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Abstract: Metric dimension or location number is a generalization of affine dimension toarbitrary metric spaces (provided a resolving
set exists). LetF be a family of connected graphsGn : F = (Gn)n≥1 depending onn as follows: the order|V(G)| = ϕ(n) and
lim
n→∞

ϕ(n) = ∞. If there exists a constantC > 0 such thatdim(Gn) ≤ C for everyn≥ 1 then we shall say thatF has bounded metric

dimension, otherwiseF has unbounded metric dimension. If all graphs inF have the same metric dimension (which does not depend
onn), F is called a family with constant metric dimension.

In this paper, we study the metric dimension of quasi flower snarks, generalized antiprism and cartesian product of square cycle
and path. We prove that these classes of graphs have constant or bounded metric dimension. It is natural to ask for characterization of
graphs classes with respect to the nature of their metric dimension. It is also shown that the exchange property of the bases in a vector
space does not hold for minimal resolving sets of quasi flower snarks, generalized prism and generalized antiprism.
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1 Introduction and preliminary results

Metric dimension is a parameter that has appeared in
various applications of graph theory, diverse as,
pharmaceutical chemistry [7], robot navigation [18],
combinatorial optimization [21] and sonar and coast
guard Loran [22], to name a few. Metric dimension is a
generalization of affine dimension to arbitrary metric
spaces (provided a resolving set exists).

In a connected graphG, thedistance d(u,v) between
two verticesu,v ∈ V(G) is the length of a shortest path
between them. LetW = {w1,w2, . . . , wk} be an ordered
set of vertices ofG and let v be a vertex ofG. The
representation r(v|W) of v with respect toW is the
k-tuple (d(v,w1),d(v,w2), d(v,w3), . . . ,d(v,wk)). W is
called a resolving set[7] or locating set [22] if every
vertex ofG is uniquely identified by its distances from the
vertices ofW, or equivalently, if distinct vertices ofG
have distinct representations with respect toW. A
resolving set of minimum cardinality is called abasisfor
G and this cardinality is themetric dimensionor location
number of G, denoted byβ (G) [5]. The concepts of

resolving set and metric basis have previously appeared in
the literature (see [1-7, 9-26]).

For a given ordered set of vertices
W = {w1,w2, . . . ,wk} of a graphG, the ith component of
r(v|W) is 0 if and only ifv= wi . Thus, to show thatW is
a resolving set it suffices to verify thatr(x|W) 6= r(y|W)
for each pair of distinct verticesx,y∈V(G)\W.

A useful property in findingβ (G) is the following le-
mma:

Lemma 1.1.[23] Let W be a resolving set for a connected
graph G and u,v ∈ V(G). If d(u,w) = d(v,w) for all
verticesw∈V(G)\{u,v}, then{u,v}∩W 6= /0.

Let F be a family of connected graphsGn : F = (Gn)n≥1
depending onn as follows: the order|V(G)| = ϕ(n) and
lim
n→∞

ϕ(n) = ∞. If there exists a constantC > 0 such that

β (Gn) ≤C for everyn≥ 1, then we shall say thatF has
bounded metric dimension; otherwiseF has unbounded
metric dimension.

If all graphs inF have the same metric dimension
(which does not depend onn), F is called a family with
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constant metric dimension [16]. A connected graphG has
β (G) = 1 if and only if G is a path [7]; cycles Cn have
metric dimension 2 for everyn ≥ 3. Also generalized
Petersen graphsP(n,2), antiprisms An and circulant
graphsC2

n are families of graphs with constant metric
dimension [16]. Some classes ofregular graphs with
constant metric dimension have been studied in [1,3,10]
recently while metric dimension of some classes of
convex polytopeshas been determined in [11] and [13].
The metric dimension of graphs with pendent edges has
been investigated in [15]. The metric dimension of
necklace graphsNen has been calculated by using the
idea of resolving pairs in [25].

Other families of graphs have unbounded metric
dimension: ifWn denotes awheelwith n spokes andJ2n
the graph deduced from the wheelW2n by alternately
deletingn spokes, thenβ (Wn) = ⌊2n+2

5 ⌋ for everyn ≥ 7
[5] andβ (J2n) = ⌊2n

3 ⌋ [26] for everyn≥ 4.
Thecartesian productof G andH is a graph, denoted

by G�H, whose vertex set isV(G)×V(H). Two vertices
(g,h) and (g′,h′) are adjacent precisely ifg = g′ and
hh′ ∈ E(H), or gg′ ∈ E(G) and h = h′. Thus,
V(G�H) = {(g,h)| g ∈ V(G) and h ∈ V(H)} and
E(G�H) = {(g,h)(g′,h′)|g = g′,hh′ ∈ E(H) or
gg′ ∈ E(G),h= h′}.

An example of a family which has bounded metric
dimension is the family of prisms denoted by
Dn

∼= Pm�Cn. In [6] it was proved that

β (Pm�Cn) =

{

2, if n is odd;
3, otherwise.

Since prisms Dn are the cubic plane graphs obtained by
the cartesian product of pathP2 with a cycleCn, so prisms
constitute a family ofcubic graphswith bounded metric
dimension. Also generalized Petersen graphsP(n,3) have
bounded metric dimension [12]. The metric dimension of
the lexicographic productof graphs has been studied in
[20].

The graphs having metric dimension 1 are
characterized in the following theorem.

Theorem 1.1.[7] The metric dimension of a graphG is 1
if and only if G ∼= Pn, wherePn denotes a path of length
n−1 orG is one-way infinite path.

The next theorem gives a nice property of the graphs with
metric dimension 2.

Theorem 1.2.[17] Let G be a graph with metric dimension
2 and let{v1,v2} ⊆V(G) be a metric basis inG, then the
degree of bothv1 andv2 is at most 3.

Note that the problem of determining whetherβ (G)< k is
anNP-complete problem [8].

In this paper, we study the metric dimension of some
graphs that are rotationally-symmetric namely quasi
flower snarks, generalized antiprism and cartesian product
of square cycle with a path. We prove that these classes of
graphs have constant or bounded metric dimension. It is

natural to ask for characterization of graphs classes with
respect to the nature of their metric dimension. It is also
shown that the exchange property of the bases in a vector
space does not hold for minimal resolving sets of
generalized prism, quasi flower snarks and generalized
antiprism.

2 The metric dimension of quasi flower
snarks

The quasi flower snarkdenoted byGn is a nontrivial
simple connected cubic graph, where
V(Gn) = {ai ,bi ,ci ,di : 0 ≤ i ≤ n − 1} and
E(Gn) = {aiai+1,bibi+1,cici+1,aidi ,

bidi ,cidi : 0≤ i ≤ n−1}, the indices are taken modulon.
The quasi flower snarksG10 andG9 are depicted in Fig. 1.
The metric dimension of flower snarks has been studied

Fig. 1: Quasi flower snarksG10 andG9

in [10] where it was proved that flower snakrs constitute a
family of cubic graphs with constant metric dimension 3.
In the next theorem, we extend this study to the metric
dimension of quasi flower snarks.

Theorem 2.1.Let Gn be the quasi flower snark. Then for
every positive integern≥ 4 we have

β (Gn) =

{

3, if n is odd;
≤ 4, otherwise.

Proof. We consider the following cases.
Case (1). Whenn≡ 0 (mod 2). Then we can write as

n = 2k, where k ≥ 2. SupposeW = {b0,c0,dn−1} is a
resolving set. For this, we give the representations of
V(Gn)\W.

r(ai |W) =
{

(i +2, i +2, i +2), 0≤ i ≤ k−1;
(2k− i +2,2k− i +2,2k− i), k≤ i ≤ 2k−1.

r(bi |W) =

{

(i, i +2, i +2), 0≤ i ≤ k−1;
(2k− i,2k− i +2,2k− i), k≤ i ≤ 2k−1.
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r(ci |W) =

{

(i +2, i, i +2), 0≤ i ≤ k−1;
(2k− i +2,2k− i,2k− i), k≤ i ≤ 2k−1

and
r(di |W) =






(i +1, i +1, i +3), 0≤ i ≤ k−1;
(2k− i +1,2k− i +1,2k− i +1),

k≤ i ≤ 2k−2.

It can be seen that for 1≤ i ≤ k−1, r(ai |W) = r(d2k−i−1|
W) = (i + 2, i + 2, i + 2). In order to have distinct
representations, we add the vertexa0 to W. Then for
1 ≤ i ≤ k − 1, we have d(a0,ai) = i and
d(a0,d2k−i−1) = i +2. Then we haveW′ =W∪{a0}, that
resolves vertices ofGn when n ≡ 0 (mod 2). Thus
β (Gn)≤ 4 whenn≡ 0 (mod 2).

Case (2). When n ≡ 1 (mod 2). Then we have
n = 2k+ 1; k ≥ 2. We will prove this case by double
inequality. First, we show thatW = {b0,c0,ck} is a
resolving set forGn. For this, first we give representations
of V(Gn)\W. Then

r(ai |W) =










(i +2, i +2,k− i +2), 0≤ i ≤ k;
(k+2,k+2,3), i = k+1;
(2k− i +3,2k− i +3, i −k+2),

k+2≤ i ≤ 2k.

r(bi |W) =










(i, i +2,k− i +2), 0≤ i ≤ k;
(k,k+2,3), i = k+1;
(2k− i +1,2k− i +3, i −k+2),

k+2≤ i ≤ 2k.

r(ci |W) =







(i +2, i,k− i), 0≤ i ≤ k;
(k+2,k,1), i = k+1;
(2k− i +3,2k− i +1, i −k), k+2≤ i ≤ 2k

and
r(di |W) =










(i +1, i +1,k− i +1), 0≤ i ≤ k;
(k+1,k+1,2), i = k+1;
(2k− i +2,2k− i +2, i −k+1),

k+2≤ i ≤ 2k.

It can be seen that all vertices inGn have distinct
representations implying thatβ (Gn) ≤ 3 when n ≡ 1
(mod 2).

On the other hand, we show thatβ (Gn) ≥ 3.
Contrarily suppose thatβ (Gn) = 2, then there are
discussed the following possibilities.

• If both vertices belong to the set{a0,a1, · · · ,an−1},
then we choose the resolving setW = {ap,aq}, where
0≤ p< q≤ 2k. However, then we get

r(bp|W) = r(cp|W)

=

{

(2,q− p+2), 1≤ q− p≤ k;
(2,2k−q+ p+3), k+1≤ q− p≤ 2k

a contradiction.
• If both vertices belong to the set{d0,d1, · · · ,dn−1}.

We suppose, resolving set isW = {dp,dq}, where
0≤ p< q≤ 2k. However, then we have

r(bp|W) = r(cp|W)

=

{

(1,q− p+1), 1≤ q− p≤ k;
(1,2k−q+ p+2), k+1≤ q− p≤ 2k

a contradiction.
• If both vertices belong to either{b0,b1, · · · ,bn−1}

or {c0,c1, · · · ,cn−1}. Without loss of generality we
assume that both vertices belong to the set
{b0,b1, · · · ,bn−1}. Then we may choose the resolving set
W = {bp,bq}, where 0≤ p< q≤ 2k. Then

r(ap|W) = r(cp|W)

=

{

(2,q− p+2), 1≤ q− p≤ k;
(2,2k−q+ p+3), k+1≤ q− p≤ 2k

a contradiction.
• If one vertex belongs to the set{b0,b1, · · · ,bn−1}

and other one is in the set{c0,c1, · · · ,cn−1}. Without loss
of generality we suppose, resolving set isW = {bp,cq},
where 0≤ p≤ q≤ 2k. However, then
r(ap+1|W) = r(ap−1|W) = (3,3) whenp= q;
r(ap|W) = r(dp−1|W) = (2,q − p + 2) when
1≤ q− p≤ k−1;
r(cp+1|W) = r(dp+2|W) = (3,q − p − 1) when
q− p= k,k+1;
r(ap|W) = r(dp+1|W) = (2,2k − q + p + 3) when
k+2≤ q− p≤ 2k.
The indices are taken modulo 2k + 1. We get a
contradiction in each subcase.

• If one vertex belongs to the set{a0,a1, · · · ,an−1}
and the other vertex belongs to the set{d0,d1, · · · ,dn−1}.
Without loss of generality, we can takeW = {dp,aq},
where 0≤ p≤ q≤ 2k. However, we have

r(bp|W) = r(cp|W)

=

{

(1,q− p+2), 0≤ q− p≤ k;
(1,2k−q+ p+3), k+1≤ q− p≤ 2k

a contradiction.
• If one vertex belongs to the set{a0,a1, · · · ,an−1}

and other vertex belongs to either{b0,b1, · · · ,bn−1} or
{c0,c1, · · · ,cn−1}. Without loss of generality we suppose,
the second vertex belongs to the set{b0, · · · ,bn−1}. Then
we can chooseW = {ap,bq}, where 0≤ p≤ q≤ 2k. But
then we get
r(ap−1|W) = r(ap+1|W) = (1,3) whenp= q;
r(ap+1|W) = r(dp|W) = (1,q − p + 1) when
0≤ q− p≤ k;
r(ap−1|W) = r(dp|W) = (1,2k − q + p + 2) when
k+1≤ q− p≤ 2k.
The indices are taken modulo 2k+1, a contradiction.

• If one vertex belongs to the set{d0,d1, · · · ,dn−1}
and other vertex belongs to either{b0,b1, · · · ,bn−1} or
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{c0,c1, · · · ,cn−1}. Without loss of generality we suppose,
the second vertex belongs to the set{b0,b1, · · · ,bn−1}.
We may suppose that the resolving set isW = {bp,dq},
where 0≤ p≤ q≤ 2k. But then

r(ap|W) = r(cp|W)

=

{

(2,q− p+1), 0≤ q− p≤ k;
(2,2k−q+ p+2), k+1≤ q− p≤ 2k.

We get a contradiction.
This yields that β (Gn) ≥ 3. So from above, we

conclude that there is no resolving set with two vertices of
Gn. Henceβ (Gn) = 3 whenn≡ 1 (mod 2). �

3 Metric dimension of cartesian product of
square cycle and path

The metric dimension of cartesian product of cycle and
path has been investigated in [6]. In this section, we
extend this study to the cartesian product of square cycle
and path and prove that the cartesian product of square
cycle and path have metric dimension equal to 3 when
n ≡ 0,2,3 (mod 4) and at most 4 otherwise. Fort ≥ 2,
we haveV(C2

n�Pt) = {ui
s : 1 ≤ s≤ t,1 ≤ i ≤ n}. In the

next theorem, we determine the metric dimension of
cartesian product of square cycle and path. Note that the
choice of appropriate basis vertices (also called
landmarks) is core of the problem.

Theorem 3.1.For every positive integern≥ 5,

β (C2
n�Pt) =

{

3, whenn≡ 0,2,3 (mod 4);
≤ 4, otherwise.

Proof. We prove this theorem by double inequality. First
we prove that

β (C2
n�Pt) ≤

{

3, whenn≡ 0,2,3 (mod 4);
4, otherwise

by showing thatW = {u1
1,u

3
1,u

2
t } resolves all vertices of

C2
n�Pt when n ≡ 0,2,3 (mod 4). For this, we give

representations ofV(C2
n�Pt)\W in each case.

Case(1). Whenn≡ 0 (mod 4). Then we can write as
n= 4k, wherek≥ 2. Fors= 1,
r(u2i

s |W) =


















(1,1, t −1), i = 1;
(i, i −1, t + i −2), 2≤ i ≤ k;
(k,k, t +k−1), i = k+1;
(2k− i +1,2k− i +2,2k+ t − i),

k+2≤ i ≤ 2k.

r(u2i+1
s |W) =







(i, i −1, t + i −1), 2≤ i ≤ k;
(2k− i,2k− i +1,2k+ t − i),

k+1≤ i ≤ 2k−1.

For s= t,

r(u2i
s |W) =











(t + i −1, t + i −2, i −1), 2≤ i ≤ k;
(k+ t −1,k+ t −1,k), i = k+1;
(2k+ t − i,2k+ t − i +1,2k− i +1),

k+2≤ i ≤ 2k.

r(u2i+1
s |W) =











(t −1, t,1), i = 0;
(t + i −1, t + i −2, i), 1≤ i ≤ k;
(2k+ t − i −1,2k+ t − i,2k− i +1),

k+1≤ i ≤ 2k−1

and for 2≤ s≤ t −1, we have

r(u2i
s |W) =



















(s,s, t −s), i = 1;
(s+ i −1,s+ i −2, t −s+ i −1), 2≤ i ≤ k;
(k+s−1,k+s−1,k+ t −s), i = k+1;
(2k+s− i,2k+s− i +1,2k+ t −s− i +1),

k+2≤ i ≤ 2k.

r(u2i+1
s |W) =











(s−1,s, t −s+1), i = 0;
(s+ i −1,s+ i −2, t −s+ i), 1≤ i ≤ k;
(2k+s− i −1,2k+s− i,2k+ t
−s− i +1), k+1≤ i ≤ 2k−1.

Since all the vertices have distinct representations with
respect toW. This yields β (C2

n�Pt) ≤ 3 when n ≡ 0
(mod 4).

Case(2). Whenn≡ 2 (mod 4). Then we can write as
n= 4k+2, wherek≥ 1. Fors= 1,

r(u2i
s |W) =











(1,1, t −1), i = 1;
(i, i −1, t + i −2), 2≤ i ≤ k+1;
(2k− i +2,2k− i +3,2k+ t − i +1),

k+2≤ i ≤ 2k+1.

r(u2i+1
s |W) =











(i, i −1, t + i −1), 2≤ i ≤ k;
(k,k, t +k), i = k+1;
(2k− i +1,2k− i +2,2k+ t − i +1),

k+2≤ i ≤ 2k.

For s= t,

r(u2i
s |W) =







(t + i −1, t + i −2, i −1), 2≤ i ≤ k+1;
(2k+ t − i +1,2k+ t − i +2,2k− i +2),

k+2≤ i ≤ 2k+1.

r(u2i+1
s |W) =



















(t −1, t,1), i = 0;
(t + i −1, t + i −2, i), 1≤ i ≤ k;
(k+ t −1,k+ t −1,k+1), i = k+1;
(2k+ t − i,2k+ t − i +1,2k− i +2),

k+2≤ i ≤ 2k
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and for 2≤ s≤ t −1, we have

r(u2i
s |W) =



















(s,s, t −s), i = 1;
(s+ i −1,s+ i −2, t −s+ i −1),

2≤ i ≤ k+1;
(2k+s− i +1,2k+s− i +2,2k+ t
−s− i +2), k+2≤ i ≤ 2k+1.

r(u2i+1
s |W) =



























(s−1,s, t −s+1), i = 0;
(s+ i −1,s+ i −2, t −s+ i), 1≤ i ≤ k;
(k+s−1,k+s−1,k+ t −s+1),

i = k+1;
(2k+s− i,2k+s− i +1,2k+ t
−s− i +2), k+2≤ i ≤ 2k.

It can be verified that all vertices have distinct
representations with respect toW. This yields
β (C2

n�Pt)≤ 3 whenn≡ 2 (mod 4).
Case(3). Whenn≡ 3 (mod 4). Then we can write as

n= 4k+3, wherek≥ 1. Fors= 1,

r(u2i
s |W) =











(1,1, t −1), i = 1;
(i, i −1, t + i −2), 2≤ i ≤ k+1;
(2k− i +2,2k− i +3,2k+ t − i +2),

k+2≤ i ≤ 2k+1.

r(u2i+1
s |W) =







(i, i −1, t + i −1), 2≤ i ≤ k+1;
(2k− i +2,2k− i +3,2k+ t − i +1),

k+2≤ i ≤ 2k+1.

For s= t,

r(u2i
s |W) =







(t + i −1, t + i −2, i −1), 2≤ i ≤ k+1;
(2k+ t − i +1,2k+ t − i +2,2k− i +3),

k+2≤ i ≤ 2k+1.

r(u2i+1
s |W) =



















(t −1, t,1), i = 0;
(t + i −1, t + i −2, i), 1≤ i ≤ k;
(k+ t,k+ t −1,k+1), i = k+1;
(2k+ t − i +1,2k+ t − i +2,2k− i +2),

k+2≤ i ≤ 2k+1

and for 2≤ s≤ t −1, we have

r(u2i
s |W) =



















(s,s, t −s), i = 1;
(s+ i −1,s+ i −2, t −s+ i −1),

2≤ i ≤ k+1;
(2k+s− i +1,2k+s− i +2,2k+ t
−s− i +3), k+2≤ i ≤ 2k+1.

r(u2i+1
s |W) =



















(s−1,s, t −s+1), i = 0;
(s+ i −1,s+ i −2, t −s+ i), 1≤ i ≤ k;
(k+s,k+s−1,k+ t −s+1), i = k+1;
(2k+s− i +1,2k+s− i +2,2k+ t
−s− i +2), k+2≤ i ≤ 2k+1.

Again, in this case all the vertices have distinct
representations with respect toW. This yields
β (C2

n�Pt)≤ 3 whenn≡ 3 (mod 4).
Case(4). Whenn≡ 1 (mod 4). Then we can write as

n= 4k+1, wherek≥ 1. Fors= 1,

r(u2i
s |W) =



















(1,1, t −1), i = 1;
(i, i −1, t + i −2), 2≤ i ≤ k;
(k,k,k+ t −1), i = k+1;
(2k− i +1,2k− i +2,2k+ t − i +1),

k+2≤ i ≤ 2k.

r(u2i+1
s |W) =











(i, i −1, t + i −1), 2≤ i ≤ k;
(k,k,k+ t −1), i = k+1;
(2k− i +1,2k− i +2,2k+ t − i),

k+2≤ i ≤ 2k.

For s= t,

r(u2i
s |W) =











(t + i −1, t + i −2, i −1), 2≤ i ≤ k;
(k+ t −1,k+ t −1,k), i = k+1;
(2k+ t − i,2k+ t − i +1,2k− i +2),

k+2≤ i ≤ 2k.

r(u2i+1
s |W) =



















(t −1, t,1), i = 0;
(t + i −1, t + i −2, i), 1≤ i ≤ k;
(k+ t −1,k+ t −1,k), i = k+1;
(2k+ t − i,2k+ t − i +1,2k− i +1),

k+2≤ i ≤ 2k

and for 2≤ s≤ t −1, we have

r(u2i
s |W) =



















(s,s, t −s), i = 1;
(s+ i −1,s+ i −2, t −s+ i −1), 2≤ i ≤ k;
(k+s−1,k+s−1,k+ t −s), i = k+1;
(2k+s− i,2k+s− i +1,2k+ t −s− i +2),

k+2≤ i ≤ 2k.

r(u2i+1
s |W) =



















(s−1,s, t −s+1), i = 0;
(s+ i −1,s+ i −2, t −s+ i), 1≤ i ≤ k;
(k+s−1,k+s−1,k+ t −s), i = k+1;
(2k+s− i,2k+s− i +1,2k+ t
−s− i +1), k+2≤ i ≤ 2k.

It can be seen that for 1≤ s≤ t, we haver(u2k+2
s |W) =

c© 2014 NSP
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r(u2k+3
s |W) = (k+s−1,k+s−1,k+ t −s). If we add the

vertex u4
t to W. Then d(u4

t ,u
2k+2
s ) = k+ t − s− 1 and

d(u4
t ,u

2k+3
s ) = k + t − s , where 1≤ s ≤ t. Thus

W′ = W ∪ {u4
t } resolves vertices ofC2

n�Pt . This yields
β (C2

n�Pt)≤ 4 whenn≡ 1 (mod 4).
Conversely, we show thatβ (C2

n�Pt) ≥ 3 when
n ≡ 0,2,3 (mod 4). Suppose contrarilyβ (C2

n�Pt) = 2.
Then by Theorem1.2 we get a contradiction. Thus
β (C2

n�Pt) ≥ 3 when n ≡ 0,2,3 (mod 4). Hence
β (C2

n�Pt) = 3 for n ≡ 0,2,3 (mod 4), which completes
the proof.�

4 Metric dimension of generalized antiprism

A generalized antiprismAm
n can be obtained by

completing the generalized prismCn�Pm by edges
{vi,l+1vi+1,l : 0 ≤ i ≤ n − 2,1 ≤ l ≤
m − 1} ∪ {vn−1,l+1v0,l : 1 ≤ l ≤ m − 1}. Let
V(Am

n ) = V(Cn�Pm) and
E(Am

n ) = E(Cn�Pm)∪{vi,l+1vi+1,l : 0≤ i ≤ n−2,1≤ l ≤
m−1}∪{vn−1,l+1v0,l : 1≤ l ≤ m−1} be the edge set of
Am

n , wherei is taken modulon. The metric dimension of
antiprism denoted byA2

n has been determined in [16]. In
the next theorem, we determine the metric dimension of
generalized antiprism.

Theorem 4.1.Let Am
n be the generalized antiprism. Then

for every positive integern≥ 6, we have

β (Am
n ) =

{

3, if 2 ≤ m≤ 5;
≥ 4, if m≥ 6.

Proof. We denoteV(Am
n ) = {vi,l : 0 ≤ i ≤ n− 1,1 ≤ l ≤

m}. Whenm= 2, A2
n
∼= An (antiprism), and it was proved

in [16] that β (An) = 3. Now, we prove thatβ (Am
n ) = 3

for 3 ≤ m≤ 5 andn ≥ 6 by double inequality. We show
thatW = {v2,1,v0,⌊m−1

2 ⌋,v0,m} resolves all vertices ofAm
n

by giving the representations ofV(Am
n )\W.

Case (1). Whenn= 2k; k ≥ 3. First, we will give the
representations of all vertices ofV(Am

n ) \ W when
3 ≤ m≤ 4. For l = 1, we haver(v1,l |W) = (1,1,m− 1),
and

r(vi,l |W) =










(i −2, i, i), 3≤ i ≤ k;
(k−1,k−1,k+1), i = k+1;
(2k− i +2,2k− i,2k+m− i −1),

k+2≤ i ≤ 2k−1.

For l = m, r(v1,l |W) = (l − 1, l ,1),
r(v2k−2,l |W) = (4, l − 1,2), r(v2k−1,l | W) = (3, l − 1,1)
and

r(vi,l |W) =










(i + l −3, i + l −1, i), 2≤ i ≤ k−2;
(i + l −3,2k− i, i), i = k−1,k;
(2k− i +2,2k− i,2k− i),

k+1≤ i ≤ 2k−3

and for 2 ≤ l ≤ m − 1, we have
r(v0,l |W) = (2, l − 1,m− l), r(v1,l |W) = (l − 1, l ,m− l),
r(v2k−1,l |W) = (3, l −1,m− l +1) and

r(vi,l |W) =


















(i + l −3, i + l −1, i), 2≤ i ≤ k−1;
(k+ l −3,k,k), i = k;
(k+ l −2,k−1,k+m− l −1), i = k+1;
(2k− i +2,2k− i,2k+m− i − l),

k+2≤ i ≤ 2k−2.

Now we will give the representations whenm = 5. For
l = 1, r(v0,l |W) = (2,1,4), r(v1,l |W) = (1,1,4),
r(v3,l |W) = (1,3,4) and

r(vi,l |W) =











(i −2, i, i), 4≤ i ≤ k;
(k−1,k,k+1), i = k+1;
(2k− i +2,2k− i +1,2k− i +4),

k+2≤ i ≤ 2k−1.

For l = 2, r(v1,l |W) = (1,1,3), r(v2,l |W) = (1,2,3) and

r(vi,l |W) =











(i −1, i, i), 3≤ i ≤ k;
(k,k−1,k+1), i = k+1;
(2k− i +2,2k− i,2k− i +3),

k+2≤ i ≤ 2k−1.

For l = m, r(v1,l |W) = (4,4,1), r(v2k−2,l |W) = (4,3,2),
r(v2k−1,l |W) = (4,3,1) and

r(vi,l |W) =







(i +2, i +3, i), 2≤ i ≤ k−2;
(k+1,k+1,k−1), i = k−1;
(2k− i +2,2k− i,2k− i), k≤ i ≤ 2k−3

and for 3 ≤ l ≤ m − 1, we have
r(v0,l |W) = (l − 1, l − 2,m − l),
r(v1,l |W) = (l − 1, l − 1,m − l),
r(v2k−1,l |W) = (3, l −2,m− l +1) and

r(vi,l |W) =










(i + l −3, i + l −2, i), 2≤ i ≤ k−1;
(k+ l −3,k,k), i = k;
(2k− i +2,2k− i,2k+m− i − l),

k+1≤ i ≤ 2k−2.
Case (2). Whenn = 2k+ 1; k ≥ 3. For this, first we

give the representations when 3≤ m ≤ 4. For l = 1,
r(v1,l |W) = (1,1,m− l), and

r(vi,l |W) =


















(i −2, i, i), 3≤ i ≤ k;
(k−1,k,k+1), i = k+1;
(k,k−1,k+m−2), i = k+2;
(2k− i +3,2k− i +1,2k+m− i),

k+3≤ i ≤ 2k.

For l = m, r(v1,l |W) = (l − 1, l ,1),
r(v2k−1,l |W) = (4, l −1,2), r(v2k,l |W) = (3,m−1,1) and

r(vi,l |W) =
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(i + l −3, i + l −1, i), 2≤ i ≤ k−1;
(k+ l −3,k+1,k), i = k;
(k+ l −2,k,k), i = k+1;
(2k− i +3,2k− i +1,2k− i +1),

k+2≤ i ≤ 2k−2.

For 2 ≤ l ≤ m − 1, r(v0,l |W) = (2, l − 1,m − l),
r(v1,l |W) = (l − 1, l ,m − l),
r(v2k,l |W) = (3, l −1,m− l +1) and

r(vi,l |W) =










(i + l −3, i + l −1, i), 2≤ i ≤ k−1;
(i + l −3,2k− i +1, i), i = k,k+1;
(2k− i +3,2k− i +1,2k+m− i − l +1),

k+2≤ i ≤ 2k−1.

Now we will give the representations whenm = 5. For
l = 1, r(v0,l |W) = (2,1,4), r(v1,l |W) = (1,1,4),
r(v3,l |W) = (1,3,4) and

r(vi,l |W) =










(i −2, i, i), 4≤ i ≤ k+1;
(k,k,k+2), i = k+2;
(2k− i +3,2k− i +2,2k− i +5),

k+3≤ i ≤ 2k.

For l = 2, r(v1,l |W) = (1,1,3), r(v2,l |W) = (1,2,3) and

r(vi,l |W) =










(i −1, i, i), 3≤ i ≤ k;
(k,k,k+1), i = k+1;
(2k− i +3,2k− i +1,2k− i +4),

k+2≤ i ≤ 2k.

For l = m, r(v1,l |W) = (4,4,1), r(v2k−1,l |W) = (4,3,2),
r(v2k,l |W) = (4,3,1) and

r(vi,l |W) =











(i +2, i +3, i), 2≤ i ≤ k−1;
(k+2,k+1,k), i = k;
(2k− i +3,2k− i +1,2k− i +1),

k+1≤ i ≤ 2k−2

and for 3 ≤ l ≤ m − 1, we have
r(v0,l |W) = (l − 1, l − 2,m − l),
r(v1,l |W) = (l − 1, l − 1,m− l), r(v2k,l |W) = (3, l − 2,m
−l +1) and

r(vi,l |W) =










(i + l −3, i + l −2, i), 2≤ i ≤ k−1;
(i + l −3,2k− i +1, i), i = k,k+1;
(2k− i +3,2k− i +1,2k+m− i − l +1),

k+2≤ i ≤ 2k−1.

It can be seen that all vertices ofAm
n have distinct

representations with respect toW. This shows that
β (Am

n )≤ 3 for 3≤ m≤ 5 andn≥ 6.
Conversely, suppose thatβ (Am

n )≥ 3, where 3≤ m≤ 5
andn≥ 6. Suppose on contrary thatβ (Am

n ) = 2, but then
by Theorem 1.2 we get a contradiction. Hence
β (Am

n ) = 3, when 2≤ m≤ 5 andn≥ 6.�

5 Exchange property for resolving sets in
rotationally-symmetric graphs

We have seen that a subsetW of vertices of a graphG is a
resolving set if every vertex inG is uniquely determined
by its distances to the vertices ofW. Resolving sets
behave like bases in avector spacein that each vertex in
the graph can be uniquely identified relative to the
vertices of these sets. But though resolving sets do share
some of the properties of bases in a vector space, they do
not always have the exchange property from linear
algebra. Resolving sets are said to have theexchange
property in G if wheneverS andR are minimal resolving
sets for G and r ∈ R, then there existss ∈ S so that
(S\{s})∪{r} is a minimal resolving set [4].

If the exchange property holds for a graphG, then
every minimal resolving set forG has the same size and
algorithmic methods for finding the metric dimension of
G are more feasible. Thus to show that the exchange
property does not hold in a given graph, it is sufficient to
show two minimal resolving sets of different size.
However, since the converse is not true, knowing that the
exchange property does not hold does not guarantee that
there are minimal resolving sets of different size.

The following results concerning exchange property
for resolving sets were deduced in [4].

Theorem 5.1.[4] The exchange property holds for
resolving sets in trees.

Theorem 5.2.[4] For n≥ 8, resolving sets do not have the
exchange property in wheelsWn.

It has been proved recently that exchange property for
resolving sets of necklace graphsNen does not hold.

Theorem 5.3.[25] For n≥ 4, n even, resolving sets of the
necklace graphNen do not have the exchange property.

In the next theorem, we show that exchange property does
not hold for resolving sets of quasi flower snarks forn≥ 4.

Theorem 5.4. The exchange property for minimal
resolving sets does not hold in quasi flower snarks for
n≥ 4.

Proof. We consider the following two cases.
Case (i). For n = 2k + 1, where k ≥ 2. Since

W = {b0,c0,dn−1} is a metric basis [see Theorem2.1]
and hence a minimal resolving set. Also
W∗ = {a0,b0,c0,a1} is a minimal resolving set. There is
now∈W∗ such thatS=W∗ \{w} is still a resolving set.

If w = a0, then r(a2k|S) = r(d2|S) = (3,3,2). When
w= b0, thenr(d2|S) = r(b1|S) = (3,3,2). If w= c0, then
r(d2|S) = r(c1|S) = (3,3,2) and whenw= a1, thenr(dk|S)
= r(dk+1|S)= (k+1,k+1,k+1). Therefore, we get|W|=
3 and|W∗|= 4.

Case (ii). Forn= 2k, wherek≥ 2. SinceW′ = {a0,b0,

c0,dn−1} is a metric basis [see Theorem2.1] and hence a
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minimal resolving set. AlsoW∗ = {a0,d0,a1,dk,ck} is a
minimal resolving set. There is now ∈ W∗ such thatS=
W∗ \{w} is still a resolving set.

If w= a0, thenr(a2k−1|S) = r(b1|S) = (2,2,k,k+1).
Whenw= d0, then we getr(d2k−1|S) = r(c0|S) = (2,3,k+
1,k). If w= a1, thenr(d1|S) = r(d2k−1|S) = (2,3,k+1,k).
If w = dk, thenr(a2|S) = r(d1|S) = (2,3,1,k) and when
w= ck, thenr(b0|S) = r(c0|S) = (2,1,3,k+1). Therefore,
|W′|= 4 and|W∗|= 5.

There are minimal resolving sets of different size in
both cases. Hence exchange property for minimal
resolving sets does not hold in quasi flower snarks for
n≥ 4.�

The metric dimension of cartesian product of cycles
and paths has been determined in [6] by using the idea of
doubly resolving sets. In the next theorem, first we find
the metric bases of cartesian product of cycles and paths
by using the appropriate choice of basis vertices and then
we use this result to explore the exchange property for
resolving sets of cartesian product of cycles and paths.

Theorem 5.5.For every positive integern≥ 3,

β (Cn�Pt) =

{

2, if n is odd;
3, otherwise.

Proof. We denoteV(Cn�Pt) = {vi,l : 0≤ i ≤ n−1,1≤ l ≤
t}.

Case (i). When n = 2k+ 1, wherek ≥ 1. We will
show thatW = {v0,1,vk,1} resolves all vertices ofCn�Pt
by giving the representations ofV(Cn�Pt)\W. For l = 1

r(vi,l |W) =

{

(i,k− i), 1≤ i ≤ k−1;
(2k− i +1, i −k), k+1≤ i ≤ 2k

and forl ≥ 2, we have

r(vi,l |W) =

{

(i + l −1,k+ l − i −1), 0≤ i ≤ k;
(2k+ l − i, i + l −k−1), k+1≤ i ≤ 2k.

It can be seen that all vertices have distinct
representations. It shows thatβ (Cn�Pt) ≤ 2 when
n= 2k+1, wherek≥ 1.

Conversely, we show thatβ (Cn�Pt) ≥ 2. Suppose
contrarily thatβ (Cn�Pt) = 1, but then from Theorem1.1,
a contradiction. Henceβ (Cn�Pt) = 2 whenn = 2k+ 1,
wherek≥ 1.

Case (ii). Whenn = 2k, wherek ≥ 2. First, we will
give the representations ofV(Cn�Pt) \W with respect to
W. For l = 1

r(vi,l |W) =

{

(i,k− i), 1≤ i ≤ k−1;
(2k− i, i −k), k+1≤ i ≤ 2k−1

and forl ≥ 2, we have

r(vi,l |W) =







(i + l −1,k+ l − i −1), 0≤ i ≤ k;
(2k+ l − i −1, i + l −k−1),

k+1≤ i ≤ 2k−1.

It can be seen that for 1≤ i ≤ k−1, r(vi,l |W) = r(v2k−i,l |

W) = (i + l − 1,k+ l − i − 1). In order to have distinct
representations we add the vertexv1,1 to W. Then
d(v1,1,vi,l ) = i + l − 2 andd(v1,1,v2k−i,l ) = i + l , where
1 ≤ i ≤ k− 1. Thus we haveW′ = W ∪ {v1,1} which
resolvesV(Cn�Pt). This mean thatβ (Cn�Pt) ≤ 3 for
n= 2k, wherek≥ 2.

Conversely, we show thatβ (Cn�Pt) ≥ 3 for n = 2k,
wherek ≥ 2. Suppose that the sets of vertices{v0,1,v1,1,

· · · ,vn−1,1} and{v0,t ,v1,t , · · · ,vn−1,t} induce the inner and
outer cycles respectively. Suppose on contrary thatβ (Cn
�Pt) = 2, then the following possibilities arise.

(1). If we take any of the basis vertex from the set
{v0,2,v1,2, · · · ,v0,3,v1,3, · · · ,vn−1,t−1}, then by Theorem
1.2, we get a contradiction.

(2). Without loss of generality, suppose that both basis
vertices belong to the inner cycle. Then we may fixv0,1 as
a basis vertex. If we choosevi,1, where 1≤ i ≤ 2k−1, as
a second basis vertex, then we get

• If i = 1, then
r(v0,2|{v0,1,vi,1}) = r(v2k−1,1|{v0,1,vi,1}) = (1,2)

• If 2 ≤ i ≤ k − 1, then
r(vi+1,1|{v0,1,vi,1}) = r(vi,2|{v0,1, vi,1}) = (i +1,1)

• If i = k, then
r(v1,1|{v0,1,vi,1}) = r(v2k−1,1|{v0,1,vi,1}) = (1,k−1)

• If k + 1 ≤ i ≤ 2k − 2, then
r(vi−1,1|{v0,1,vi,1}) = r(vi,2| {v0,1,vi,1}) = (2k− i +1,1)

• If i = 2k−1, thenr(v2k−2,1|{v0,1,vi,1}) = r(v2k−1,2|
{v0,1,vi,1}) = (2,1),
a contradiction in each case.

(3). When one vertex is from inner cycle and other
vertex is from outer cycle. Now we may fixv0,1 from
inner cycle, if the other vertex isvi,t where 0≤ i ≤ 2k−1.

• If i = 0, then
r(v1,1|{v0,1,vi,t}) = r(v2k−1,1|{v0,1,vi,t}) = (1, t)

• If 1≤ i ≤ k, thenr(vi,t−1|{v0,1,vi,t}) = r(vi−1,t |{v0,1,

vi,t}) = (i + t −2,1)
• If k + 1 ≤ i ≤ 2k− 1, thenr(vi,t−1|{v0,1,vi,t}) = r

(vi+1,t |{v0,1,vi,t}) = (2k+ t − i − 2,1), where the indices
are taken modulo n.

A contradiction in all cases. Hence we haveβ (Cn�Pt)
= 3 for n= 2k+1, wherek≥ 2.�

In the next theorem, we study the exchange property
for resolving sets in cartesian product of cycles and path
(generalized prism).

Theorem 5.6.For every positive integern ≥ 4, resolving
sets do not have exchange property inCn�Pt for n= 2k+1
whent ≥ 2 and forn= 2k whent ≥ 3.

Proof. Case (i). For n = 2k+ 1, wherek ≥ 2 andt ≥ 2.
SinceW = {v0,1,vk,1} is a metric basis [see Theorem5.5]
and hence a minimal resolving set. AlsoW∗ = {v0,1,v1,1,

v0,t} is a minimal resolving set. There is now∈ W∗ such
thatS=W∗ \{w} is still a resolving set.

If w = v0,1, then r(v0,1|S) = r(v1,2|S) = (1, t − 1).
Whenw = v1,1, we getr(v1,1|S) = r(v2k,1|S) = (1, t) and
if w = v0,t , then r(v0,t |S) = r(v2k,t−1|S) = (t − 1, t).
Therefore,|W|= 2 and|W∗|= 3.
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Case (ii). For n = 2k, wherek ≥ 2 andt ≥ 3. Since
W′ = {v0,1,vk,1,v1,1} is a metric basis [see Theorem5.5]
and hence a minimal resolving set. AlsoW∗ = {v0,1,v1,2,

vk,2,v2k−1,2} is a minimal resolving set. There is now ∈
W∗ such thatS=W∗ \{w} is still a resolving set.

If w= v0,1, thenr(v1,1|S) = r(v1,3|S) = (1,k,3). When
w = v1,2, then we getr(v0,2|S) = r(v2k−1,1|S) = (1,k,1).
If w= vk,2, then forn= 4 we haver(v2,1|S) = r(v0,3|S) =
(2,2,2) and forn≥ 6 we haver(v2,2|S) = r(v1,3|S) = (3,1,
3). And whenw= v2k−1,2, we getr(v1,1|S) = r(v0,2|S) =
(1,1,k). Therefore,|W′|= 3 and|W∗|= 4.

In each case, there are minimal resolving sets of
different size. Hence exchange property does not hold in
Cn�Pt for n = 2k+ 1 whent ≥ 2 and forn = 2k when
t ≥ 3.�

The exchange property for resolving sets of
generalized antiprismAm

n , where 3≤ m ≤ 5 will be
discussed in the next theorem.

Theorem 5.7.For every positive integern ≥ 6, resolving
sets do not have exchange property inAm

n when 3≤ m≤ 5.

Proof. Case (i). For n= 2k+1, wherek ≥ 3. SinceW =
{v2,1,v0,⌊m−1

2 ⌋,v0,m} is a metric basis [see Theorem4.1]

and hence a minimal resolving set. AlsoW∗ = {v0,2,v1,2,

v0,m,vk,2} is a minimal resolving set. There is now∈ W∗

such thatS=W∗ \{w} is still a resolving set.
If w = v0,2, then r(vk+1,1|S) = r(vk+1,2|

S) = (k,k + 1,1). When w = v1,2, we get
r(v1,1|S) = r(v2k,2|S) = (1,m− 1,k). If w = v0,m, then
r(v1,1|S) = r(v0,3|S) = (1,1,k) and whenw = vk,2, then
r(v0,1|S) = r(v2k,2|S) = (1,2,m− 1). Therefore, we get
|W|= 3 and|W∗|= 4.

Case (ii). For n = 2k, wherek ≥ 3. SinceW = {v2,1,

v0,⌊m−1
2 ⌋,v0,m} is a metric basis [see Theorem4.1] and hen-

ce a minimal resolving set. AlsoW∗ = {v0,1,v1,2,vk−1,2,

v2k−1,2} is a minimal resolving set. There is now ∈ W∗

such thatS=W∗ \{w} is still a resolving set.
If w = v0,1, then r(v1,1|S) = r(v0,3|S) = (1,k− 1,2).

Whenw = v1,2, then any pair of vertices from{v2k−1,m,

v2k−2,m,v2k−3,m} have the same representation (m− 1, k
or k+ 1, m− 2) with respect toS. If w = vk−1,2, then
r(vk+1,2| S) = r(vk+1,3|S) = (k − 1,k,k − 2) and when
w = v2k−1,2, then we have
r(v1,1|S) = r(v0,2|S) = (1,1,k− 1). Therefore,|W| = 3
and|W∗|= 4.

Since there are minimal resolving sets having different
size, hence exchange property does not hold inAm

n for n≥
6 and when 3≤ m≤ 5.�

6 Conclusion

The problem of determining whetherβ (G) < k is an
NP-complete problem. In this paper, we have studied the
metric dimension of several classes of
rotationally-symmetric graphs namely quasi flower
snarks, generalized antiprism and cartesian product of

square cycle with a path. It can be seen that these families
of graphs have bounded or constant metric dimension,
that is their metric dimensions do not depend upon the
number of vertices they have. For generalized antiprism
we can find the exact value of its metric dimension when
2≤ m≤ 5. It has been shown that exchange property does
not hold for minimal resolving sets of generalized
antiprism when 3≤ m≤ 5, generalized prism and quasi
flower snarks. We close this section by raising questions
that naturally arise from the text.
Open Problem 1: Determine the exact value for the
metric dimension of generalized antiprism Am

n when
m≥ 6.
Open Problem 2: Determine the exact value for the
metric dimension of quasi flower snarks Gn for n ≡ 0
(mod 2).
Open Problem 3: Determine the exact value for the
metric dimension of C2n�Pt when n≡ 1 (mod 4).
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