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Abstract: Numerical Mesh-free method with improved numerical integration using block pulse function (BPF)/Chebyshev wavelets
(CW), is engaged for the solution of sixth order boundary value problems (BVP). Moving Least Squares (MLS) approach is used
to construct shape functions with optimized weight functions and basis. The proposed improved Element Free Galerkin (EFG)
technique has already been successfully implemented on various physical applications in fluids and structures such as solution for
large deformations, stresses, strains involving friction, viscosity and viscoelasticity. Numerical results for test cases of sixth order
boundary value problems are presented in this article to elaborate the relevant features and of the proposed technique. Comparison with
existing techniques shows that our proposed method provides better approximation at reduced computational cost.
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1 Introduction

The numerical solutions of sixth order boundary value
problems rarely exist in the literature. Such problems are
found in astrophysics[1,2,3,4], e.g. the narrow
convecting layers bounded by stable layers, which are
believed to be surrounding the A-type stars, is modeled
by sixth-order differential equation. Such equations
handle dynamo action in some stars. Chandrasekhar [5]
determined that instabilities are found when an infinite
horizontal layer of fluid is heated from below and is under
the action of rotation. When these instabilities are treated
as ordinary convection, they are modeled by a sixth order
ordinary differential equation. Twizell developed a
second-order method for solving special and general
sixth-order problems [6] and in later work Twizell and
Boutayeb developed finite-difference methods of order
two, four, six and eight for solving such problems [7].
Siddiqi and Twizell used sixth-degree splines [8,9,10],
where spline values at the mid knots of the interpolation
interval and the corresponding values of the even order
derivatives are related through consistency relations. M.E
Gamel et al. used Sinc-Galerkin method for the solutions
of sixth order boundary-value problems [11].
Siraj-ul-islam et al solved Sixth-Order Boundary-Value

Problems using Non-Polynomial Splines Approach [12]
and Wazwaz [13,14] used decomposition and modified
domain decomposition methods to explore solution of the
sixth-order boundary-value problems. In this study,
Element Free Galerkin (EFG) technique with Block Pulse
Function (BPF) and Chebyshev wavelets (CW) based
numerical integration is applied to obtain smooth
approximations for the following boundary-value
problem [11,13,15,17].

d6u
dx6 + k(x)u(x) = f (x),a < x < b (1)

With boundary condition,ui(0) = ui

Where u(x) and f(x) are continuous functions defined
in the interval [a,b]. It is considered thatf (x) ∈C6[a,b] is
real.

The development of numerical methods for the
solution of these differential equations has attracted the
attention of researchers for the last many decades.
Galerkin-Finite element method (FEM) is one of the most
popular and well developed numerical methods. FEM has
been extensively used in the computational mechanics,
due to its robustness, versatility and convenience.
However, FEM has inherent problems such as locking
and poor derivative solutions [18]. Finite element method
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requires considerable amount of work and time in
generation of a predefined mesh of the problem domain.
In structural analysis, the stresses calculated employing
Finite element method algorithms are discontinuous and
less accurate. When large deformations are analyzed,
Distortions in elements cause loss in solution accuracy in
the case of large deformations [19,20]. Other numerical
techniques such as, the boundary element method (BEM)
have emerged over the period of time but the BEM is
limited by the availability of the infinite space
fundamental solution for (at least the highest linear)
differential operator of the problem. Atluri, S.N., Zhu and
G.R.Liu [18,21] used Meshfree method instead of FEM
for large deformations in physical problems. A meshfree
(or meshless) method is an alternate method where
system algebraic equations for the whole problem domain
are established without the use of a predefined mesh for
the domain discretization [21]. Meshfree method presents
an attractive option for the solution of such problems due
to its flexibility in absence of nodal interconnectivity.
Several Meshless techniques have been developed, e.g.
the Diffuse element method (Nayroles et al., 1992), the
Element Free Galerkin (EFG) method (Belytschko et al.,
1994b), Meshless local Petrov-Galerkin (MLPG) method,
(Zhu and Atluri, 1998), the Smooth Particle
Hydrodynamics (SPH) method, the Reproducing Kernel
Particle method (Liu et al., 1993), Boundary Node
method (Mukherjee and Mukherjee, 1997a,b) and
Boundary Point Interpolation methods (Liu et al., 2000d;
Gu and Liu, G.R., 2001a,e) [18,19,20,21]. These
approximate solution techniques have helped
mathematicians, physicists and engineers to analyze
complex phenomena in fluid mechanics at reduced
computational costs. In this study, we propose a novel
numerical technique for the solution of sixth order
boundary value problems using improved Element Free
Galerkin method with Block Pulse Function (BPF) and
Chebyshev wavelets (CW) based numerical integration.

2 Numerical Technique

Meshless techniques maintain the local character of the
numerical implementation, by using a local interpolation
to represent the trial function with the fictitious values of
the unknown variable at some randomly located nodes.
The local interpolation techniques generally used are
moving least square method, partition of unity method,
reproducing kernel method, hp-clouds, Shepard function
etc. The moving least squares approximation has
reasonably high accuracy and can be generalized to work
with n-dimensional problems. It was developed for
interpolation, data fitting and surface construction. It
provides continuous approximation for the field function
over the entire problem domain [18,21]. The numerical
technique used in this study employed Moving Least
Square (MLS) method to generate the shape functions
with Gaussian weight function. Shape functions for

meshless techniques need to satisfy certain conditions

such as adherence to partition of unity

[
n
∑

i=1
ΦI(x) = 1

]
,

compact domain of influence, adapt to randomness of
nodes, to name a few. Computational efficiency is
significantly affected by the choice of shape function.
Then Galerkin weak form of the boundary value problem
was formulated to give the system equations. The
boundary conditions were successfully imposed using
Penalty/Lagrange method. Both Block-Pulse Function
and Chebyshev wavelets were used to perform numerical
integration of the system equation.

MLS approximationuh(x) of a field variableu(x), is
defined as:

uh(x) =
m
∑
j=1

p j(x)a j(x) = pT (x)a(x),∀xεΩ (2)

Where,

m=number of terms in the basis,
p j(x)=polynomial basis function,
a j(x)=non-constant coefficients,

pT (x) =

[
p1(x), p2(x), p3(x), · · ·pm(x)

]

pT (x) is a complete monomial basis vector of order
m; a(x) is a vector containing coefficients:
a j(x), j = 1,2,3 · · ·m. local approximation at a pointxI .
The unknown coefficients of approximation are computed
by minimizing the difference between the and the nodal
parameteruI for the nodeI, i.e.uI = u(xI)

Here the sample pointxI may be a nodal point under
consideration or a quadrature point. The support of the
nodal pointxI is usually taken to be a circle of radiusri,
centered atxI . Weighted residual functional is:

J =
n

∑
i=1

w(x− xI)
(

uh(x)−uI

)2
(3)

Where is weight functionw(x − xI)associated with the
nodeI calculated at pointx. w(x− xI) > 0 for all pointsx
in the support domain of nodeI, and

uh(xl) = pT (xl)a(x) (4)

Minimization of weighted residual functional results in:

A(x)a(x) = B(x)u (5)

a(x) = A−1(x)B(x)u (6)

u =

[
u1,u2,u3, · · ·un

]
(7)

The weight moment matrixA(x) is:

A(x) = pT wp =
n

∑
i=1

w(x− xI)p(xI)pT (xI) (8)
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B(x) is defined as:

B(x) = pT w (9)

whereP is:

P =

[
pT (x1), pT (x2), pT (x3), · · ·, pT (xn)

]′

(10)

W is the weight function matrix:

W =




w(x− x1) · · · 0
...

...
...

0 · · · w(x− xn)


 (11)

Following Gaussian weight function is used in the
present study:

w(x− xI) =−16/α16
(

16(x− xI)
8

−224(x− xI)
6α2+840(x− xI)

4α2

+105α8
)

Exp
(
−1/α2(x− xI)

2
)

(12)

Shape perimeterαc substantially affects the accuracy of
the solution. Figures 1 and 2 illustrate weight function for
different values of shape parameters and its derivatives.
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Fig. 1: Weight functions in the support domain

Solving equation (6) for a(x) and substituting in
equation (4)results in:

uh(x) = ΦT (x).u =
n

∑
I=1

φ(xI)uI ∀x ∈ Ω (13)

Φ(x) is the nodal shape function.

Φ(x) = [φ1(x),φ2(x), · · · ,φn(x)] (14)
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Fig. 2: Derivative of weight functions in the support domain

For any node I,

ΦI(x) = pT (x)
(

A(−1)(x)B(x)
)

I
(15)

Next we transform the strong form of sixth order
boundary value problem (1) into symmetric variational
(weak) form.

b∫

a

(d6u
dx6 + k(x)u(x)− f (x)

)
vdx = 0 (16)

Hereu is the trial function andv is the test function. We
get the following linear equation system after employing
the ’Integration by parts’ technique and substitution of the
shape functions and boundary conditions:

b∫

a

(
Φ

′′′
(Φ ′′′)T + k(x)ΦΦT

)
dxû =

b∫

a

f Φdx (17)

Kû = F (18)

K =

b∫

a

(
Φ

′′′
(Φ

′′′
)T + k(x)ΦΦT

)
dx (19)

F =

b∫

a

f Φdx (20)

Nodal fictitious valueŝu are obtained by solving the
above system of equations. Product of nodal fictitious
values and shape functionsΦ results in required
numerical solution:

u = ûΦ (21)
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2.1 Element Free Galerkin Technique(EFG)

Element Free Galerkin technique was introduced by
Belytschko et al.[22]. EFG results in generation of nodes
with variable interconnectivity, thus providing huge
flexibility in discretization. Solution is expanded in a
basis of MLS shape functions instead of piecewise
polynomial basis as in case of the Finite element method.
System equations are formulated using Galerkin weak
form whereas integration is performed using background
cells.EFG is conforming due to the use of consistent and
compatible shape functions [18,21].

2.2 Numerical Integration

The accuracy of numerical approximation is dependent on
the integration technique. Conventional Gaussian
quadrature scheme involves large number of points for
accurate numerical solution. In other numerical
integration techniques such as Newton-Cotes quadrature
rule, fine discretization leads to erroneous results due to
high degree of polynomial interpolation [23]. Numerical
Integration based on wavelets is becoming popular in
recent years [24]. Wavelet transforms were primarily
developed for signal analysis, but it has also been used in
applications like image compression, data compression,
de-noising data and many more. In this study,
Block-Pulse and Chebyshev wavelets have been used due
to their suitable properties and exceptional performance
in numerical integration. Their performance particularly,
in approximation of highly oscillatory and improper
integral is more accurate as compared to existing method
in literature [25,26].

Block-Pulse Function

Block-Pulse wavelet is one of the simplest wavelet. It is
an orthonormal wavelet transform with compact support.
Block-Pulse function (BPF) with m number of sets is
defined as [23]:

φi(t) =

{
1 f or (i−1)T

m ≤ t < iT
m

0 otherwise

Heret ∈ [0,T ). Also, i = 0,1,2, ...,m andh = T/m. Let us
consider the integrand:

b∫

a

g(x)dx

For x = (b-a)t + a, we get:

b∫

a

g(x)dx = (b−a)

1∫

0

g((b−a)t +a)dt

Theorem:
The integral can be approximated as:

1∫

0

g(t)dt ≈ 1
m

m

∑
i=1

gi

Proof:

1∫

0

g(t)dt ≈
m

∑
i=1

gi

1∫

0

φi(t)dt =
1
m

m

∑
i=1

gi

To calculate the coefficientsgi, we consider the nodal
points,

tk =
2k−1

2m
, k = 1,2, . . . ,m

The equation can be discretized to give:

g(tk) =
m

∑
i=1

giφi(tk) = gk, k = 1,2, . . . ,m

Therefore, Block-Pulse Function based numerical
integration with m sets, may be evaluated as:

1∫

0

g
(

t
)

dt ≈ 1
m

m

∑
i=1

g
(2i−1

m

)

b∫

a

g
(

x
)

dx ∼=
b−a

m

m

∑
i=1

g
(

a+
(

b−a
)(2i−1

m

))
(22)

Chebyshev Wavelets

The Chebyshev wavelet ofm degree of polynomials of the
first kind is defined on interval [0,1) as [23]:

Γn,m(x) =

{
2

k
2 Λ̃m(2kx−2n+1) n−1

2k−1
≤ x < n

2k−1
0 otherwise.

where
m = 0,1, . . . ,M−1,

n = 1,2, . . . ,2k−1,

M and k are positive integers

and

Λ̃m(t) =

{ 1√
π m = 0,√

2
π Λm(t) m > 0.

The coefficients used here are for orthonormality.Λm(t)
denotes the Chebyshev polynomials of the first kind of
degree m.Λm(t) and Weight functionW (t) = 1√

1−t2
are
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orthogonal on the interval [-1,1].
Any square integrable function g(x) in the interval
x ∈ [0,1), can be written as:

g(x) =
∞

∑
n=1

∞

∑
m=0

cn,mΓn,m(x) x ∈ [0,1),

g(x)≃
2k−1

∑
n=1

M−1

∑
m=0

cn,mΓn,m(x) x ∈ [0,1).

Consider the nodal points such that:

xp =
2p−1
2kM

p = 1,2,3, . . . ,2k−1M.

Then we have,

g(xp) =
2k−1

∑
n=1

M−1

∑
m=0

cn,mΓn,m(xp) p = 1,2,3, . . . ,2k−1M.

Now, let us consider the integrand,
b∫
a

g(x)dx.

For x = (b−a)t +a, we get:

b∫

a

g(x)dx = (b−a)

1∫

0

g((b−a)t +a)dt

Theorem:
The integral can be approximated as:

1∫

0

g(x)dx ≃ 21− k
2

√
π

2k−1

∑
n=1

[
cn,0+

M−1
2

∑
l=1

√
2

1−4l2 cn,2l

]

Proof.

1∫

0

g(x)dx ≃
2k−1

∑
n=1

M−1

∑
m=0

cn,m

1∫

0

Γn,m(x)dx,

1∫

0

Γn,m(x)dx = 2
k
2

n
2k−1∫

n−1
2k−1

Λ̃m(2
kx−2n+1)dx

= 2
−k
2

1∫

−1

Λ̃m(t)dt,

since,
1∫

−1

Λm(t)dt =

{
0 m is odd,
−2

m2−1
m is even,

As,

1∫

0

Γn,m(x)dx =

{ 21− k
2√

π m =0,
0 m is odd,
21− k

2

1−m2

√
2
π m is even.

Therefore,

1∫

0

g(x)dx ≃ 21− k
2

√
π

2k−1

∑
n=1

[
cn,0+

[M−1
2 ]

∑
l=1

√
2

1−4l2 cn,2l

]

We know from the definition of Chebyshev wavelets that:

n−1
2k−1 ≤ 2p−1

2kM
<

n
2k−1 ,

Therefore,p = (n−1)M+ i,

i = 1,2,3, . . . ,M,

g(xp) = g
(2(n−1)M+2i−1

2kM

)
, i = 1,2,3, . . . ,M,

Γn,0(xp) =
2

k
2

√
π
,

Γn,m(xp) =

√
2
π

2
k
2 Λm

(
2kxp −2n+1

)

=

√
2
π

2
k
2 Λm

(2i−1
M

−1
)

So the above system of equations may be written as:

g
(2(n−1)M+2i−1

2kM

)
=

2
k
2

√
π

cn,0+
M−1

∑
m=1

√
2
π

2
k
2 Λm

×
(2i−1

M
−1

)
cn,m,

i = 1,2,3, . . . ,M.

The coefficientscn,0 andcn,2l can be calculated as:



√
2

2 Λ1(
1
M −1) . . . ΛM−1(

1
M −1)√

2
2 Λ1(

3
M −1) . . . ΛM−1(

3
M −1)

...
... . . .

...√
2

2 Λ1(
2M−1

M −1) . . . ΛM−1(
2M−1

M −1)







cn,0
cn,1

...
cn,M−1




=
√π

2 2−
k
2




g
(

2(n−1)M+1
2kM

)

g
(

2(n−1)M+3
2kM

)

...

g
(

2(n−1)M+2M−1
2kM

)




For M = 1, the above equation can be evaluated as:

cn,0 =
√

π2−
k
2 g
(2n−1

2k

)
,

Thus, Chebyshev wavelet based integration can be
evaluated as follows:

1∫

0

g(x)dx ≃ 1
2k−1

2k−1

∑
n=1

g
(2n−1

2k

)
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For M = 5:

1∫

0
g
(

x
)

dx = 1
9×2k+6

2k+1

∑
n=1

[
275g

(
10n−9
5×2k

)

+100g
(

10n−7
5×2k

)
+402g

(
10n−5
5×2k

)
+

100g
(

10n−3
5×2k

)
+275g

(
10n−1
5×2k

)]
(23)

For M = 6,

1∫

0
g
(

x
)

dx = 1
5×2k+7

2k+1

∑
n=1

[
247g

(
12n−11
3×2k+1

)
+

139g
(

12n−9
3×2k+1

)
+254g

(
12n−7
3×2k+1

)
+

254g
(

12n−5
3×2k+1

)
+139g

(
12n−3
3×2k+1

)
+

247g
(

12n−1
3×2k+1

)]
(24)

For detailed discussion on Block Pulse function and
Chebyshev wavelet based integration, the reader is
referred to works [23,27,28].

2.3 Consistency

A numerical method is called convergent if it approaches
the exact solution as the discretization is refined.
Consistency and stability guarantees convergence of the
solution. The choice of monomial basis vector p(x)
influences the consistency of the EFG method. MLS
approximation reproduces all components that appear in
p(x). EFG method is consistent of order k if all
monomials up to orderk are included inp(x)[29]. If
k = 1, this implies that linear complete,k = 2, quadratic
complete etc. For consistency test we consider MLS
approximation which reproduces all components of
polynomials.

2n

∑
I=1

Φk
I (x)u(xI) = uk(x) ∀xεΩ

If u(x) = 1, then
2n

∑
I=1

ΦI(x) = 1

If u(x) = x, then
2n

∑
I=1

ΦI(x)xl = x

3 Numerical Examples

The proposed improved EFG technique was tested on the
following boundary value problems.

Problem 3.1

d6u
dx6 + e−xu =−720+ e−x(x− x2)3, 0≤ x ≤ 1 (25)

Boundary conditions:

ui(0) = ui(1) = 0, i = 0,1,2

Exact Solution [11]:

u(x) = x3(1− x)3 (26)

Problem 3.2

d6u
dx6 = x3−3x4+3x5− x6,0≤ x ≤ 1, (27)

With corresponding non-homogeneous boundary
conditions:

ui(0) = ui(1) = 0, i = 0,1,2

Exact Solution:

u(x) =
1

221760

(
− 1

3
x12+2x11− 22

5
x10+

11
3

x9
)

+
1

108

(
−2976x5+4058x4−1503x3) (28)

Test problems were solved for different number of
nodes and types of basis with the help of improved EFG
based on numerical integration using Chebyshev (CW)
and Block pulse functions/wavelets (BPF). Maximum
absolute errors in solution are tabulated and compared
with the results of exact solution, which show better
accuracy.

3.1 Results and Discussion

Maximum errors obtained using our technique based on
Block Pulse Function (BPF) and Chebyshev wavelet for
our test problems are shown in the following Tables and
figures. Comparison of Maximum absolute errors with
exact solution, demonstrates the accuracy of our method
as shown in the Tables 1, 2 and figures 3-14.

3.2 Effect of Integration points

It has been observed, that the accuracy of meshless
computational technique depends upon the size of
influence of domain, penalty factor and as well as
Integration points. In this paper we have observed that,
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Fig. 3: Numerical and Analytical Solution Plot of u (6 nodes),
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Fig. 4: Numerical and Analytical Solution Plot ofdu
dx (6 nodes),
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Table 1: Results for Problem 3.1
Numerical
Integration
Technique
for EFG

Number
of
nodes

Max.Absolute
Error

BPF(22) 6 1.51392E-7
CW(23) 6 3.499E-13
CW(24) 6 4.673E-14

Table 2: Results for Problem 3.2
Numerical
Integration
Technique
for EFG

Number
of
nodes

Max.Absolute
Error

BPF(22) 6 1.246E-9
CW(23) 6 1.246E-9
CW(24) 6 1.246E-9

the accuracy of numerical method increases as we
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Fig. 5: Numerical and Analytical Solution Plot ofd
2u

dx2 (6 nodes),
Problem 3.1
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Fig. 6: Numerical and Analytical Solution Plot ofd
3u

dx3 (6 nodes),
Problem 3.1
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Fig. 7: Max. Absolute Error of Numerical (22) and Analytical
Solution Plot (6 nodes), Problem 3.1

increase the number of integration points, however if the
number of gauss points exceeds some limiting value, it
may have some adverse effects on the accuracy. It has
been determined that arrangement of background cells
and ratio of total number of Gauss points to the total
number of nodes, plays very important roles in accuracy.
To avoid all these complications and to improve the
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Fig. 8: Max. Absolute Error of Numerical (23) and Analytical
Solution Plot (6 nodes), Problem 3.1

0.0 0.2 0.4 0.6 0.8 1.0

0

2.µ 10-15

4.µ 10-15

6.µ 10-15

8.µ 10-15

1.µ 10-14

x

E
rr
or

Fig. 9: Max. Absolute Error of Numerical (24) and Analytical
Solution Plot (6 nodes), Problem 3.1
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Fig. 10: Numerical and Analytical Solution Plot of u (6 nodes),
Problem 3.2

accuracy of the meshless method, we have purpose new
numerical integration technique as discussed.

4 Conclusion

In this study, novel numerical technique Element free
Galerkin (EFG) technique using Block-Pulse function and
Chebchieve Wavlet based Integration has been presented.
The results obtained by the suggested method for problem
3.1 and 3.2, as mentioned above exhibit its ability to
provide improved solutions as compared to results in
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Fig. 11: Numerical and Analytical Solution Plot ofdu
dx (6 nodes),

Problem 3.2
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Fig. 12: Numerical and Analytical Solution Plot ofd2u
dx2 (6 nodes),

Problem 3.2

Table 3: Results for Problem 3.2
x Exact

Solution
Sinc-
Galerkin
[11]

Max.
Absolute
Relative
Error,
1.0E-3

0.0 0.0 0.0 -
0.1675 0.002711 0.002710 0.45
0.2764 0.008000 0.008997 0.32
0.3449 0.011534 0.011531 0.28
0.4205 0.014469 0.014465 0.26
0.5 0.015625 0.015620 0.25
0.6550 0.011539 0.011536 0.28
0.7828 0.004915 0.004913 0.37
0.8324 0.002715 0.002714 0.45
0.9041 0.000651 0.000651 0.73
1.0 0.0 0.0 -

[11]. The improved EFG technique showed fast
convergence and provided better results at reduced
number of nodes. It has been observed that EFG based on
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Fig. 13: Numerical and Analytical Solution Plot ofd3u
dx3 (6 nodes),

Problem 3.2
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Fig. 14: Error Plot (6 nodes), Problem 3.2

Numerical integration techniques is faster than existing
techniques, and has the capability of handling of
improper, highly oscillatory functions.
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