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Abstract: Due to many classical identification methods cannot be directly used for closed-loop control system, an improved
identification method is proposed to simultaneously identify model parameters and the structure. The improved identification method
used the genetic algorithm to estimate the initial search scope for the PSO algorithm, and then used the search result as the initial value
of the Rosenbrock algorithm. On the basis the genetic algorithm to estimate is introduced to provide the rough initial search scope
for the presented algorithm to improve the validity and accuracy. Simulation results show that compare with the PSO algorithm, the
inertia weight variation PSO algorithm and the PSO-SQP algorithm proposed by Qibing Jin et al, the presented algorithm improves the
optimizing efficiency of the particle swarm.
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1 Introduction

To obtain object dynamic mathematical model is the basis
of advanced control. In order to gain an accurate process
model, many researchers proposed different identification
methods. But these methods depend largely on the
collection data, but if working under strong noise
disturbance and insufficiency response condition, it may
generate a large estimate bias.

In the open loop condition, it only needs persistent
excitation, the system can always be identified. But in
industrial control, in consideration of the factors of
stability, security and economy, open loop identification
always not be allowed, so closed loop identification is
necessary needed, especially in the system is unstable in
open loop or the system contains feedback mechanisms
condition [1,2]. Conventional identification methods such
as Least Squares estimate method and Maximum
Likelihood method [3]. These methods can obtain
accuracy results in open loop system. However, when
these methods directly apply to closed-loop system may
generate large estimation deviation, even lead to
unidentified. For closed loop system, searching method is
a very effective identification method. Pan proposed the
nonlinear stochastic (NLJ) based on LJ [4]. NLJ method
improved the convergence speed of the search. But the

identification results depend largely on the choice of
initial parameters.

Particle swarm optimization (PSO) is an evolutionary
computation technique developed by Dr. Eberhart and Dr.
Kennedy in 1995 [5], inspired by social behavior of bird
flocking. Compare with conventional identification
methods, PSO method has many advantages such as
simple computation, rapid convergence capability and
without any requirement for the input and output data.
PSO has been extended to many fields [6,7,8]. But, in
practical application, PSO method has the limitations of
converging to undesired local solution or premature
convergence [9]. Later many improved PSO methods are
proposed to solve these problems. Eberhart proposed a
discrete binary PSO method which can limit dimensional
position [10]. Shi proposed a linear decreasing weight
PSO method which can improve the ability of local
search by modifying weight value [11]. Clerc introduced
constriction factor to improve the ability of local search
[12]. These methods be restricted to change learning
factors and weight values and cannot meet the
requirements for identification accuracy in modern
industrial control.

In this paper we present a improve method to estimate
model parameter and the structure simultaneously. The
method (Named PSO-R) combines the global search
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capability of PSO and exactly local optimization of
Rosenbrock. To improve the algorithm performance, we
introduce genetic algorithm to estimate the rough search
scope of PSO, this step can avoid the local search trap or
premature convergence.Compare with the basic particle
swarm optimization algorithm, Inertia Weight Variation
PSO algorithm and PSO-SQP [13] proposed by Qibing
Jin, Through simulation can be seen that the PSO-R
method is successfully applied to multivariable system
identification and achieves better results in the
experiment.

2 Preliminaries: the classic optimization
algorithms - PSO and Rosenbrock

2.1 The main aspects of basic particle swarm
optimization (PSO)

The mathematical description of Particle Swarm
Optimization is: within ad dimension search place, each
particle is looked as a node in place. Each particle
depends on three vectors: a position vector
xi = (xi,1,xi,2, · · · ,xi,d) a velocity vector
vi = (vi,1,vi,2, · · · ,vi,d) and its experience vector
pi = (pi,1, pi,2, · · · , pi,d). For each iteration, each particle
according to the formulas below updated its speed and
position:

vi, j(t +1) =wvi, j(t)+ c1r1[pi, j − xi, j(t)]

+ c2r2[pg, j − xi, j(t)] (1)

xi, j(t +1) = xi, j(t)+ vi, j(t +1) (2)

wherevi, j(t + 1) and xi, j(t + 1) are the current velocity
and the current position,vi, j(t) andxi, j(t) are the previous
velocity and the previous position. The learning factorsc1
andc2 are set constant value, normallyc1 andc2 are taken
as 2,r1 and r2 are random numbers between[0,1], w is
inertia weight which used to control the influence of
previous velocity on the current velocity. The inertia
weightw is a very important parameter in PSO algorithm
and could be used to control algorithm exploration ability
and exploitation ability. The larger inertia weightw is
helpful to enhance the global search ability of algorithm
and jump out the local optimum. In the later phase of the
PSO algorithm, the smaller inertia weight is helpful to
improve the local search ability and make the algorithm
converge.

2.2 The basic principle of Rosenbrock algorithm

Rosenbrock algorithm is a method to solve unconstrained
multiple optimization problem. The description of the

problem can use the minimum value of object function as
follow:

min f (x),x ∈ Rn (3)

The basic principle of Rosenbrock algorithm is:
constructn orthogonal vectors at the current position and
then search in each direction, find the direction of the
maximum function value decrease and move one step,
reconstructn orthogonal vectors at the new position and
repetitive operation above.

Fig. 1: The Rosenbrock method diagram

The algorithm is depicted as follow:

Step 1:Set initial estimated valuex(0), {d0,d1, · · · ,dn} aren
initial standard orthogonal vectors, the initial step
length is δ 0 = (δ 0

1 ,δ
0
2 , · · · ,δ

0
n )

T > 0, and set the
parametersα, β and accuracyε > 0, setk = 0;

Step 2:Makey = xk;
Step 3:Makey as the basic point, move axially parallel to

{d0,d1, · · · ,dn},
If f (y+δ k

j d j)≤ f (y), then

y = y+δ k
j d j

,δ k
j = αδ k

j (4)

If y = y+δ k
j d j, δ k

j = αδ k
j , then

y = y,δ k
j =−βδ k

j (5)

Until failures appear inn directions;
Step 4:Setxk+1 = y, if ||xk+1−xk|| ≤ ε, then stop the iteration,

the output isxk+1, or go to the next step;
Step 5:Setd̃ = xk+1 − xk, build new orthogonal vectors

{d0,d1, · · · ,dn}k+1, setδ k+1 = δ 0, k = k + 1, turn to
step 3.

According to the experience,α ∈ [2,3], β ≈ 0.5, in the
initial stage orthogonal vectors can set as unit vectors.
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3 PSO-R algorithm

3.1 Initial neighborhood

Most optimization algorithms exist this problem: search
algorithm itself has the randomness and will cause blind
inefficient in optimization process. In this paper, we use
the genetic algorithm to estimate the rough range search
space of PSO algorithm, improves the convergence and
accuracy of search process, avoid randomness factor of
the PSO algorithm cause the local search trap or
premature convergence.

Fig. 2: Chart of Standard PSO algorithm searching process

Assume the red dot is the global optimum, the PSO
algorithm random generateN nodes in the whole search
scope, and then according the formulas of PSO algorithm
to calculate the optimum.

Fig. 3: Chart of Basing on the initial neighborhood of PSO
algorithm optimization process

Assume the red dot is the global optimum, and the
blue dot is the local optimum. The initial neighborhood in
this paper, the center of initial value can be obtain by
genetic algorithm. The radiusR of initial neighborhood is
the difference of the optimal value and average optimal
value of GA algorithm, this constitutes the initial
neighborhood of PSO algorithm.

3.2 PSO-R Algorithm

Step 1:Using the GA algorithm to estimate the initial
neighborhood of the PSO algorithm.

Step 2:Initialized parameters in PSO algorithm, including
initial search position and particle speed.

Step 3:Comparison fitness value, if current fitness evaluation
is better than the previous, let the current replace the
previous.

Step 4:Update the velocity of each particle and the coordinate
position.

Step 5:Judging the iteration number whether satisfy the set
value, if satisfy according the formula 3 to update the
position and speed of particle, and go to the next step,
otherwise go to the step 2.

Step 6:Using the result of PSO algorithm as initial point of
Rosenbrock, the results of the parameters estimation
areθ̂q, precision isεq, q is the cycling time. According

J =
N
∑

t=0
(y(t)−ye(t))2 to update the initial value of PSO

and the cycling time.

θ̂ 0
q+1 =

(

θ̂+
q+1+ θ̂−

q+1

)/

2 (6)

where
{

θ̂+
q+1 = θ̂q +abs

(

rand(θ̂q − θ̂q−1)
)

θ̂−
q+1 = θ̂q −abs

(

rand(θ̂q − θ̂q−1)
)

εq+1 = rand × εq (7)

Step 7:Gain the global optimal valuêθk,l , and the
corresponding optimal fitness valuef (θ̂k,l), where the
main iteration time in PSO algorithm isk, l is the
serial number of the particle in the group.

Step 8:Through calculate obtain the optimal value and the
corresponding fitness function value. In turn down as
θ̂r, f (θ̂r), if f (θ̂)< f (θ̂) let θ̂ = θ̂r.

Step 9:Along theθ̂ axis direction to search. Searching make
fitness function minimum variable value, if
f (θ̂ + v1d j)≤ f (θ̂), θ̂ = θ̂ + v1d j.

Step 10:Determine whether meet the requirement
||θk+1− θk|| ≤ εq, if satisfy, end the computation and
output the optimal resultθk+1 or go to step 11.

Step 11:Update orthogonal vector group forn search
directions, and use to set the initialization parameter
forward σ k+1 step, go to step 9. Figure5 is the flow
chart of the PSO-R algorithm.

4 Simulation

4.1 First order plus dead time (FOPDT) model
Gs = kp

τps+1e−θs

Based on closed loop step test in terms of a P-type
controller (kc = 0.5), with a step change ofh = 0.05 to
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Fig. 4: Algorithm chart of PSO-R

the set point, we chooseGs = 12.8
16.7s+1e−s as an example of

FOPDT model. The basic PSO algorithm, the inertia
weight variation PSO Algorithm, the PSO-SQP algorithm
and the proposed algorithm are respectively used to
estimate the selected model.

A Gaussian white noise respectively generating
NSR = 5%, 10% and 20% is added to the output to test
the robustness.

Table 1: The results of various algorithm for FOPTD model in
no noise

Actual Value 12.8 16.7 1
PSO 12.7989 16.6989 -1.0022

WPSO 12.7999 16.6982 -1.0091
PSO-SQP 12.8000 16.7000 -0.9989

PSO-R 12.8000 16.7000 -1.0000

Table 2: The results of various algorithm for FOPTD model in
NSR = 5% noise

Actual Value 12.8 16.7 1
PSO 12.7841 16.6916 -0.9901

WPSO 12.8089 16.7110 -0.9598
PSO-SQP 12.7998 16.6970 -0.9972

PSO-R 12.8000 16.7007 -1.0002

Fig. 5 depicts the result of the PSO-R from step
response test for FOPDT model. Table1 to table 4
demonstrates that the search optimization method with
frequency response to estimate the initials can obtain an
excellent performance of FOPDT model identification in

Table 3: The results of various algorithm for FOPTD model in
NSR = 10% noise

Actual Value 12.8 16.7 1
PSO 12.7928 16.7140 -0.8338

WPSO 12.8014 16.8495 -1.0572
PSO-SQP 12.8008 16.7017 -1.0012

PSO-R 12.8000 16.6987 -0.9982

Table 4: The results of various algorithm for FOPTD model in
NSR = 20% noise

Actual Value 12.8 16.7 1
PSO 12.8006 16.7435 -0.8338

WPSO 12.8214 16.9926 -1.1901
PSO-SQP 12.8214 16.6928 -1.1901

PSO-R 12.8000 16.6999 -1.0060

Fig. 5: Step responses test for FOPDT model estimated by PSO-
R

spite of the existence of the noise and the complexity of
the equivalent input; among the four algorithms, the
proposed PSO-R achieves better results than PSO, WPSO
and PSO-SQP in terms of accuracy and robustness.

4.2 Second order plus dead time (SOPDT)
model Gs = kp

t1s2+t2s+1e−θs

A unit step is given to the SOPDT model of
Gs = 1

12s2+8s+1
e−s in terms of a P-type controller

(kc = 0.5), with a step change ofh = 0.05 to the set point.
Experiments with the measurement noises ofNSR = 5%,
10% and 20% are respectively taken for PSO, WPSO,
PSO-SQP and the proposed PSO-R with initial parameter
estimate. The results are listed in Table2.

The persistency of the excitation is a key issue for the
identification of the system, whereas many methods need
a persistent excitation during the whole process. In the
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Table 5: The results of various algorithm for SOPTD model in
no noise

Actual Value 1 12 8
PSO 1.0006 11.1810 7.9299

WPSO 0.9999 12.3526 8.0258
PSO-SQP 1.0000 12.1500 8.0049

PSO-R 1.0000 12.0080 8.0007

Table 6: The results of various algorithm for SOPTD model in
NSR = 5% noise

Actual Value 1 12 8
PSO 1.0004 11.0869 7.9235

WPSO 1.0002 11.5059 7.9583
PSO-SQP 1.0000 11.7049 7.9933

PSO-R 1.0000 11.9868 7.9991

Table 7: The results of various algorithm for SOPTD model in
NSR = 10% noise

Actual Value 1 12 8
PSO 1.0013 10.7953 7.9078

WPSO 1.0006 10.4549 7.8918
PSO-SQP 1.0004 11.0517 7.8997

PSO-R 1.0001 11.7738 7.9819

Table 8: The results of various algorithm for SOPTD model in
NSR = 20% noise

Actual Value 1 12 8
PSO 1.0004 10.5602 7.8801

WPSO 1.0004 10.4046 7.8629
PSO-SQP 1.0002 11.0049 7.8777

PSO-R 1.0002 11.6753 7.9776

Fig. 6: Step responses test for SOPDT model estimated by PSO-
R

paper, we respectively make the experiment with different
excitation time and the results are as Fig.7.

Fig. 7: The results of PSO-R with different excitation time

Subfigure 1 indicates a persistent excitation all time,
Subfigure 2 depicts the excitation timet = 10s and
Subfigure 3 shows the excitation timet = 1s. The
presented method is feasible for the non-sustainable
excitation whereas the stability and accuracy of the results
may be affected at a certain degree, hence a persistent
excitation is preferable in the simulations of SISO system.

4.3 Woodberry model

Woodberry model is proposed by Wood and Berry in
1973 and widely adopted in the identification of
multivariable system because of its characteristics of
strong coupling and multiple time delays between the
various loops. We get a good result with PSO-R in the
experiment, have also made very good identification
results.

Woodberry model

G(s) =

[

12.8e−s

1+16.7s
−18.9e−3s

1+21s
6.6e−7s

1+10.9s
−19.4e−3s

1+14.4s

]

For the decentralized closed loop system withkc1 =
0.5, kc2 = −0.09, the step tests are respectively taken by
r1= 1, r2= 2 andr1= 4, r2= 2. ChooseGci(ri − yi) as
the equivalent inputs in the simulation and results of PSO
,WPSO, PSO-SQP and the proposed method are listed in
Table9 to table12.

4.4 Multivariable model

The transfer function of system being identified is

y = 1+ x1−1.5x2+1.6e−x3 +2sin(1+ x4) (8)
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Table 9: The results estimated channelG11 by various
algorithms

Actual Value 12.8 16.7 -1
PSO 12.7929 15.6 -1.21

WPSO 12.7949 16.6193 -1.0044
PSO-SQP 12.7984 16.3140 -1.0027

PSO-R 12.8000 16.6942 -1.0014

Table 10: The results estimated channelG12 by various
algorithms

Actual Value -18.9 21 -3
PSO -18.7700 18.2000 -2.8500

WPSO -18.8419 20.2100 -2.93
PSO-SQP -18.7280 20.9420 -3.0017

PSO-R -18.9000 21.0000 -3.0002

Table 11: The results estimated channelG21 by various
algorithms

Actual Value 6.6 10.9 -7
PSO 6.5656 10.9218 -6.5500

WPSO 6.5766 10.9109 -6.7630
PSO-SQP 6.5856 10.9081 -6.9852

PSO-R 6.6000 10.9000 -6.9975

Table 12: The results estimated channelG22 by various
algorithms

Actual Value -19.4 14.4 -3
PSO -19.8800 13.2700 -2.4000

WPSO -19.3074 14.4339 -2.7300
PSO-SQP -19.3942 14.4140 -3.0060

PSO-R -19.4000 14.4001 -3.0007

Fig. 8: The results of the various algorithm for Woodberry model

According to formula 8 generate 30 groups sample
model. Assumed we didn’t know the structure of model in
advanced, chosen all of the meta-model to identify the

system. Set the parameters of BPSO algorithm in
identification process as follow: particle numberN = 20,
inertia weightw = 1, accelerate factorsC1 = 2,C2 = 1.65,
Xmax = 2, the max evolution number is 1200. Set inertia
weight in WPSO algorithm asXmax = 0.9, Xmin = 0.4.
Other parameters are the same as BPSO algorithm.

After many times simulation, chosen a better group
result as follow:

PSO algorithm is

y =0.2584+1.4775x1−1.9802x2+1.9991e−1.3560x3

+2.1390sin(1.9882+1.0138x4

WPSO algorithm is

y =0.3793+1.0683x1−1.5760x2+1.2469e−0.8776x3

+2.0376sin(0.9791+1.0013x4)

PSO-SQP algorithm is

y =0.9970+0.9956x1−1.5042x2+1.5896e−0.9734x3

+2.0027sin(0.9988+1.0001x4)

PSO-R algorithm is

y =0.9984+0.9997x1−1.5000x2+1.5963e−0.9734x3

+2.0000sin(1.0000+1.0000x4)

Identification parameters of each algorithm are shown
in table13.

Fig. 9: Without noise cases of various algorithm system output
curve

From the contrasts above we could see, the hybrid
algorithm combined particle swarm optimization
algorithm and sequential quadratic programming
algorithm identify system output curve is more close to
the real value, precision obviously improved.
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Table 13: Various algorithm system parameter identification results
Actual 1 1 -1.5 1.6 -1 2 1 1
Value
BPSO 0.2584 1.4775 -1.9802 1.9991 -1.3560 2.1390 1.9882 1.0138
WPSO 0.3793 1.0683 -1.5760 1.2469 -0.8776 2.0376 0.9791 1.0013

PSO-SQP 0.9970 0.9956 -1.5042 1.5896 -0.9734 2.0027 0.99881.0001
PSO-R 0.9984 0.9997 -1.5000 1.5963 -0.9897 2.0000 1.0000 1.0000

5 Conclusion

In this paper, we present an improved identification
method for multivariable system. The idea is to search the
local optimization with Rosenbrock algorithm at the set
iteration of PSO and get a better result as the best global
location. With the rough search scope of PSO algorithm
estimated by the genetic algorithm, the search
optimization approaches are improved in convergence
speed and robustness, experiment is utilized to estimate
the FOPDT and SOPDT under the disturbances of
different NSR use PSO, WPSO, PSO-SQP and PSO-R
are respectively.The results of simulation prove that
PSO-R with the advantage of the global search capability
of particle swarm optimization (PSO) algorithm and
exactly local optimization of Rosenbrock algorithm, is an
approximate unbiased and effective identification method
that can be successfully applied to the model of the closed
loop identification with large noise, time delay. Finally,
we also use PSO-R method to identify multivariable
closed loop system, compared with other methods the
method proposed by this article get a better result as well.
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