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Abstract: Estimate model parameter and the structure simultaneously is a crucial andchallenging problem in system identification.
For solving the problem, a hybrid algorithm by integrating two-order oscillating particle swarm optimization with successive quadratic
programming is proposed in this paper. The two-order oscillating particle swarm optimization is showed to converge rapidly to a
near optimum solution, but the search process will become very slow around global optimum. On the contrary, successive quadratic
programming is weak to escape local optimum but the ability of convergentspeed around global optimum and the convergent accuracy
is strong. In this case, the two-order oscillating particle swarm optimization is used to enhance global search ability and convergence
speed of algorithm. When the change in fitness value is smaller than a threshold value, the searching process is switched to successive
quadratic programming. In this way, this hybrid algorithm may find an optimum solution more accurately. To validate the performance
of the proposed approach, it is evaluated on four optimal control problems. Results demonstrate the effectiveness and accuracy of the
proposed algorithm.

Keywords: structural identification, parameter identification, combination optimization, hybrid particle swarm optimization,
successive quadratic programming

1 Introduction

System identification is a challenging and complex
optimization problem. It is a kind of theory to establish a
mathematical model of the production process on the
basis of input and output data. The kind of theory is
gradual perfection and the practical application in many
fields [1,2]. As time goes on, system identification theory
has made rapid progress. But conventional identification
methods have some drawbacks [3]. For instance using
conventional methods directly for closed loop
identification it may yield a large estimation bias, and
even lead to unidentified. Later, some modern system
identification methods such as identification based on
neural-network, gene algorithm, fuzzy logic and wavelet
network [4] are coming to handle these problems.

The particle swarm optimization (PSO) method has
been introduced by Kennedy and Eberhart in 1995 [5]. It
is a stochastic optimization method based on population
which has merits of fast convergence, simple principle
and easy implementation. Compare with other algorithms,

PSO algorithm has characters of simple computation and
rapid convergence capability. For the reason of its high
adaptability; PSO has many applications [6,7,8,9,10]. In
fact, PSO has the problem of converging to undesired
local solution or premature convergence. SQP is a
nonlinear programming method that starts from a single
searching point and finds a solution using the gradient
information. Although this optimizing method is less time
consuming than the population based search algorithms, it
is highly dependent on the initial estimate of solution
[11].

During the latest years, a multitude of
implementations and modified versions have been
proposed to correct the general PSO scheme presented
above. Meimei Zhu et al. through chaotic initializing and
detecting stagnation times of particles, and use global
mutation strategy to the whole swarm, this method
improved the convergent speed, obtained good results
[12]. Lianguo Wang et al. purpose a hybrid algorithm by
integrating particle swarm optimization (PSO) and
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artificial fish swarm algorithm (AFSA) [13]. The
algorithm divides the swarm into two sub-groups. One
sub-group uses PSO algorithm and the other sub-group
uses AFSA, and two algorithms share information with
each other. Ximing Liang et al. analyze the contradiction
of the global exploration and convergent speed of particle
swarm optimization with dimension mutation operator,
and an improved algorithm is proposed by modifying
PSO with dimension mutation based on dynamical
inertial weight vector [14]. In the proposed algorithm, the
concept of dimension diversity is defined and inertial
weight vector will be updated dynamically according to
dimension diversity. The mutation operated on dimension
whose dimension diversity is the worst. Yanmin Liu et al.
through analyzing the relationship between swarm
diversity and local optimum present an improved particle
swarm optimizer based on dynamic neighbor topology
(DPSO) [15] In DPSOthe neighbor of each particle is
dynamically constructed at several iterationswhich
increase the swarm diversity and improve the ability to
escape from local optimum. Yuehong Sun et al. propose
an improved PSO based on the diversity of particle
symmetrical distribution (sdPSO) [16]. Through the
research of the spatial distribution of particlesit can be
found that the convergence probability to the global
optimum solution is greatly improved with more
symmetrical particle distribution surrounding the
optimum solution of particlesA diversity population
function is proposed and an adjustment algorithm for the
diversity is introduced into the standard PSOThe spatial
distribution of particles varies between asymmetry and
symmetry repeatedly while the population diversity is
adjusted continuallywhich make the improved algorithm
search in a wider range. Shutao Li et al. propose a hybrid
global optimization strategy combining PSO with a
modified Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method [17]. The modified BFGS method is integrated
into the context of the PSO to improve local search ability
of the particles. In addition, in conjunction with the
territory technique, a reposition technique to maintain the
diversity of particles is proposed to the hybrid strategy is
that it can effectively find multiple local solutions or
global solutions to the multimodal functions in a
box-constrained space. Based on these local solutions, a
reconstruction technique can be adopted to further
estimate better solutions. Jiuzhong Zhang et al. propose a
multi-swarm self-adaptive and cooperative particle swarm
optimization (MSCPSO) based on four sub-swarms [18].
In this method several strategies are employed to avoid
falling into local optimum, improve the diversity and
achieve better solution. Particles in each sub-swarms
share the only global historical best optimum to enhance
the cooperative capability. Besides, the inertia weight ofa
particle in each sub-swarm is modified, which is subject
to the fitness information of all particles, and the adaptive
strategy is employed to control the influence of the
historical information to create more potential search

ability. To effectively keep the balance between the global
exploration and the local exploitation.

Motivated by the aforementioned researches, the goal
of this paper is to present a novel algorithm based on
two-order oscillating with random inertia weight particle
swarm optimization (TPSO) and successive quadratic
programming (SQP) for estimating model parameter and
the structure simultaneously. The feasibility of this
algorithm is demonstrated through identifying the
parameters of single variable system, multi variable
system, Hammerstein model and Wiener model. The
performance of the proposed method is compared with
the standard PSO algorithm and the dynamical inertia
weight of PSO algorithm in terms of parameter accuracy.
It is illustrated in simulations that the proposed method is
more successful than the BPSO and WPSO.

2 Identification problems description

There are many factors to affect system outputs,
especially in unknown system. System identification in
this paper we discuss is the best fitting model according
to the combination of sample data and can determine the
parameter for the model.

Considering a class of multi-input and single output
static systems,y is system output variable, there arem
input variables, and they may affect the system. Sample
data obtain from the system can be described as follow

yi ,x1i ,x2i , · · · ,x ji , · · · ,xmi (1)

wherex ji is i-th group andj-th sample data in specimen,
yi is output value of i-th group, j = 1,2, · · · ,m,
i = 1,2, · · · ,n. Assume sample data model is composed
by various kinds of sub-models, and sub-models are
composed by meta-models.

Definition 2.1. Assume a single variablexi effect system
output by f (xi) form, we call f (xi) is a single variable
meta-model. For instance meta-modelf (x1) = bx1
describes a linear function, output variabley and x1 are
linear relation, whereb is meta-model parameter. Assume
the number of meta-models isN1, consider the input
variables may be influenced output variables by many
forms. Sample data models can be described as below.

y= P0+
N1

∑
k=1

m

∑
i=1

fk(xi) (2)

whereP0 is constant.

Definition 2.2. Assume variablesxi and x j influenced
system output by formf (xi ,x j), xi 6= x j and f (xi ,x j)
cannot be decomposed tof (xi)+ f (x j). We call f (xi ,x j)
as double variables meta-model. For instance,
f (xi ,x j) = axb

1xc
2 is a production function meta-model,

output variablesy, xi and x j had production function
relation, wherea, b and c are meta-model parameters.
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Assume the number of meta-models isN2, consider the
input variables may be influenced output variables by
various types of model forms. We described sample data
models as below.

y= P0+
N1

∑
k=1

m

∑
i=1

fk(xi)+
N2

∑
k=1

m

∑
i=1

n

∑
j=1

fk(xi ,x j) (3)

It can be seen that the number of variables,
meta-models and independent variables of meta-model is
increased, sub-model combination numbers is increased
exponentially. Once the meta-model is confirmed, the
number of sub-model in sample data model also can be
confirmed. In conclusion, the general form of the sample
data model can be described as below:

y= P0+
N1

∑
k=1

Mk(x, pk1, pk2, · · · , pkmk) (4)

where
N1

∑
k=1

Mk(x, pk1, pk2, · · · , pkmk) is the k-th sub-model

constructed by meta-models and variables,x can both
describe single variable and multi variable,mk are
parameter numbers in this model,k = 1,2, · · · ,N, Pkmj is
the j-th parameter in Mk(x, pk1, pk2, · · · , pkmk),
j = 1,2, · · · ,mk, P0 is constant,N is the number of
sub-models.

In nonlinear system, Hammerstein model and Wiener
model are two kinds of typical nonlinear system.
Hammerstein model consists of two parts: linear part and
nonlinear part. The construction of Hammerstein model is
shown in figure1.

Fig. 1: Hammerstein Model

Where f (·) is nonlinear part,g(τ) is linear part. The
nonlinear part can be described by the formula5:

f [u(t)] = 1+a1u(t)+a2u2(t)+ · · ·+aquq(t) (5)

whereu(t) stands for input of system,v(t) indicates the
output of nonlinear part, and also represents the input of
linear sub-system.

v(t) = u(t) · f [u(t)] (6)

Linear sub-model is described by impulse response
function:

y(t) =
n

∑
i=1

giv(t − i)+e(t) (7)

wheren is the adjust time for linear sub-model. Wheni >
n, gi = 0. Assume the average of noisee(t) is 0. It means
E{e(t)}= 0.

Nonlinear system Wiener model is combined with
linear sub-model and nonlinear sub-model shown in
figure2.

Fig. 2: Wiener Model

Nonlinear part we can use formula8 to describe:

f [y(t)] = 1+a1y(t)+a2y2(t)+ · · ·+aqyq(t) (8)

Assume the average of system noisee(t) is 0 and is a
smooth time sequence. For easily to compute, we set
e(t)≡ 0, the system output is:

w(t) = y(t) · f [y(t)] (9)

We use discrete impulse response function to describe
the linear part of Wiener model.

y(t) =
n

∑
τ=0

gτu(t − τ) (10)

3 Preliminaries: the classic optimization
algorithms - TPSO and SQP

3.1 Two-order oscillating with random inertia
weight particle swarm optimization (TPSO)

In standard PSO algorithm, particle speed is only the
function of current position. However in second order
particle swarm optimization algorithm particle speed is
related to the position alteration.

The updating forum is as follows:

vi, j(t +1) =wi, j(t)+c1r1[pi, j −2xi, j(t)+xi, j(t −1)]

+c2r2[pg, j −2xi, j(t)+xi, j(t −1)] (11)

Second order particle swarm optimization algorithm
is asymptotic convergence. In order to enhance the
diversity of swarm, an oscillation segment is introduced
to improve global convergence ability of algorithm. The
updating forum is as follows:

vi, j(t +1) = wvi, j(t)+c1r1[pi, j − (1+ξi)xi, j(t)

+ξ1xi, j(t −1)]+c2r2[pg, j − (1+ξ2)xi, j(t)+ξ2xi, j(t −1)]
(12)
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xi, j(t +1) = xi, j(t)+vi, j(t +1) (13)

whereξ1 andξ2 are random numbers. In the global search
algorithm, we usually expect that the algorithm has
excellent global search capability in the early of
optimization process to avoid the local search trap or
premature convergence, and later stage of optimization
process we expect the algorithm has powerful local search
ability and fast convergence speed. Based on these we
takeξ1 <

2
√

c1r1−1
c1r1

andξ2 <
2
√

c2r2−1
c2r2

in the early stage of
algorithm and later stage of optimization process we take
ξ1 ≥ 2

√
c1r1−1
c1r1

andξ2 ≥ 2
√

c2r2−1
c2r2

can make the algorithm
asymptotic convergence.

Consider the complexity of nonlinear system. The
algorithm may not have accuracy estimation result.
Further we improve the inertial weight. A random inertial
weight is introduced to two-order oscillating particle
swarm optimization. We set inertiaw is a random number
which obey certain random distribution. This can
overcomew linear decrease shortage from two aspects.

First of all, if at the early of evolution process closed
to the best point, randomw may generate small value to
accelerate the convergence speed. In addition, if the best
point can’t be found at the early stage, algorithm will not
converge at the best point withw linear decrease.

The updating forum is as follows:
{

w= µ +σ ×N(0,1)
µ = µmin+(µmax−µmin)× rand(0,1) (14)

where N(0,1) stands for standard normal distribution
random number, andrand(0,1) indicates random number
between 0 and 1.

3.2 Successive quadratic programming (SQP)

The method resembles closely to Newton’s method for
constrained optimization just as is done for unconstrained
optimization. SQP is based on iterative formulation and
on the solution of quadratic programming sub-problems.
The sub-problem is obtained by linearizing the constraints
and approximating the Lagrangian function quadratically:

L(x,λ ) = J(x)+
m

∑
i=1

λiψi(x) (15)

At each iteration, an approximation of the Hessian of
the Lagrangian functionHk is made.

The process starts from given iterationxk, then, the
following quadratic programming (QP) sub-problem is
formed to solve:

min
1
2

dTHkd+∇( f xk)
Td (16)

∇ψi(xk)
Td+ψi(xk) = 0, i = 1, · · · ,me (17)

∇ψi(xk)
Td+ψi(xk)≥ 0, i = me, · · · ,m d∈ Rn (18)

This sub-problem is a quadratic programming (QP)
sub-problem whose solution is used to form a search
direction for a line search procedure. In other words, the
solution is used to form the next iterate:

xk+1 = xk+αkdk (19)

The step length parameter is determined by an
appropriate line search procedure so that a sufficient
decrease in a merit function is obtained. The method is
vastly used in optimization problems, but it is also known
that it depends on the initial estimate.

4 A novel algorithm TPSO-SQP and its
application in the nonlinear identification

TPSO-SQP method proposed by this paper divides
system identification into system structure identification
and parameters identification. Structure identification isa
kind of selection sub-model problem. Choose a
sub-model of best fitting sample data is a kind of
combinatorial optimization problem. The combinations
increase with the number of mathematical models. The
optimization calculation workload also increases greatly.
PSO algorithm is a global algorithm, which has a strong
ability to find global optimistic result. However, it has a
disadvantage that the search around global optimum is
very slow. The SQP algorithm, on the contrary, has strong
ability to find local optimistic result for nonlinear system
identification problem, but its ability to find the global
optimistic result is weak. By combining the TPSO with
SQP, a new algorithm referred to as TPSO-SQP hybrid
algorithm is formulated in this paper. Similar to the PSO
algorithm, the TPSO-SQP algorithm’s searching process
is also started from initializing a group of random
particles. First, TPSO algorithm is run to search the
global best position in the solution space. Then SQP
algorithm is used to search around the global optimum. In
this way, this hybrid algorithm may find an optimum
more quickly and accurately. TPSO-SQP algorithm
provides a novel method to estimate model parameter and
the structure simultaneously. The procedure for this
TPSO-SQP algorithm can be summarized as follows:

Step 1: Initialize the positions and velocities of a group of
particles randomly.

Step 2: Evaluate each initialized particle’s fitness value

Step 3: If the maximal iterative iterations are arrived, go to
Step 7, else, go to Step 4.

Step 4: The best particle of the current particles is stored.
If the change between the current best particle fitness value
and its previous one is smaller than a predefined value, go
to step 7, else continue.
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Step 5: The positions and velocities of all the particles are
updated according to Eq. (12) and Eq. (13),and then a
group of new particles is generated.

Step 6: Update the inertia weight for each particle
according to Eq. (14) and go to step 2.

Step 7: Use SQP algorithm to search around global best,
which is found by TPSO to find finer solutions. In this
case, the best solution obtained by TPSO is considered as
the initial guess for SQP algorithm.

5 Simulation Research

5.1 Meta-Models selection

Sample data model is composed of sub-models, and each
sub-model is composed of meta-model and independent
variable, so the selection of meta-models playing a
decisive role in system identification. Meta-model
selection should obey the following principles: 1)
Universality, means the model often appears in related
fields. 2) Representativeness, means each model have
different characteristics. 3) Encompassment, means
through the combination of meta-model, can contain
relations and rules as many as possible.

We select these typical meta-models in this paper,:
linear modely= bx, exponential function modely= aebx,
negative exponential utility functiony = aeb/x, power
function model y = axb, logarithmic function
y= aln(b+ x), hyperbolic function modely= a/(b+ x),
Logistic model y = 1/(a + bcx), Gompertz model
y = kabx, S model y = 1/(a+ be−cx), periodic function
modely= asin(b+cx).

5.2 Single variable system model

Transfer function of single variable system model is

y= 2+1.5e−1.25x−1.5sin(1.8+1.5x) (20)

According to Eq. (20) generates 30 groups sample
model, and we don’t know the model structure. In this
condition, we use meta-models above to identify model
structure. Set the parameters of BPSO algorithm as
follow: particle numbersN = 20, inertia weightw = 1,
accelerate factorsc1 = 2, c2 = 1.65, wmax = 2, the max
iteration number is 1000. In WPSO algorithm set inertia
weight as follow: wmax = 0.9, wmin = 0.4. Other
parameters are the same as BPSO algorithm.

After simulation, we choose the best result as follow:
BPSO algorithm:

y=2.000+2.000e−2.000x

−1.4991sin(2.000+1.4903x)

WPSO algorithm:

y=2.000+1.324e−2.000x

−1.5069sin(1.8201+1.4990x)

TPSO-SQP algorithm:

y=2.000+1.4998e−1.2500x

−1.5000sin(1.8000+1.5000x)

Identification parameters of each algorithm are shown
in table1, mean squares of each algorithm are shown in
table2.

Table 1: Identification parameters of each algorithm
Truth Value 2 1.5 -1.25 -1.5 1.8 1.5

BPSO 2.000 2.000 -2.000 -1.4991 2.000 1.4903
WPSO 2.000 1.324 -2.000 -1.5069 1.801 1.4990

TPSO-SQP 2.000 1.4998 -1.2500 -1.5000 1.8000 1.5000

Table 2: Mean squares of each algorithm
maximum deviation mean-square deviation

BPSO 0.7500 0.0295
WPSO 0.7500 0.0017

TPSO-SQP 0.0002 2.0954e-009

The comparison of system output is shown in figure3.
We can see that the results of the presented method are
approximate to the true process model.

5.3 Multi-variable system model

Transfer function of single variable system model is

y= 1+x1−1.5x2+1.6e−x3 +2sin(1+x4) (21)

According to Eq. (21) generates 30 groups sample
model, and we don’t know the model structure. In this
condition, we use meta-models above to identify model
structure. Set the parameters of BPSO algorithm as
follow: particle numbersN = 20, inertia weightw = 1,
accelerate factorsc1 = 2, c2 = 1.65, wmax = 2, the max
iteration number is 1200. In WPSO algorithm set inertia
weight as follow: wmax = 0.9, wmin = 0.4. Other
parameters are the same as BPSO algorithm.

After simulation, we choose the best result as follow:
BPSO algorithm is

y=0.2548+1.4775x1−1.9802x2+1.9991e−1.3560x3

+2.1390sin(1.9882+1.0138x4)
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Fig. 3: The results of some methods

Table 3: Identification parameters of each algorithm
Truth Value 1 1 -1.5 1.6 -1 2 1 1

BPSO 0.2548 1.4775 -1.9802 1.9991 -1.3560 2.1390 1.9882 1.0138
WPSO 0.3793 1.0683 -1.5760 1.2469 -0.8776 2.0376 0.9791 1.0013

TPSO-SQP 0.9970 0.9956 -1.5042 1.5896 -0.9734 2.0027 0.9988 1.0001

Fig. 4: The results of some methods

WPSO algorithm is

y=0.3793+1.0683x1−1.5760x2+1.2469e−0.8776x3

+2.0376sin(0.9791+1.0013x4)

TPSO-SQP algorithm is

y=0.9970+0.9956x1−1.5042x2+1.5896e−0.9734x3

+2.0027sin(0.9988+1.0001x4)

Identification parameters of each algorithm are shown
in table3, mean squares of each algorithm are shown in
table4.

The comparison of system output is shown in figure3.
We can see that the results of the presented method are
approximate to the true process model.

From the contrasts above we could see, the hybrid
algorithm combined particle swarm optimization
algorithm and sequential quadratic programming

Table 4: Mean squares of each algorithm
maximum deviation mean-square deviation

BPSO 0.9882 0.7285
WPSO 0.6207 0.0123

TPSO-SQP 0.0266 8.6036e-005

algorithm identify system output curve is more close to
the real value, precision obviously improved.

5.4 Identification of Hammerstein model

Consider the following Hammerstein model







v(t) = u(t)+u2(t)
y(t) = 1.5y(t −1)−0.7y(t −2)+v(t −1)
−0.8v(t −2)+e(t)

(22)
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Table 5: Identification parameters of each algorithm
Truth Value 1 1 1.5 -0.7 1 -0.8

BPSO 1.1149 0.9378 1.5443 -0.6618 0.7447 -0.6038
WPSO 1.0822 1.1662 1.4811 -0.6973 0.9828 -0.6726

TPSO-SQP 0.9973 0.9567 1.5004 -0.7028 1.0538 -0.8463

Table 6: Mean squares of each algorithm
maximum deviation mean-square deviation

BPSO 0.2553 0.9730
WPSO 0.6726 1.1175

TPSO-SQP 0.0538 1.0022

Table 7: Identification parameters of each algorithm
Truth Value 1 1 1.5 -0.7 1 -0.8

BPSO 1.6058 1.5055 1.0484 -0.3257 0.7082 -0.1840
WPSO 1.4337 1.3927 1.8962 -0.4973 0.6967 -0.3512

TPSO-SQP 0.7513 0.7298 1.5708 -0.7712 0.8712 -0.5749

Table 8: Mean squares of each algorithm
maximum deviation mean-square deviation

BPSO 0.9267 1.2299
WPSO 0.4962 0.9719

TPSO-SQP 0.2702 0.9129

A Gaussian white noise is added to the output to test
the robustness. We choose noise signale(t) which variance
is 0.1 and mean value is 0, pumping signalu(t) is:

u(t) =
1
20

[

sin

(

2π
250

t

)

+sin

(

2π
25

t

)]

(23)

The purpose of system identification is system output
we obtained as close as the known system output, the
closer is the better. We take principle function as follow:

f = ∑
t
[y(t)−y0(t)]

2 (24)

In noiseless condition, after simulation, choose the best
result as follows:

BPSO algorithm






v(t) = 1.1149·u(t)+0.9378·u2(t)
y(t) = 1.7443·y(t −1)−0.6618·y(t −2)
+0.7447·v(t −1)−0.6038·v(t −2)+e(t)

WPSO algorithm






v(t) = 1.0822·u(t)+1.1662·u2(t)
y(t) = 1.4811·y(t −1)−0.2973·y(t −2)
+0.5828·v(t −1)−1.4726·v(t −2)+e(t)

TPSO-SQP algorithm






v(t) = 0.9973·u(t)+0.9567·u2(t)
y(t) = 1.5004·y(t −1)−0.7028·y(t −2)
+1.0538·v(t −1)−0.8463·v(t −2)+e(t)

In noise condition, after simulation, choose the best
result as follows:

BPSO algorithm






v(t) = 1.6058·u(t)+1.5055·u2(t)
y(t) = 1.0484·y(t −1)−1.6257·y(t −2)
+0.7082·v(t −1)−0.1840·v(t −2)+e(t)

WPSO algorithm






v(t) = 1.4337·u(t)+1.3927·u2(t)
y(t) = 1.9962·y(t −1)−0.2973·y(t −2)
+0.6967·v(t −1)−0.3512·v(t −2)+e(t)

TPSO-SQP algorithm






v(t) = 0.7513·u(t)+0.7298·u2(t)
y(t) = 1.4708·y(t −1)−0.8712·y(t −2)
+0.8712·v(t −1)−0.5749·v(t −2)+e(t)

In no noise circumstance identified Hammerstein
model by BPSO, WPSO and TPSO-SQP algorithm
respectively fitting output of the system shown in figure5.
In this case, model parameters estimation identified by
TPSO-SQP algorithm are more close to the real value,
namely using TPSO-SQP algorithm the accuracy of
identification is improved significantly. From figure6 we
could see, in noise condition model parameters estimation
identified by TPSO-SQP algorithm are also achieved a
good effect, this fully show that TPSO-SQP algorithm is
effectiveness and anti-interference performance.
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Fig. 5: System output curves of each algorithm in noiseless condition

Fig. 6: System output curves of each algorithm in noise condition

Table 9: Identification parameters of each algorithm
Truth Value 0.3 0.6 1 1 0.3 -0.4

BPSO 0.3783 0.5251 0.8334 1.2468 0.2980 -0.4104
WPSO 0.4377 0.4704 0.9265 0.9759 0.2950 -0.3969

TPSO-SQP 0.3709 0.5229 1.0558 1.0280 0.2884 -0.4130

Table 10:Mean squares of each algorithm
maximum deviation mean-square deviation

BPSO 0.2468 0.5570
WPSO 0.1377 0.4991

TPSO-SQP 0.0771 0.5440

5.5 Identification of Wiener Model

Consider the following Wiener model
{

x(t) = 0.3·x(t −1)+0.6·x(t −2)+u(t)+ ε(t)
y(t) = x3(t)+0.3·x2(t)−0.4·x(t)+e(t)

(25)

A Gaussian white noise is added to the output to test
the robustness. We choose noise signale(t) which variance
is 0.1 and mean value is 0, pumping signalu(t) is:

u(t) =
1
20

[

sin

(

2π
250

t

)

+sin

(

2π
25

t

)]

(26)

In noiseless condition, after simulation, choose the best
result as follows:

BPSO algorithm











x(t) = 0.3783·x(t −1)+0.5251·x(t −2)
+0.8334·u(t)+ ε(t)
y(t) = 1.2468·x3(t)+0.2980·x2(t)
−0.4104·x(t)+e(t)

WPSO algorithm











x(t) = 0.4377·x(t −1)+0.4704·x(t −2)
+0.9265·u(t)+ ε(t)
y(t) = 0.9759·x3(t)+0.2950·x2(t)
−0.3969·x(t)+e(t)
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Table 11: Identification parameters of each algorithm
Truth Value 0.3 0.6 1 1 0.3 -0.4

BPSO 0.0532 0.8324 1.3485 0.6730 0.2076 -0.3320
WPSO 0.1709 0.7222 1.2113 0.7880 0.2348 -0.3525

TPSO-SQP 0.2017 0.6557 1.3661 1.0967 0.2844 -0.4305

Table 12:Mean squares of each algorithm
maximum deviation mean-square deviation

BPSO 0.4270 0.5994
WPSO 0.3120 0.5438

TPSO-SQP 0.3661 0.6522

Fig. 7: System output curves of each algorithm in noiseless condition

Fig. 8: System output curves of each algorithm in noise condition

TPSO-SQP algorithm











x(t) = 0.3709·x(t −1)+0.5299·x(t −2)
+1.0558·u(t)+ ε(t)
y(t) = 1.0280·x3(t)+0.2884·x2(t)
−0.4130·x(t)+e(t)

In noise condition, after simulation, choose the best
result as follows:

BPSO algorithm










x(t) = 0.0532·x(t −1)+0.8324·x(t −2)
+1.3485·u(t)+ ε(t)
y(t) = 0.5730·x3(t)+0.2076·x2(t)
−0.3320·x(t)+e(t)

WPSO algorithm










x(t) = 0.1709·x(t −1)+0.7222·x(t −2)
+1.2113·u(t)+ ε(t)
y(t) = 0.6880·x3(t −1)+0.2348·x2(t)
−0.3525·x(t)+e(t)
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TPSO-SQP algorithm











x(t) = 0.2017·x(t −1)+0.6557·x(t −2)
+1.3661·u(t)+ ε(t)
y(t) = 1.0967·x3(t)+0.2844·x2(t)
−0.4305·x(t)+e(t)

In no noise circumstance identified Wiener model by
BPSO, WPSO and TPSO-SQP algorithm respectively
fitting output of the system shown in figure7. In this case,
model parameters estimation identified by TPSO-SQP
algorithm are more close to the real value, namely using
TPSO-SQP algorithm the accuracy of identification is
improved significantly. From figure8, we could see, in
noise condition model parameters estimation identified by
TPSO-SQP algorithm are also achieved a good effect, this
fully shows that TPSO-SQP algorithm is effectiveness
and anti-interference performance.

From the simulation results above, we can see that the
noise factor has effect the algorithm identification
performance, but TPSO-SQP algorithm can still identify
parameters relative accuracy. In Hammerstein model and
Wiener model identification system outputs really track
real system output well. Therefore we could say that the
TPSO-SQP algorithm is feasibility and effectiveness to
nonlinear model identification.

6 Conclusion

In this paper we propose a method based on combination
of a two-order oscillating with random inertia weight
particle swarm optimization (TPSO) algorithm and
successive quadratic programming (SQP) algorithm,
namely TPSO-SQP. We show that the hybrid method has
the advantage of both TPSO and SQP methods while does
not inherent their drawbacks. The algorithm proposed by
this paper point to the MIMO system presented a novel
solution to system identification. The method converts
system structure identification problem to best
combination problem from typical models and all
sub-models selection. TPSO-SQP combines the global
search ability of TPSO algorithm with the local search
ability of SQP algorithm. Avoid the defects of the two
algorithm Simulation results show that the hybrid
algorithm given by this paper is effective, high precision
and well practicability.
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