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Abstract: In this paper, the frequencies estimation of two-dimensional (2-D)rsupesed exponential model in zero-mean
multiplicative and additive noise which is stationary, is considered by a atatipnally efficient statistics based iterative algorithm.
The model we considered is a more general evanescent part ofatgtrandom field as well as an important model in statistical signal
processing and texture classifications. It is observed that the estimatmsstent and works quite well in terms of biases and mean
squared errors. Moreover, the asymptotic distribution of the estimatotféd frequencies is multivariate normal and the estimators
attain the same convergence rate as the Least Squares Estimator (le8Hitive noise. Finally, the effectiveness of the algorithm and
the asymptotic results of the estimators for finite sample is verified via somenzal experiments.

Keywords: 2-D superimposed exponential model, modified three step iterativathigolLeast squares estimator, convergence rate,
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1. Introduction where the driving processe(m,n)(k = 0,1,---,p)}
are all independent identically distribution (i.i.d.) chom

We consider the following 2-D superimposed exponentialvariables with mean zero and variance?. The

model in zero-mean stationary multiplicative and additive coefficients{ax(s,1)}(k = 0,1,---,p) are all absolutely

noise: summable i.e.
P . 0o +o00
X(mn) =3 B(mn)dsmurd L ymn), (1) Y Y ladsh) < +e. @)
S=—00|=—00

k=1

In this paper, we concentrate on the estimation of the
frequencies(uy, k), given a sample of siz& and N,
namelyx(1,1),...,x(M,N). The number of components

p is assumed to be known in advance. We make the
following assumptions:

where {x(mn), m=12....M, n=12,...,N} are
observed values,= v/—1, {ux, %} is the unknown 2-D
frequency pair and both of the frequencies lig0n2m).

@ € [0,2m) is the unknown phase. Multiplicative noise
{B«(m,n)} and additive noise{y(mn)} are both

stationary real random variables as follows: ()The driving process of multiplicative and additive
noise i.e{&(m,n)}(k > 0) and{&(m,n)} have finite

oow fourth order moment and they are independent with
Bk(mv n) :kzm|zziwak(s,l)gk(mis7nil)’ (2) eaCh Othel’;
+oo oo . : ;
_ | —sn—l 3 (i) The frequency pairs satisfyu;,vj) # (U, Vi), (Uj,Vj)
vm.n) kzmzz,ma()(s’ Jeo(m=s,n=1), ) # 2(Uk, k), (U +Ur, Vic+v) # (2uj, 2vp) for different
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k j,1; however, there are so many parameters to be estimated
simultaneously that the computation is complex and the
(ii)0 < limSURningm N} 40 M/N < 00, precision is limited. It is necessary to find a more accurate

o ~and computationally efficient algorithm for the estimation

It can be seen from assumption (i) that the multiplicative of the frequencies of the evanescent component. It is
noise and additive noise are independent. It is also noteginown that both maximum likelihood estimator (MLE)
that the assumption (ii) is some critical, however, it can be[14] and LSE P,10,15 have excellent statistical
relaxed (see Remark 1). If assumption (ii) is not satisfied,performance when there exists only harmonic and purely
the proposed algorithm is still feasible, but the asymptoti indeterministic component in the random field, and MLE
distribution of the estimator for frequencies will be js equivalent to LSE when there is only additive Gaussian
changed accordingly. noise. The orders of convergence rate of the LSH R}

Estimation of 2-D frequencies from a finite subset of andfv,} are Op(M~3/2N-%/2) and Op(M~1/2N-3/2)
data in noise is an important problem in many practicalrespectively (her®p(.) means bo-unded in probability),
applications, such as joint frequency-angle estimationyhich are expected to be the be&0], But their high
2-D spectral estimation, geophysics, radar imaging antcomputation burden limits their applications in practice.
texture classificationsl[2]. In practical the noise tends to  Therefore, some sub-optimal approaches with less
be color B,4] which make the estimation for the amount of computation and some degradation in
parameter to be more difficult. The parameter estimatioyerformance, were studied extensively, such as the
of 2-D superimposed exponential model in zero-meansypspace-based methods (e.g. 2-D ESPRIT-type method

multiplicative and additive noise is a special case of the[13, MEMP method [L6], 2-D Prony method 17] and
general problem of estimating the parameters of anCMP method L8)).

complex-valued homogeneous random field with mixed . . . )
spectral distribution from a single observed realization o However, the optimal choice is to find a
it [5,6]. According to the Wold decomposition theory of computationally efficient LSE equivalent algorithm for

[7], any 2-D regular and homogeneous discrete randonhis purpose. Recently1p] generalized the seven step
field can be represented as a sum of two mutually'terat've (SSI) algorithm 19 and three step iterative

orthogonal components: a purely indeterministic field and(TS!) algorithm P0,21,22] to estimate the parameters of
a deterministic one. The deterministic component is2-D harmonic in additive noise. It was observed that both

further orthogonally decomposed into a harmonic fieldSS! and TSI estimators for the frequencies of 1-D
and a countable number of mutually orthogonal harmonics attain the same convergence rate as LSE and

evanescent fields. The purely indeterministic componenf!@ve an asymptotic normal distribution while TSI is more
has a unique white innovations driven moVing_(,jweragecomputatlonalIy efficient than SSI. It must be pointed out

representation which is stationary as the second term ofat [20,21] considered the parameter estimation of 1-D
model (1) we considered, where the evanescenf‘armon'c, wlth nonzero mean amphtude, in a}ddmve noise
component is a special case of the first term of model (1)21d multiplicative noise respectively2g] considered the

although the autoregressive (AR) proceSkdonsidered ~Parameter estimation of 1-D harmonic with zero mean
can be non-stationary. multiplicative and additive noise. The three estimators

It can be seen that model (1) is a non-stationary mode?bove laid a good ba5|s_ for t_he .TSI estimation c.’f
and the parameter estimation for non-stationary model idarameters of 2-D harmonic, which is the determlmlstlc
a harder problem than for stationary mod8]. [Much part of a 2-D regular and homogeneous random field.
work focus on the parameters estimation of homogeneou%’I
random field consisting of harmonic field and purely 0
indeterministic field i.e. harmonic or superimposed
exponential model in additive noised,10,11,12,13]
while little attention has been paid to estimate the
parameters of homogeneous random field consisting o
evanescent field and purely indeterministic fiek]. sed
a two-stage procedure to jointly estimate the parameter
of the harmonic, evanescent components of a real-value
homogeneous random field. At the first stage, a
suboptimal initial estimate for the parameters of the
spectral support of the evanescent and harmonic But no where, at least not known to the authors, the
components is obtained by solving a set of TSI estimator has been considered for the frequencies of
overdetermined 2-D normal equations of a high-orderrandom field consisting of evanescent and purely
linear predictor of the observed data. Then the initialindeterministic component which are both constituted of
estimators were refined by iterative maximization of the stationary random processes. Stimulated by the work of
conditional likelihood of the observed data. Although a [5], [12] and [23], in this paper, we use a modified TSI
separable LSE procedure was utilized in the second stagéMTSI) algorithm which is based on a two-stage

ost recently, 23] further developed the TSI algorithm
estimate the frequencies of random field consisting of
evanescent and purely indeterministic component which
are both constituted of i.i.d. random processes. It is
observed that the estimators are consistent and attain the
game convergence rate as LSE. However, the evanescent
and purely indeterministic component are more widely to
Qe described as stationary processB29]. So it is
fjecessary to consider the parameters estimation when the
evanescent and purely indeterministic component are
constituted of stationary random processes.
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procedure to estimate the frequencies of harmonics irfollows:

zero-mean stationary multiplicative and additive noise, a

well as examine the efficiency of the MTSI algorithm for 1M N B

model (1) and study the asymptotic behaviors for the fluv)=ggl 2 > X (mnje mutnv)| - (5)
MTSI estimators of frequencies. It is important to m=1n=1

observed that the TSI algorithm ir1Z] considered the ) . . o
frequencies estimation of harmonic and purely Although Fourier transformation is efficient for the

indeterministic component and can not be used directlyfféduency estimation of stationary sign@#]. It can be
for the frequency estimation of evanescent and purelyoPServed that Fourier transform can also be used for the
indeterministic  component  under  zero  mean initial frequency estimator of non-stationary signas],
multiplicative and additive noise. It is also noticed that €SPecially for the non-zero mean exponential signal
although P3] also generalized the TSI algorithm to Model R1]. Since{B(m,n)} and{y(m,n)} in model (1)
estimate the frequencies of evanescent and purelf'® both i.i.d. zero-mean random processes and the square
indeterministic component under zero-mean ©f the observed.valu.es in model (1) can be_ seen as
multiplicative and additive noise condition, however, the cOMplex harmonics with non-zero mean amplitude and
evanescent and purely indeterministic component ardwice of the original frequencies and phases, so the
considered as i.i.d. random processes which are nogStimation of frequencies can also be obtained by
suitable for the more general stationary processes>duaring thezobserved. values. In practice, we employ the
Moreover, although the squaring of the observed values ir?-P FFT ofx“(m, n) to find thep local maxima off (u,v)
[23] can make the initial estimator and the iterative and take the half values of them as the initial estimates. It
process feasible, the stationary property of the evanescefs 0bserved thatlfZ] also used a periodogram based initial
and purely indeterministic component seems to decreas@Stimator. Different from (5), 12] used an average
the performance of the TSI algorithm severely, thus&Stimator of the 1-D periodogram maximizers of each
makes the consistency and asymptotic normality propertyolumn of the 2-D observed values while we use the 2-D
for the TSI estimators of frequencies in our consideredPeriodogram maximizers as the initial estimator.
model not immediate in this case. The estimation Itis known thatthe 2-D periodogram maximizers over
procedure in this paper is divided into two stages. At theFourier frequencies do not generally provide the accuracy
first stage, we use the half value of 2-D periodogramof the estimators up to the ord@,(M~*) andOp(N )
maximizers over Fourier frequencies as the initial for the frequenciesi; andv; respectively. To overcome
estimators. At the second stage, a statistics based thrdBis problem, we employ a varying sample size technique
iterative process is utilized to refine the initial estimtato ~ as in [LZ] in the following estimation, i.e. increasing the
It is observed that if the initial estimators are accurate upsample size gradually with the increase of steps.
to the ordeiOp(M~1) andOp(N 1) for the frequencies;
andv; respectively, then the MTSI algorithm produces
fully efficient estimators of frequencies with convergence .
rate Ofop(M—S/ZN—l/Z) andop(M—l/ZN—s/z) for u; and 3. MTSI estimator
vj respectively, which are the convergence rate of the
LSE’s [9] in additive noise. Since the MTSI algorithm |n this section, a MTSI algorithm similar with that i2J]
needs only three steps to converge. So it isare proposed to increase the accuracy of the frequencies
computationally efficient and can be served as onlinein zero-mean stationary multiplicative and additive noise
implementation. Then the asymptotic behavior of the MTSI estimator of
The rest of the paper is organized as follows. Infrequencies under this condition is analyzed. For
Section 2, we give the initial estimators of frequenciesconvenience, in the following we note = (uy,...,up),
based on the 2-D periodogram. The proposed algorithny = (V1,...,Vp), U = (ly,....0p), V = (V1,...,¥p),
and the asymptotic distribution of the estimator is 0 = (0,...,0p) andV = (Vy,...,Vp) as the vectors of the
presented in Section 3. In Section 4, we present som&equency pairs to be estimated, the vectors of frequency
numerical experiments to observe the efficiency of thepairs before iteration and the vectors of frequency pairs
algorithm. Finally, we conclude the paper in Section 5. after iteration respectively. Given a consistent estiméto
All the proofs are provided in the Appendix. and¥ of model (1), we computé andV as follows:

. . b6
0 =0+l MAmN© Cmn],

. . 6
2. Initial estimator V=V0+ WI MBmN©CumN], (6)
wherel n{ . ] denotes the imaginary part of a complex
We use the 2-D periodogram maximizers at the Fouriemumber and® denotes Hadamard producq. Aun,
frequencies as the initial estimator, which is defined asBy n and Cyn are vectors with lengttp and the j-th
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elements oAy n, Bun andCy n are as follows: and if (ur 4 uy, vy +Vvy) = (2uj,2vj) then the last term in
M N M (31)jjwill be changed to:
AM,N(j) = z z Xz(m,n)(m_E)e*Zi(Gjm*Fij’ 400 400 +oo +00
mMm=1n=1 { ; g z a(s,t)a(s,t)
(1) Tl<kTzy|s== °°t:°°d——oot’
M N
N 9 (13, 5. (Ue+up —2u;i) (Vv —2v;)
Bun(j) ZXZ(m,n)(nfE)e 2A(Gmin) gl (s+8)+ L (4] GEGF
m=1n=1
®) ,
mN(J) n;nzlx( ) ©) sEwtEng Ewr Lo o

The precision can be improved bg)(step by step from x sinf (@ + @y — 299)}

any consistent initial estimatdr and V. The asymptotic [ 4o 4o 2
distribution and the convergence rate for the estimators of / z (s I)} 01-4 .
frequencies after three iterations ileandV are provided [s=—|="cw

in the following theorem:

The detailed procedure of the two-stage algorithm is

Theorem 1If 0 — u = OpM 19, and described as the following. We start with the initial
7—v=0p(N" 1- ) , whered < (0,1, then estimates of the 2-D perlodogram. maximizers and
improve it step by step by the recursive process above.
(a) 0 — u= Op(M~1-20)1 , 0 —v = Op(N~129),, The mth step estimator&™ and 9™ (m=1,2,3) are
for0<d <3, computed from thém— 1)-th step estimatorg™) and
L P (™1 respectively by the formulas as follows:

(b) [M%N%(a_u),MzN%(o_v)] Z, .
am — gm-1) 4 7M2| MAMpNn © CMe N »
m

where | ¢ = om0 4 O | By © Cranel. (10)

Ej N
22= 20 (i =g - o m o
I where 0™ = (a7, ...,0y") and V" = (V7,..., V) are the

forj=1,2,---, p and estimators after thexth iteration, A, N (1), BMmNn(])
G andCw,, N, (j) can be obtained froni’f-(9) by replacing

o T ~ ~ A(m—1 —1

> ir= Hic M, N, G; and Vi with Mm, Np, ugm ) and vﬁ-m )

respectively. The detailed three-step iteration processii
for j # 1.1, denotes a p-order vector with its all elements follows:
to be 1..# denotes convergence in distribution. Step 1 Withm = 1, chooseM; = M%8 N; = N%8, (0 —
and¥(© = ¥, which are the initial estimates obtained
by the 2-D periodogram maximizer.

Remarklt can be seen from the Appendix that if the Note thatli —u = Op(M~1)I, = O (M 1= %)| and
assumption(ii) is not satisfied, the MTSI algorithm will be P P p P

ProofSee Appendix.

still efficient. But the diagonal term i&f; will change, i.e. 7 - v = Op(NYI, = Op(N; " )' p-  Taking
if (ur,vr) = 2(uj,Vvj) then the seventh term ify 1) j; will M; = MO8 N; = NO8, 0<°> =0 and¥© =¥ in (10),
be changed to: and applying part (a) of Theorem 1 , we obtain

: a® —u = 0pM. X F)1 = Op(M o)l
Cu— By 7
90 _v— OpINF 291 — Op(N- )|pp.

+00 -+00 —+o00

+00
> ar(sao(s,l')

{4

S=—0|=—0gd=—0|'=—wn
M o e e Step 2 Withm = 2, chooseM, = M%% and N, = N°°,
x O Sirt(@r — 20 +4§ z 3 z compute 0@ and U@ from 0@ and \Z<1>. Since
s 5wl S0y S al S 0 — oy = op(M*g)lp - op(lmz‘l‘?ﬂp and
(ug— 2”] Me-2v) o] 0 —y = ~5 N1
(s+s)+ 1+ 5242 Y v = Op(N 5) p=Op(N, " ®)lp, use part (a)
(s )ao(s’ )e' ’ % Uk} of Theorem 1 again, we have
400 400 ~2) 717% - _3
/Lzml_z_maj (s1) ] 9> 7@ —v =0p(N; " &)l = Op(N"2JI.
@© 2014 NSP
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00 00 2
3 S S a(s 1)eAluu)st )] -
Ej = a(s1) E(&c) — ok
2| i|s=—0l="w
2
A s (s, )ay(¢, ") dlbu) (&) ()] | 4
+4 a(s,Nak(s, Ok
k;j Sﬁz—mlfz—ws’ésl’fz—oo
+oo +00 2 +oo +oo 2
+4§_ ;ak (s.)a(s,! )eI[ZS(uk i)+ (vk—vj) (1411 o+ z (sl 2iujs+vil) [E(Eg)—ag]
S=—00|=—0o]|" S=—0|=—0c0
A S/ dluj(sts)+vi(1+1)] ’ Py +°° g[2su+vj(I+1")] ’ 4
+4 ag(s,1)ag(s, 1) ! oy +4 Zaoslao(sl) iV o
ﬁztﬂl:zfoos’;sl’fzw S=—00|=—oo|’
2
p 40 400 400 +oo (uy—2uj) (Vk 2vj)
+4Z z z z Z a(s.Nag(s,1")e { D (sre)+ B2 141 )] 2o
k=1 —00|=—0c0S=—00|'=—00
2
P p “+00 400 —+o00 00 (ugeup—2u) g)+("k+"l —2\/])<t+t/)]
4 ac(s.t)a(s,t')e [ 2 Ogaf b
ZZ S=— <>ot77t>os/7Z t’fZ K
Zas,l] ,er_{z Zasl}{z Zarsl}
S=—00|=—00 S=—00|=—00 S=—0|=—00
2
400 400 400 +o0 (uj—ur) (v Vr)
Gjr = -6 Z > z z aj(star(d,t')e [ )+ S ) 7
—oot=—00g = _oot/=—
Step 3 Withm= 3, chooseMnganng,:N,computa](3> It can be seen that a similar three-step iterative
and?¥® from 0@ and¥(@, apply part (b) of Theorem process is used irlP]. The difference lies in that we use
1, we have the varying sample on M and N simultaneously while

[12] just use the varying sample on M or N solely.
Moreover, the factor of the iterative term in this paper is
(MgN%(ﬂ_u)’M%N%(\’}_V)) ﬁJ;/zp (O, [Zl 0 D _different with that in L2] so as to deal with the estimation
0% of zero-mean multiplicative noise condition. It is
observed that if at any step, the estimators are accurate up
to the orderOp(M~1%) and Op(N~1-%) for u; and
vi(j = 1,...,p) respectively, the method provides

estimators with orders being improved @,(M~1-29)

Table 1: The average estimates of the Initial and MTSI estimator and Op(N’l’Z‘S) respectively for 0< 6 < % and if

based on 100 replications, as well as the corresponding SEs anﬁ < & < 1, then it provides the efficient estimators with

ASEs of the two frequency pairs when M=N=128 Convergence rate of Op(M*3/2N*1/2) and
oo ESTI Fri1 Fr12 Fr21 Fr22

PARA 0.50000 150000 060000 1eoooo Op(M YN"/2) for the frequency pairs. Comparing
INIT 0.49087 1.52171 0.58905 1.59534 with [23], it is observed that the MTSI algorlthm still

05 MTSI 0.50009 1.50002 059999 1.60001 Works well and the MTSI estimators for the frequency
SE 2.334e-4 2.2215e-4 1584e-4 1.65le-4 pairs have the same convergence rate as that of the i.i.d.
ASE  2.179%-4 2.1797e-4 1.555e-4 1.555e-4 noise condition.

PARA  0.50000 1.50000 0.60000  1.60000
INIT 049087 152170 058904 159534 RemarkThere are several other exponents we used above

1 MTSI 0.49999 150001 0.59997 1.60003 can be chosen so that the iterative process will converge
SE 2.826e-4 2.9262e-4 2.010e-4 2.124e-4 in three steps. In another word, they are not unique. For
ASE  2.720e-4 2.7200e-4 1.976e-4 1.976e-4 example another set of choices can kg = M%7
PARA 050000 1.50000  0.60000 1.60000 Nj; = NO75% M, = M%85 N, = N%85 and M3 = M,
INIT  0.49087 1.52170 0.58904 1.59534 N3 = N. It is not possible to choose a set of exponents to

1.5 MTSI 0.49994 1.50002  0.59999 1.60003 make the iterative process converge in less than three
SE 4.633e-4 4.3237e-4 2.584e-4 2.726e-4 gteps, but it is sure for several sets of exponents to take
ASE  3.503e-4 3.5039%-4 2.590e-4 2.590e-4 mgre than three steps to converge. It is also noted that we
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take the same set of exponents for the first and second
dimension. Actually, they can be different provided that
they can guarantee MTSI to converge in three steps.

4. Numerical experiment

In this section we present some numerical results to
observe how the proposed algorithm works and the
asymptotic results behave for finite sample sizes. We
consider the following model:

j(0.5M+1.5n+71/4
x(m,n) = Ba(m, n)e'( ) Figure 1: Plot of the 2-D periodogram function of the original
+ Bo(m, n)e (QEmHLEMT3) L vim ), (11)  observations for model() when (a) M=N=128 withop=1.5

where multiplicative noise{Bi(m,n)}, {B2(m,n)} and
additive noise{y(m,n)} are all MA processes whose
driving processes are{er;(mn)}, {e(mn)} and
{&(m,n)} respectively, which are all i.i.d. Gaussian
random variables with mean zero and variance 2, 3 an

Gg respectively. The structure df3i(m.n)}, {f2(m.n)} magnitude of the amplitude associated with each effective
and{y(m,n)} are as follows frequency and the noise level. From Figure 5-Figure 8, it
Bi(mn) = g1(m,n)+0.6e1(m—1,n—1), is quite clear that there are three peaks which include the
_ _ 1n_ one at (0,0) for Figure 5-Figure 8. Actually, (0,0) is a
Pa(m ) = £5(m.n) —04e(M—1,n—1), false frequency pair as the additive noise is real, thus
y(mn) = é(m,n) +0.5¢(m—1,n—1). cause the periodogram maximizer of the squared
Although the existing of the additive and multiplicative observations at (0,0). The remained two peaks are the plot
noise both decrease the performance of the estimatiomf the two pairs of frequencies to be estimated actually.
however, the multiplicative noise is also useful for
estimating the frequencies observed from Section 2 and

the proof of Theorem 1. To assess the sensitivity of the ble 2: Th .  the Initial and .
model to different noise levels, we fix the multiplicative |2P!€ 2: The average estimates of the Initial and MTSI estimator

noise level and plot three different additive noise level based on 100 replications, as well as the corresponding SEs and

namelygp= 0.5, 1 and 1.5. To present the consistency, WeASES of the two frequency pairs when M=N=256
EST Fril Fri2 Fr21 Fr22

take the sample sizes as M=N=128, 256 and 512. We also- %
— — ; PARA 0.50000 1.50000 0.60000 1.60000
take M=512, N=128 to examine the performance when M INIT 050314 149716 060132 159534

IS ”gte‘?}fa'ttot.’\" for the effici ftheinitial 05 MTSI  0.49999 149998  0.60000  1.60000
or illustration purpose for the efficiency of the initia SE 544665 573665 421365 3.0396-5

frequency pairs. It is known that the number of peaks in
he periodogram function plot roughly gives an estimate
f the number of frequencies. It depends on the

estimator, we plot the 2-D periodogram function of the ASE 5.449e-5 5.449e-5 3.889e-5 3.889e-5
original observations in Figure 1-Figure 4 for sample size PARA 050000 150000 060000  1.60000
(8) M=N=128, (b) M=N=256, (c) M=N=512 and (d) INIT 050314 149716 0.60132 159534
M=512, N=128 respectively. For comparison purpose, Wwe 1  MTS| 0.50000 1.50002 0.59999  1.59999
also plot the 2-D periodogram function of the squared SE 6.828e-5 7.476e-5 5.094e-5 4.947e-5
values of the original observations in Figure 5-Figure 8 ASE 6.800e-5 6.800e-5 4.941e-5 4.941e-5
for the considered model corresponding to the above PARA 0.50000 1.50000 0.60000 1.60000
sample size (a)-(d) respectively. The standard deviation o INIT 050314 1.49716 0.60132 1.59534
the additive noise is taken as 1.5 for all the cases. 1.5 MTSI 0.50002 1.49999 0.59999  1.60002
Comparing the corresponding Figure 1-Figure 4 with SE 8.779e-5 8.913e-5 6.438e-5 6.506e-5
Figure 5-Figure 8 for the same sample size, it is obvious ASE 8.759e-5 8.759e-5 6.476e-5 6.476e-5

that there is no peak in the plot of the periodogram of the

original observations at the real frequency pairs while the

squaring of the original observations makes the peakdNow for each sample size, we estimate the frequencies
obvious at the frequency pairs to be estimated. It isbased on the MTSI algorithm. In all cases we consider the
because the spectra of the observations has the sanperiodogram maximizer at the Fourier frequencies as the
magnitude at all the frequency pairs when theinitial estimator. We report the average estimates of the
multiplicative noise is zero-mean. However, the squaringtwo pairs of frequencies (Frl11, Fr12), (Fr21, Fr22) and

of the observations makes the magnitude much larger athe standard errors (SEs) over 100 replications. For
the frequency pairs to be estimated than at the othecomparison purpose, we also report the initial estimates
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as well as the true values of frequencies and the
corresponding asymptotic standard errors (ASESs). All the
estimators (ESTI) are reported in Tables 1-4 for the
average estimates and standard deviations of frequencies
of model (L1) corresponding to M=N=128, 256, 512 and
M=512, N=128 respectively, in Table 5 for the
covariances of Frll and Fr21, and in Table 6 for the
covariances of Fr12 and Fr22 when M=N=128, 256, 512
and M=512, N=128 respectively. In Tables 1-4 and for
eachay, the first row represents the true parameter values
(PARA) and the initial estimates are reported at the
second row (INIT), the third row represents the MTSI
estimates and the SEs of the MTSI estimates are reportegigure 2: Plot of the 2-D periodogram function of the original
at the fourth row. Finally, we reported the ASEs at the lastobservations for model() when (b) M=N=256 withop=1.5

row. In Tables 5-6 and for eaahy, the first row represents
the covariances (COVs) for the estimates of
corresponding frequencies between different frequency
pairs, and the asymptotic covariances (ACOVs) for the
estimates of corresponding frequencies between different
frequency pairs are reported at the second row.

Table 3: The average estimates of the Initial and MTSI estimator
based on 100 replications, as well as the corresponding SEs and
ASEs of the two frequency pairs when M=N=512 = ,
oo ESTI  Frll Fri2 Fr21 Fr22 I

PARA 0.50000 1.50000 0.60000 1.60000

INIT  0.49701 1.49716 0.60132 1.60147

0.5 MTSI 0.50000 1.49999 0.59999  1.60000
SE 1.388e-5 1.495e-5 9.737e-6 1.011le-5
ASE 1.362e-5 1.362e-5 9.713e-6 9.713e-6

PARA 0.50000 1.50000 0.60000 1.60000

INIT  0.49701 1.49716 0.60132 1.60147

1 MTSI 050000 1.50000 0.59999 1.59999
SE 1.698e-5 1.715e-5 1.240e-5 1.326e-5
ASE 1.700e-5 1.700e-5 1.235e-5 1.235e-5

PARA 0.50000 1.50000 0.60000 1.60000

INIT  0.49701 1.49716 0.60132 1.60147

1.5 MTSI 0.50000 150000 0.59999 1.59999
SE 2.232e-5 2.254e-5 1.660e-5 1.625e-5
ASE 2.18%-5 2.189%-5 1.619e-5 1.619e-5

R

Figure 3: Plot of the 2-D periodogram function of the original
observations for modellq) when (c) M=N=512 withop=1.5

The following observations are very clear from the
numerical experiments. It is observed from Tables 1-4rigure 4: Plot of the 2-D periodogram function of the original
that the MTSI estimates are very close to the trueppservations for modellQ) when (d) M=512, N=128 with
parameter values and are better than the initial estimateg,=1.5
in nearly all the cases considered. It is immediate that the
biases decrease a® decreases. Therefore, the MTSI
estimates provide asymptotically unbiased estimators of
the frequencies. It can be seen from Tables 1-4 that th@f noise while the initial estimates are bad, which verifies
SEs of all the parameters decrease gradually and approadhe robustness and efficiency of the MTSI algorithm.
the ASEs, as well as from Table 5-6 that the COVs of the  Comparing Table 4 with Table 1 and Table 3, it is
corresponding frequencies decrease gradually andbserved thatthe SEs for all the frequencies in Table 4 are
approach the ACOVs as the sample size increases, whiclower than those corresponding in Table 1 and higher than
verifies the consistency of the MTSI estimates. It is alsothose corresponding in Table 3. It is not surprising
observed from Tables 1-4 that the MTSI estimates arebecause the sample size M in Table 4 is larger than that in
also fairly good even for small sample size and high levelTable 1 while the sample size N in Table 4 is smaller than
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Figure 5: Plot of the 2-D periodogram function of of the squared Figure 8: Plot of the 2-D periodogram function of of the squared

observations for modell() when (a) M=N=128 withop=1.5
0p=1.5

observations for modelll) when (d) M=512, N=128 with

Table 4: The average estimates of the Initial and MTSI estimator
based on 100 replications, as well as the corresponding SEs and

ASEs of the two frequency pairs when M=512 and N=128

op ESTI Fri1l Fri2 Fr21 Fr22
PARA 0.50000 1.50000 0.60000 1.60000
INIT 0.49703 1.49711 0.60132 1.59533
0.5 MTSI 0.50000 1.50001 0.59999 1.60000
SE 2.746e-5 1.155e-4 2.010e-5 7.885e-5
ASE 2.724e-5 1.089e-4 1.944e-5 7.778e-5
PARA 0.50000 1.50000 0.60000 1.60000
INIT 0.49713 1.49716 0.60132 1.59534
Figure 6: Plot of the 2-D periodogram function of of the squared MTSI 0.49999 = 1.50003 ~ 0.59999 1.59997
observations for modellQ) when (b) M=N=256 withop=1.5 SE 3.73le-5 1.369e-4  2.46le-5  9.982e-5
ASE 3.400e-5 1.360e-4 2.470e-5 9.883e-5
PARA 0.50000 1.50000 0.60000 1.60000
INIT 0.49715 1.49713 0.60132 1.59534
1.5 MTSI 0.50000 1.49999 0.59999 1.59998
SE 4,721e-5 1.792e-4 3.136e-5 1.346e-4
ASE 4.379e-5 1.751e-4 3.238e-5 1.295e-4

Table 5: The COVs and ACOVs of Fri11 and Fr21 based on 100

i replications

¢ op EST 128,128 256,256 512,512 512,128

05 COV 1358 -12le-9 -51le-1l -1.04e9
e e ~ ACOV  -13le-8 -8.23e-10 -5.14e-11 -8.23e-10

© | COV -165e8 -127e9 -6.26e1l -226e9
Figure 7: Plot of the 2-D periodogram function of of the squared ACOV  -13le-8 -8.23e-10 -5.14e-11 -8.23e-10

observations for modelL(l) when (c) M=N=512 withop=1.5 15 COV  -2.60e-8 -147e-9  -8.96e-11 -2.32e-9
ACOV -1.31e-8 -8.23e-10 -5.14e-11 -8.23e-10

that in Table 3. So the effectiveness of the MTSI

algorithm is also verified when the sample size is notpresence of stationary multiplicative and additive noise.
equal in the two dimensions. We used a two-stage joint algorithm to estimate the
frequencies of the model we considered. At the first stage,
a periodogram based initial estimator was given for a
rough estimation. Then the MTSI algorithm was proposed
to refine the initial estimator by three iterations. We

In this paper, we considered the estimation of theproved the consistency of the MTSI estimators and
frequencies of 2-D superimposed exponential model inobtained the asymptotic distribution of the MTSI

5. Conclusions
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Table 6: The COVs and ACOVs of Fr12 and Fr22 based on 100 E(s“) Gﬁl
replications
op EST 128,128 256,256 512,512 512,128
05 cov -1.32e-8 -1.14e-9 -5.3%9e-11  -3.23e-9 . P M
° ACOV -13le-8 -8.23e-10 -5.14e-11 -8.23e-10 /OMn()=3 3
cov -1.62e-8 -1.17e-9 -6.12e-11  -4.67e-9
ACOV -1.31e-8 -8.23e-10 -5.14e-11 -8.23e-10 N
COV  -264e8 -182e-9 -74lelll 64289 T S V(mmne AEmHn
ACOV -1.31e-8 -8.23e-10 -5.14e-11 -8.23e-10 ]
P M N
+2 Z z z Bk(m7 n)y(m7 n)
k=1m=1n=1
estimators. It is observed that the MTSI algorithm works ~ x /(%20 (=27)n+@d
quite well in terms of biases and mean squared errors p M N
even when the two frequency pairs are very close, and the +2 ) Z( > > Bdmn)Bi(mn)
estimators have the same convergence rate with LSE in k=1l<km=1n=1
additive noise. Since the random field model consisting of ¢ @[ (Ut =20 )M+ (Vi —2v)n+ ¢+
evanescent and. purely indeterministic component can be_ C1+Cp+Cs+Ca, (say (12)
seen as a special case of our model (1), we generalized
the MTSI algorithm to a wider and more practical noise
distribution and provide an accurate and computationallywhere
efficient algorithm for the parameter estimation of

15

stationary random field consisting of evanescent and P 4o 4w .
purely indeterministic component. Moreover, it needs C; = z a2(s,|)ope? %
only three steps to converge from the given starting value, K=15=—00|="c

so it naturally saves computational time and can be used M N .
for online implementation. Finally, the amplitude of the  x z Z Al (U= m+(ve—9j)n]
model in this paper is described to be zero mean MA m=1n=1

process which is stationary, however, the evanescent P M oot

component of a conditional random field may be +) > > > a(s,1)nk(m—sn—1)
non-stationary. The MTSI algorithm for this condition k=lm=ln=1s=—c|=—c

will be investigated later. eri[(Uk*'j' M- (V=) )N+

M N —+00 +o00

—+oo
+2z SYS S Sz Y adshas.!)
=1m=1Nn=18=—0|=—c0 g #g|'=—00
Acknowledgement ><£k(m— s,;n—1)g(m—g, n—1")eAlU0)m(=7)n+ @]
M N +00 +o00

+2 a(s,Na(s, 1" e(m—sn—1)
This work is partially supported by NSFC under Grants kzlnglnzlyzwl zoo|'z|
61071188, 61302138,11126274 and 61102103, by NSFC o\ 1y g /)2 me (v -
of Hubei Province under Grants 2011CDB333 and by the e ’+°o
Fundamental Research Founds for National University, _ 205 11022 % 31 (M.N) - R: (M. N
China University of Geosciences (Wuhan) under Grants kzlﬁfmlzzmak(s’ )0k (M, N) + Re(M,N).(say
CUGL100239, CUGL100236 and CCNU10A01013. (13)

For k # j, Ji(M,N) = Op(1). For k = j, using Taylor
Appendix series approximation @ ({i~9)m ande?(Vi—V)n poth up
to first order, we have

We need to computeAy n,Bun and Cyn for the
derivation of the algorithm. Firstly, we will compute M N o
Cumn. Since {&(mn)} is an array of iid. random Jj(M,N)= % zez'[(“‘fu')mw’*v‘)n]

variable with mean zero and varianoé respectively, if m=1n=1

. M N
we noteng(mn) £ g2(m,n) — g2, then n(m,n)) is an _ Z 2i(uj—Gj)m z &2 (vi=7j)n
array of ii.d. variable with mean zero and variance &
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M ) .
M + 2i(uj — Gj) z mda (U =Gj)m Secondly, we will computéy v in the following:
m=1
g -3 3 5 Bmnm-2)
o i65(vj—¥i)n AmN(]) = K (Mn)(m——-
N+2i(v VJ)nzlnez 2 ] kZananl 2
- ¢ 2 (U= 0)m (ue—))n+-a
= MN [1+0p(M %)+ Op(N %), (14) VN o
£33 Amn)(m- e 2GmHn
m=1n=1 2
) . P M N M
here 0< 61 < 1,0 < 6, < 1. Using the independence of 42 z (Mm— —)Bc(m,n)y(m,n)
{nk(m.n)} and{eo(m,n)}, (2)-(4) and Lemma 2 of23], = =] 2
we have s @il (=20 (w29 n+- @
p M N M
1.1 +2 m,n mn)(m— —
Ri(M,N) = Op(M2N2), (15) glgkm;nglﬁk( ) B (M, n)( 2)
Xei[(uk+u|72ﬁj)m+(vk+v|—2\7])n+(n(+qq]
and = A1 +Ax+As+ Ay, (say (19)
where
Pt 4o o2c M N M
. i(Gjm+-0jn) 1= (m—=)
C2 rernzly2 m n l l Z Z =Z— nglnzl 2
oo 4o M N x 2 (U= 0y )m- (= 7)n)
_ z Z O' Z e 2i(Gjm+-Ujn) P N ot
s5—w| < m=1n=1 +Z Z z z z a2(s,)nk(m—sn—1)
400 400 N k=1 N=1S=—®|=—cw
ag(s,Hno(m—s,n—1 . " -
+$Z°°|__°on.gl Z r’O ) X(m— %)e2|[(ukfuj)m+(kavj)n+(n(]
x g~ 2(lm+Vjn) p M o oo +oo oy
s5ss 2y 55 3 3 3 3 adshae)
+2 Z z SZ Z Zao (s,1)ag KSLME1n=1s5= 0| = dZs|/ =
S=—0w|=—0c0 [/=—com=1n= M
x&(m—-s,n—Ng(m-s,n—1"(m- =
X go(M— an—l)eo(m g, n—1")e 2(Emvn) f ) Jm=3)
Joo oo ><e2i (U= ) - (Vie— Y )N+ i
+2 ap(s,l)aog M N +oo +oo
s_zou:oa;nglnz +22 Z zak (s,Dak(s,1")
xgo(Mm—s,n—1)gy(m—s,n—1")e 2 @M =im=1n= 1* @l=—el’E
11 , M
— Op(MZN2). (16) x&(m—-s,n—Il)g(m-sn—I )(m—z)
w @A (U= mH-(ie—Vj)n+@d
P to oo _
= Z Z Z a2(s,1)02€? %Iy (M,N) + Ra(M,N).
k=1S=—|=—00
(20)

Similarly, we have
Op(M). Fork = j, using Taylor

1.1 1.1
C3 =0p(M2N2), C4=0p(M2N2). a7) Fork # j, Ja(M,N) =
series approximation @@ (Ui—0)™ ande?(Vi—%)" hoth up
L . to first order, we have
From (L2)-(17), it is immediate that
Jj(M,N) =
M M, - M(M+1)(M+2
e oo ‘ > (M=) +i(uj—0y) ( 6)( )
Cun(j) =1 > > a(s1)o?#IMN =
e 23" (- M)npertst)
—2(u;i — o 103(Uj—Uj)m
(18) (uj —Gj) ngl(m 2)

[1+ op(M*5)+op(N*5)} }
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x [N+2i(vj =) 5 ne?®lvian Ag=2% % > Bmn)y(mn)(m—=)
n=1 k=1m=1n=1
) M3N B 5 @l [(Ue=207) M- (vie—20j)n+@1
= i(uj —0j) —— [1"'0;3( %)+ 0p(N 5)]7 DM N 4o 4o to  tw
— /
) =233 3> 2 2 Y 3 alshalsl)
k=1m=1n=1S=—®©|=—0d=—0|'=—cw
here 0< 65 < 1,0 < 6, < 1. Using Taylor series xek(m—an—I)eo(m—s’,n—l’)(m—%)
approximation o [(4i—0)m+Vvi—¥)n yp to first order and L o
Lemma 2 of R3], we have x el 32u’>m:<vk ZV‘)nH;‘] .
+0p(M27°N2) +Op(M2Nz %), (24)
PM N o e
RRMN)=% 5> > > & and
k=1m=1ln=1s=—o|=—c
s (m_ M) @lueupm tevpna e o < M
xNk(Mm—s,n—I)(m 2)92 J I =2y Z(Z Z (m,n)B mn)(m—E)
=1I<km=1ln=1

zaksl 1)

#sl/'=—c0
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><eZi (U—uj)mH- (V= v )N
M N +4o0o +oo

DD P IPP RN
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M
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erI[(UkiuJ)nH»(

Vi—Vj )]

+0p(MZ7ON2) + Op(MZN279), (22)
Similarly, we have
Ay = Z Z V2(m.n)( M)efzi(ajmw,-n)
m=1n= 2
—+o00 +00 2 2 M N 2 me )
(s1)og » Jeme)
M N +o 4o
> > > Zaoslno(m sn—1)(m 2)
m=1n=1S=—®|=—c
w @2 (ujmtvin)
M N fo 4o oo
2y 5y 5 Z SZ > ao(sao(s,I')
M=1n=1S=—®|=—0c g=#g|'=—c0
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M N +o 4o
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+0p(M2ONZ) + Op(M3NZ9), (23)

s @ (Ut =205) M (Vv =207 )0+ g+ @
M N 4o +oo 400
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+0p(M2ON2) + Op(MIN29),
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(25)

From (19)-(25), it is immediate that

—+o00 +00 3
Aun(j) =i Z 292”’)'( J)M6N
S=— oo|7,oo
x [1+op(M*5)+op(N*5)}

P M N 4o +oo

*ZZZ Y Y akshm(m-sn—1)m-
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+2 (sl
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Similarly, we have

L)

m(B C
N [ M,N©® M,N}

(u=7) [Op(M"
. (say

. 6
:V“rizl
V—+

%) +0p(N"?)

N3M

(28)

where Y is similar with X and can be obtained by

M

substituting(m— %) in each term ofX with (n— %) .
Using Lemmas 1 and Lemma 2 a23], we have when

min{M,N}— oo

6 6 .
X)) o
M32N2 M2N2
where (3 4)jj and (3,)jj are defined in Theorem
j # 1, we have

cov |

6 .
var [ 3 lX(j),
M2N2

(29)

1. For

(30)
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where(y1)jr and(y,);r are defined in Theorem 1.
From assumption (iii), we ha\/@p(M*%N*%) =0p
M~2N~2) = Op(M~2) = Oy(N~2). Therefore, if

—u (M~19)1p, ¥ —v = Op(N"19)1, and
< 3, then from @7 and @8),
—u = Op(M1=2) ¥ —v = Op(N"2) . If
< 6 <1, from @7)-(30) and using the Central Limit

heorem of linear proces&7)], it follows that:

—

o o
S

Op
<

>1 0
0%

— —Nl= O
N

M3N (a_u),M%N%(o_v)] Zs Msp (o, [
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