three algorithms
needed minimum iterations numbers that achieve
precision 0.0001(each algorithm tested 20 times mean
values).

In order to let the tests results more universality and
more Intuitive, we tested HPSO algorithm in higher
dimension. Shown as Fig.8, we used Ackley function to
tested HPSO algorithm. Where X-axis was particle
dimension, and sampled twice added. Y-axis was the
iteration that achieved the precision 0.0001 needed.
Because of randomness of the algorithm, we test every
dimension simple point 10 times and calculated mean
value.

Fig. 8: Iterations of Achieving Fixed Precision Algorithm
Needed

We can see from the comparison results above, along
with dimension increasing, iterations increasing slowly
that the HPSO algorithm convergent to fixed precision
0.0001, almost invariant. Yet in the dimension was 8 and
dimension was 10 respectively, the standard particle
swarm optimization and weight inertia variation
optimization cannot convergent in 3000 iteration times.
We can see that in high dimension condition, SPSO and
WPSO were easily dropped into local optimum, as a
result they were all untimely convergence. HPSO
proposed by us can still jump out local optimum and
search global optimum in limited iterations times.

8 Conclusions and Forecast

There were three improvements in this paper: First,
proposed health degree conception. Second, proposed a
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method of computing health degree. Third, in
optimization searching, we monitored particle health
degree singly, and timely singly mutated account to the
particle which health degree lower than the given
threshold value. Given a random turbulence to the particle
at all dimensions, and changed particles movement
trajectory. Jumped out from local optimal solution,
effectively reduced the invalid iteration, improved the
convergent speed and searching accuracy of particle
swarm optimization. At the same time also can ensure
optimization process of the high health degree particles
didn’t interrupt, and further improved the searching
efficiency of the whole group.

The experiments proved that in most high dimension
test functions, HPSO algorithm proposed by this paper was
significantly higher than the other two algorithms in the
ways of convergent accuracy and convergent speed.

Because of the choice of health degree threshold value
in a certain extent influence the performance of the
algorithm, how to choice threshold value will be the
future research subject. Meanwhile HPSO algorithm
proposed by us could fusion with other algorithms and
further improved the performance of fusion algorithm.
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