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Abstract: Metric dimension or location number is a generalization of affine dimensiarbitrary metric spaces (provided a resolving
set exists). Let# be a family of connected grapl, : .# = (Gn)n>1 depending om as follows: the ordefV(G)| = ¢(n) and
r!i_r}nmdz(n) = oo. If there exists a constaft > 0 such thatlim(Gy) < C for everyn > 1 then we shall say tha# has bounded metric

dimension, otherwise# has unbounded metric dimension. If all graphsfrhave the same metric dimension (which does not depend

onn), .7 is called a family with constant metric dimension.

In this paper, we study the metric dimension of quasi flower snarkergkred antiprism and cartesian product of square cycle
and path. We prove that these classes of graphs have constanhoiedauetric dimension. It is natural to ask for characterization of
graphs classes with respect to the nature of their metric dimension. lbistadsvn that the exchange property of the bases in a vector
space does not hold for minimal resolving sets of quasi flower sngekeeralized prism and generalized antiprism.
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1 Introduction and preliminary results

Metric dimension is a parameter that has appeared in
diverse as,W = {w,wo,...,w} of a graphG, theith component of

various applications of graph theory,
pharmaceutical chemistry7], robot navigation 18],
combinatorial optimization 41] and sonar and coast
guard Loran 22], to name a few. Metric dimension is a
generalization of affine dimension to arbitrary metric
spaces (provided a resolving set exists).

In a connected grap@, the distance du,v) between
two verticesu,v € V(G) is the length of a shortest path
between them. Le¥V = {wi,w»,..., wx} be an ordered
set of vertices ofG and letv be a vertex ofG. The
representation (v]W) of v with respect toW is the
k_tuple (d(V,W]_),d(V,Wz), d(V»W3)7“'ad(V7Wk))' W is
called aresolving set[7] or locating set[22] if every
vertex ofG is uniquely identified by its distances from the
vertices of W, or equivalently, if distinct vertices o6
have distinct representations with respect \W. A
resolving set of minimum cardinality is calledbasisfor
G and this cardinality is thenetric dimensioror location
number of G, denoted byB(G) [5]. The concepts of

resolving set and metric basis have previously appeared in
the literature (see [1-7, 9-26]).
For a given ordered set of vertices
r(viw) is 0 if and only ifv = w;. Thus, to show thatV is
a resolving set it suffices to verify thatx|W) # r(y|W)
for each pair of distinct verticesy € V(G)\W.

A useful property in finding3(G) is the following le-
mma:

Lemma 1.1[23] Let W be a resolving set for a connected
graph G and u,v € V(G). If d(u,w) = d(v,w) for all
verticesw € V(G) \ {u,v}, then{u,v} "W # 0.

Let.Z be a family of connected grapk®, : .-% = (Gn)n>1
depending om as follows: the ordefV(G)| = ¢(n) and

r!imo(p(n) = oo, If there exists a constad@ > O such that

B(Gn) < C for everyn > 1, then we shall say tha¥ has
bounded metric dimension; otherwisé has unbounded
metric dimension.

If all graphs in.Z# have the same metric dimension
(which does not depend an), .# is called a family with
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constant metric dimensiod§]. A connected grapls has  natural to ask for characterization of graphs classes with
B(G) =1 if and only if G is apath[7]; cycles G have  respect to the nature of their metric dimension. It is also
metric dimension 2 for everyn > 3. Also generalized shown that the exchange property of the bases in a vector
Petersen graph#(n,2), antiprisms A, and circulant space does not hold for minimal resolving sets of
graphsC? are families of graphs with constant metric generalized prism, quasi flower snarks and generalized
dimension 16]. Some classes ofegular graphswith antiprism.

constant metric dimension have been studiedLi3,[L0]

recently while metric dimension of some classes of

convex polytopesas been determined ii]] and [13]. 2 The metric dimension of quasi flower

The metric dimension of graphs with pendent edges ha§narkS

been investigated in1p]. The metric dimension of
necklace graph&\e, has been calculated by using the
idea of resolving pairs inZp).

Other families of graphs have unbounded metric
dimension: ifW, denotes avheelwith n spokes andy,
the graph deduced from the whedb, by alternately
deletingn spokes, ther (W) = | 22| for everyn > 7
[5] and B(Jzn) = | 4] [26] for everyn > 4.

The cartesian producbf G andH is a graph, denoted
by GOH, whose vertex set 1 (G) x V(H). Two vertices
(g,h) and (d',h’) are adjacent precisely i§ = g and
hW € E(H), or g € E(G) and h = h'. Thus,
V(GOH) = {(g9,h)] g € V(G) and h € V(H)} and
E(GOH) = {(g.h)(@.M)lg = ¢.hi € E(H) or
99 € E(G).h=h'}.

An example of a family which has bounded metric
dimension is the family of prisms denoted by
Dn = PyOGC,. In [6] it was proved that

2, if nis odd;
B(PnCh) = { 3, otherwise.

Since prisms D, are the cubic plane graphs obtained by
the cartesian product of paka with a cycleC,, so prisms
constitute a family oftubic graphswith bounded metric
dimension. Also generalized Petersen graiis3) have iy 110] where it was proved that flower snakrs constitute a
bounded metric dimensior12]. The metric dimension of ¢y of cubic graphs with constant metric dimension 3.
the lexicographic producof graphs has been studied in | the next theorem, we extend this study to the metric

The quasi flower snarkdenoted byG, is a nontrivial
simple connected cubic graph, where
V(Gn) = {a,b,¢,d : 0 < i < n-1} and
(Gn) = {&ai;1,bibi 1, Giciy1, a0,
bidi,cidi : 0 <i < n-—1}, the indices are taken modufo
The quasi flower snarks;p andGg are depicted in Fig. 1.
The metric dimension of flower snarks has been studied

m

Fig. 1: Quasi flower snark&;o andGg

[20). ) ) ) ) dimension of quasi flower snarks.
The graphs having metric dimension 1 are
characterized in the following theorem. Theorem 2.1.Let G, be the quasi flower snark. Then for

o ) . every positive integen > 4 we have
Theorem 1.1[7] The metric dimension of a grap@ is 1

if and only if G = B,, whereP, denotes a path of length B(Gn) = 3, ifnisodd;
n—1 or G is one-way infinite path. "7\ <4, otherwise.

The next theorem gives a nice property of the graphs withproof. We consider the following cases.

metric dimension 2. Case (1) Whenn=0 (mod 2. Then we can write as

n = 2k, wherek > 2. SupposeVN = {bp,Cp,dn-1} is a
resolving set. For this, we give the representations of
V(Gp) \W.

Theorem 1.2[17] Let G be a graph with metric dimension
2 and let{vy,v2} C V(G) be a metric basis ifg, then the
degree of botlv; andv, is at most 3.

Note that the problem of determining whetlffiG) < kis  r(a|W) =

anNP-complete problemd]. (i+2,i4+2/i+2), 0<i<
In this paper, we study the metric dimension of some | (2k—i+2,2k—i+2,2k—i), k<i <2

graphs that are rotationally-symmetric namely quasi

flower snarks, generalized antiprism and cartesian product (i+2,i+2) 0

of square cycle with a path. We prove that these classes af(b;|W) = { (ék—i ok ,+ 2.2k 1) k<

graphs have constant or bounded metric dimension. It is ’ ’ U

k—1;
k—1.

i <

—IN

© 2014 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.8, No. 4, 1665-1674 (2014)www.naturalspublishing.com/Journals.asp

N 5SS ¥ 1667

i+2ii+2), 0<i<k-1;
r(ciW)Z{EZK—H-Z i 2k—i), k<i<2k—1
and
r(di|w) =
(i+Li+1i+3), 0<i<k—1;
(2K—i+1,2k—i+1,2k—i+1),
K<i<2k—2.

It can be seen that ford i <k—1, r(g|W) = r(dax_ij_1|
W) = (i+2,i+2i+2). In order to have distinct
representations, we add the vertax to W. Then for

1 <i< k-1, we have d(a,a) = i and
d(ap,dok_j_1) =i+ 2. Then we haveV' =W U {ap}, that
resolves vertices ofG, when n = 0 (mod 2. Thus

B(Gn) <4whenn=0 (mod 2.

Case (2) Whenn =1 (mod 2. Then we have
n=2k+1; k > 2. We will prove this case by double
inequality. First, we show thaWw = {bp,co,ck} is a
resolving set foiG,,. For this, first we give representations
of V(G,) \W. Then

r(aW) =
(i+2i+2,k—i+2), 0<i<k;
(k+2,k+2,3), i=k+1;
(2k—i+3, 2k—|+3 i—k+2),
k+2<i<2k
r(bi|W) =
(i,i+2,k—i+2), 0<i<k
(k.k+2,3), i=k+1;
(2k—i4+1,2k—i+3,i—k+2),
k+2<i<2k
(i+2,i,k—i), 0<i<k;
r(ciiw) =< (k+2k,1), i=k+1;
(2k—i+3,2k—i+1,i—k), k+2<i<2k
and
r(di|W) =
(i+Li+1k—i+1), 0<i<k;
(k+1,k+1,2), i=k+1;
(2k—i+2,2k—i+2,i—k+1),
k+2<i<2k

It can be seen that all vertices 6, have distinct
representations implying thg8(G,) < 3 whenn =1
(mod 2.

On the other hand, we show thag#(Gn) > 3.
Contrarily suppose tha{3(Gn) = 2, then there are
discussed the following possibilities.

e If both vertices belong to the s¢&g, a1, - ,an-1},
then we choose the resolving 3&t = {ap,aq}, where
0 < p< q< 2k. However, then we get

r(bp/W) = r(cp|W)

(2,2k—g+p+3),k+1<qg—p<2k
a contradiction.
e If both vertices belong to the sétly,ds,---,dn-1}.
We suppose, resolving set ¥/ = {dp,dq}, where
0 < p< q< 2k. However, then we have

{Qq—p+a7 1<g-p<k

r(bp|W) = r(cp|W)
(1,9-p+1), 1<q-p<k
(1,2k—qg+p+2),k+1<g—p<2k
a contradiction.

e If both vertices belong to eithefbg,bs, - ,bn_1}

or {cp,C1, - -,Ch—1}. Without loss of generality we
assume that both vertices belong to the set
{bo,b1,---,bn_1}. Then we may choose the resolving set

W = {bp,bq}, where 0< p < g < 2k. Then

r(ap/W) =r(cp/W)
{(27q—p+2>7 1<q-p<k
T 1(2,2k—q+p+3), k+1<g-p<2k
a contradiction.

e If one vertex belongs to the sébg,bs,---,bn_1}
and other one is in the sétyp,cy, - ,Cnh_1}. Without loss
of generality we suppose, resolving seWWs= {bp,cq},
where 0< p < g < 2k. However, then
r(ap+1|W) =r(ap-1|W) = (3,3) whenp =g

r(@ap|W) = r(dp-1|W) = (2, — p + 2) when
1<g-p<k-1
r(CpraW) = r(dpi2W) = (3,0 — p — 1) when

g—-p=kk+1,

r(ap/W) = r(dps1|W) =
k+2<qg-p<2k

The indices are taken modulok2- 1. We get a
contradiction in each subcase.

e If one vertex belongs to the sé&g, a1, - ,an-1}
and the other vertex belongs to the ¢dg,ds, -+, dn_1}.
Without loss of generality, we can tak&/ = {dp,aq},
where 0< p < g < 2k. However, we have

(2,2k — g+ p+ 3) when

r (bp|W) =r(cp|W)
(L,2k—q+p+3),k+1<g-p<2k
a contradiction.

e If one vertex belongs to the sé&p, a1, - ,an-1}
and other vertex belongs to eithébg,bs,---,by_1} or
{Co,C1," -+ ,Cn_1}. Without loss of generality we suppose,
the second vertex belongs to the §b§,--- ,bn_1}. Then
we can choos® = {ap, bq}, where 0< p < g < 2k. But
then we get

r(ap-1]W) =r(ap;1|W) = (1,3) whenp =g;
r(aps1|W) = r(dpW) = (1, — p + 1) when
0<qg-p<Kk

r(@p-1W) = r(dplW) =
k+1<g-p<2k
The indices are taken modul& 2 1, a contradiction.

e If one vertex belongs to the sétlp,ds,---,dn_1}
and other vertex belongs to eithébg,bs,---,bn_1} or

(1,2k — g+ p+ 2) when
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{co,C1,--- ,Cn_1}. Without loss of generality we suppose, r(u2|W) =

the second vertex belongs to the 4&b,b1,---,by_1}. ( +i—1t+i—2,i—1), 2<i<k;
We may suppose that the resolving seWss= {bp,dq}, (k+t—1,k+t—1k), i=k+1;
where 0< p < g < 2k. But then (2k+t—| &k+t—i+1,2k—i+1),
k+2<i<2k.
r(ap/W) =r(cp|W)
{(27q_p+1)7 qu—pﬁ k, r(u§|+1|W) =
(2,2k—q+p+2), k+1<g-p<2k (t-1t1), =0
We get a contradiction. (t+i—1t+i—2), 1<i<k
This yields thatB(Gn) > 3. So from above, we (2k+t—i—1,2k+t—i,2k—i+1),
conclude that there is no resolving set with two vertices of kt1<i<2k—1

Gn. HenceB(Gp) =3 whenn=1 (mod 2.0 and for 2< s< t — 1, we have

2i —
3 Metric dimension of cartesian product of r(u(ss‘\évt)_ 9 _— -
square cycle and path (5+i—-18+i-2t—sti—1), 2<i<k;
k+s—1k+s—1k+t—s), i=k+1,
The metric dimension of cartesian product of cycle and EZk-l-S— i,2k+s—i+1,2kzrt—s—i+l),

path has been investigated i6].[ In this section, we k+2<i<2k
extend this study to the cartesian product of square cycle

and path and prove that the cartesian product of square ., 41
cycle and path have metric dimension equal to 3 wherf (Us W) =

n=0,2,3 (mod 4 and at most 4 otherwise. For> 2, (s—-1st—s+1), _ =0
we haveV(C2OR) = {U.: 1< s<t,1<i<n}. In the (S+i-1s+i-2t—s+i) 1<i<k
next theorem, we determine the metric dimension of | (ZK+S—i—1,2k+s—i,2k+t

cartesian product of square cycle and path. Note that thel =S~ i+1), k+l<i<2k-1
choice of appropriate basis vertices (also calledSince all the vertices have distinct representations with

landmarks) is core of the problem. respect toW. This yields B(C20R) < 3 whenn =0
L (mod 4).
Theorem 3.1.For every positive integar > 5, Case(2) Whenn=2 (mod 4. Then we can write as
3, whenn=0,2,3 (mod 4); n=4k+ 2, wherek > 1. Fors=1,
2 _ s PE)
B(CALR) = { < 4, otherwise. .
(U2 W) , =
Proof. We prove this theorem by double inequality. First (1 Lt-1), i=1;
we prove that (,i—Lt+i—2), 2<i<k+1;
k—i4+2,2k—i+3,2k+t—i+1),
3, whenn=0,2,3 (mod 4); (2
2 ) bt 1
B(CLR) < {4’ otherwise k+2<i<2k+1.
by showing thatV = {u},u?,u?} resolves all vertices of r(u2+1jw) —
C20R when n = 0,2,3 (mod 4. For this, we give (i,i—1,t+i—1), 2<i<k
representations f (C2CIR) \ W in each case. (k,k,t+k), i=k+1;
Case(1) Whenn =0 (mod 4. Then we can write as (2k—i+21,2k—i+2,2k+t—i+1),
n =4k, wherek > 2. Fors=1, k+2<i<2k
(U2 W) = Fors—t
(11t—1), i—1; ors=t
( lt—i—i—Z) 2<i<k; I’(UZi‘W) _
- . S =
E;kk—t:rkl 42 k+t—i) e (t+i-Lt+i-2i-1), 2<i<k+l;
’ k+72<i<2k (2k+t—i+1,2k+t—i1+2,2k—i+2),
- = k+2<i<2k+1.
2i+1 _ .
r(us_ ) |W) ) ) . r(u§'+1|W) _
(,i—Lt+i—1), 2<i<k; (t-1t,1) i—0:
(2"_"2k_'+1’2k+|£;'1)’<i<2k_1 (t+i-1t+i-2i), 1<i<k
= = ' (k+t—1k+t—1k+1), i=k+1;
Fors=t, (Zk+t—i,2k+t—i+1,2k—i+2),
k+2<i<2k
@© 2014 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.8, No. 4, 1665-1674 (2014)www.naturalspublishing.com/Journals.asp NS P
and for 2< s<t—1, we have r(ud+w)
_ (s—1,st—s+1), i=0;
r(ug'|W) (s+i—1s+i—2t—s+i), 1<i<k
(s,s,t—59), i=1; (k+sk+s—1Lk+t—s+1), i=k+1;
(s+i—1s+i—2t—s+i—1), (2k+s—i+1,2k+s—i+2,2k+t
2<i<k+1; —s—i+2), k+2<i<2k+1.
(2k+_s— | +1,2k+s-1+2, 2k+.t Again, in this case all the vertices have distinct
—s—i+2), k+2<i=<2k+1. representations with respect toV. This yields
_ B(C200R) < 3whenn=3 (mod 4.
r(u+w) Case(4) Whenn =1 (mod 4). Then we can write as
(s—1,st—s+1), i=0; n=4k+1, wherek > 1. Fors=1,

(s+i—1s+i—2t—s+i), 1<i<Kk;
(k+s—1k+s—1 k+t—s+1),
i=k+1;
(2k+s—i,2k+s—i+1,2k+t
—s—i42), k+2<i<2k

It can be verified that all vertices have distinct
representations with respect toW. This vyields

B(C200R) < 3whenn=2 (mod 4.

Case(3) Whenn= 3 (mod 4. Then we can write as

n=4k+ 3, wherek > 1. Fors=1,

r(ug'|W)
(1,1,t—1), i=1;
(i,i—1Lt+i—2), 2<i<k+1;
(2k—i+2,2k—i+3,2k+t—i+2),

kK+2<i<2k+1.

(U W)
(i,i—Lt+i—1), 2<i<k+1;
(2k—i+2,2k—i+3,2k+t—i+1),
k+2<i<2k+1.
Fors=t,
r(ug'|w)

(2k+t—i+1,2ktt—i+2,2k—i+3),

(t+i—Lt4+i—2i—-1), 2<i<k+1;
k+2<i<2k+1.

r(utw)
(t_latal)a |:O,
t+i—Lt+i—2,0), 1<i<k;
(K+tktt—1k+1), =kt 1;
(Kt —it 1,2kt —i+2,2k—i+2),

k+2<i<2k+1
and for 2< s<t -1, we have

r(ug'w)
(sst—s), i=1;
(s+i—1s+i—2t—s+i—1),
2<i<k+1;
(2k+s—i+1,2k+s—i+22k+t
—s—1+43), k+2<i<2k+1.

r(ud'|w)
(1,1,t—1), i=1;
(i,i—1t+i—2), 2<i<k;
(k,kk+t—1), i=k+1;
(2k—i+1,2k—i+2,2k+t—i+1),
k+2<i<2k
r(u3w)
(i,i—Lt+i—1), 2<i<k;
(k,k,k+t—1), i=k+1;
(2k—i+1,2k—i+2,2k+t—i),
k+2<i<2k
Fors=t,
r(ug'|w)
t+i—Lt+i—2i—1), 2<i<k;
(k+t—1 k+t—1k), i=k+1,;
(2k+t—i,2k+t—i+1,2k—i+2),
k+2<i<2k
r(ugtw)
(t—1,,1), i=0;
t+i—1Lt+i—2), 1<i<k;
(k+t—1,k+t—1,k), i=k+1;
(2k+t—i,2k+t—i+21,2k—i+1),
k+2<i<2k

and for 2< s<t -1, we have

r(ug'\w)
(s,s,t—79), i=1;
(s+i—1s+i—-2t—s+i—1), 2<i<k;
(k+s—1,k+s—1k+t—s), i=k+1,;
(2k+s—i,2k+s—i+1,2k+t—s—i+2),
k+2<i<2k
r(ugtw)
(s—1,st—s+1), i=0;

(s+i—1s+i—2t—s+i), 1<i<k;
(k+s—1,k+s—1Lk+t—s), i=k+1,;
(2k+s—i,2k+s—i+1,2k+t

—s—i+1), k4+2<i <2k

It can be seen that for £ s < t, we haver (u2*+2|W) =
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r(u3W) = (k+s—1,k+s—1 k+t—s). If we add the
vertex uf to W. Thend(uf,u??) = k+t—s—1 and
dut,u¥+3) = k+t—s , where 1< s <t. Thus
W =WuU {u}} resolves vertices of2CIR. This yields
B(C20R) < 4whenn=1 (mod 4.

Conversely, we show tha3(C20R) > 3 when
n=0,2,3 (mod 4. Suppose contrarip3(C200R) = 2.
Then by Theoreml.2 we get a contradiction. Thus
B(C20O0R) > 3 when n = 0,2,3 (mod 4. Hence
B(CQDF{) =3 forn=0,2,3 (mod 4, which completes
the proof.C]

4 Metric dimension of generalized antiprism

A generalized antiprismA]' can be obtained by
completing the generalized prise (0P, by edges

{Visravirel 0 < i <n-21 <1 <
m-— 1} U {Vn_17|+1V01| 1 <1 < m-1}. Let
V(AY) = V/(CyOPm) and
E(A,r]n) = E(CnDPm)U{Vi7|+1Vi+17| 0<i<n-21<I<

m—1} U{Vnh_1)+1Vo) : 1 <1 < m—1} be the edge set of
AT, wherei is taken modula. The metric dimension of
antiprism denoted by\? has been determined idg]. In

the next theorem, we determine the metric dimension of

generalized antiprism.

Theorem 4.1.Let A" be the generalized antiprism. Then
for every positive integem > 6, we have

B(A%T‘)Z{a’ if2<m<B5;

>4, if m> 6.

Proof. We denoteV (Af) ={vi; :0<i<n-11<I<
m}. Whenm = 2, A2 > A, (antiprism), and it was proved
in [16] that B(A,) = 3. Now, we prove thap(AT) = 3
for 3<m< 5 andn > 6 by double inequality. We show
thatW = {V2’17Vo¢mTfl J,voﬁm} resolves all vertices oA\
by giving the representations Gi{A') \ W.

Case (1) Whenn = 2k; k > 3. First, we will give the
representations of all vertices of (A7) \ W when

3<m< 4. Forl =1, we haver(vy|W) = (1,1,m— 1),
and
r(vi W) =
(i—2,i,1), 3<i<k
(k— 1k 1Lk+1), i=k+1;
(2k—i+2,2k—i,2k+m—i—1),
k+2<i<2k—1.
For I = m, rivpw) = (I — 1,1,1),
r(Va-21W) = (4,1 - 1,2), r(vac1y |W) = (381 -11)
and
r(vi, W) =
(i+1-3i+1-1,i), 2<i<k-2;
(i+1-32k—1i,i), i=k—1,k;

(2k—i+2,2k—i,2k—i),
k+1<i<2k—3

and for 2 <1 < m- 1, we have
I’(V07||W):( 7I_l7m_|) (Vl|‘W) (I_lvlam_l)’
r(vok—11 /W) = (3,1 =1, m—1+1) and

r(vi W) =
(i+1=3,i+1-1,i), 2<i<k-—1;
(k+1-3,k,k), i =k
(k+1—-2k—1,k+m—-1-1), i=k+1,;
(2k—i+2,2k—i,2k+m—i—1),

k+2<i<2k-2.
Now we will give the representations whem= 5. For

I =1, r(voi|W) = (2,1,4), r(vy|W) = (1,1,4),
r(va; |W)=(1,3,4) and
(v ) (k—=1kk+1), i=k+1;
(Vi W)= 3 (2K —i 42,2k~ i+ 1,2k— i +4),
k+2<i<2k—1.
Forl =2,r(vy W) = (1,1,3), r(vo |W) = (1,2,3) and
. _ ) (kk=1k+1), i=k+1;
MVIW) =9 (ki1 2,2k i, 2k— i+ 3),
k+2<i<2k-1.
Forl=m, r(vyi W) = (4,4,1), r(vak—2/|W) = (4,3,2),
r(vax—1)|W) = (4,3,1) and
(i+2,i+3,i), 2<i<k-2;
r(vijW)=«¢ (k+1,k+1,k-1), i=k—1;
(2k—i+2,2k—i,2k—i), k<i<2k—3
and for 3 < I < m- 1, we have
riviwW) = (- 11 - 2m — 1)
W) = (1 — Ll - 1m — ),
r(Vo—1)|W) = (3,1 —2,m—1 + ) and
( ||\W) =
(i+1-3,i+1-2i), 2<i<k-1;
(k+| 3,k k), i =k;
(2k—i+4+2,2k—i,2k+m—i—1),

k+1<i<2k-2.
Case (2) Whenn = 2k+ 1; k > 3. For this, first we
give the representations when<83m < 4. For| =1,

r(vy|W)=(1,1,m—1), and

r(vi W) =
(i—2,i,i), 3<i<k
(k—1,k,k+1), i=k+1;
(k,k—1,k+m—2), i=k+2;
(2k—i+3,2k—i+1,2k+m—i),

k+3<i<2k

For I = m, riviw) = (l 11,1),

r(vo—1, W) = (4,1 —1,2), r(vax W) = (3,m—1,1) and

I‘(Vi7| ‘W) =
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(i+1=3,i+1-1,i), 2<i<k-1;
(k+| 3,k+1,k), i =k
(k+1 -2k k), i=k+1;
(

2&Kk—i+3,2k—i+1,2k—i+1),
k+2<i<2k—-2.

For 2<1 <m-1, rivg/W) = (21 —1Lm—1),

r(vy[W) = @G - Lim - 1),

r(vox W) = (3,1 —1,m—1+1) and

r(vi |W) =
(i+1=3,i+1-1)i), 2<i<k-—-1;
(i+1-32k—i+1,i), i=kk+1,;

(2k—|+3 2k—i+12k+m—i—I+1),
k+2<i<2k-1.

Now we will give the representations when= 5. For

=1, r(vuW) = (21,4), r(vy|W) = (1,1,4),
r(vs W) =(1,3,4) and
r(vii[W) =
(i—2,i,i), 4<i<k+1;
(k,k,k+2), i =k+2;
(2k—i43,2k—i+2,2k—i+5),
k+3<i<2k
Forl =2,r(vy W) = (1,1,3), r(v2)|W) = (1,2,3) and
r(vi |W) =
(i—1,i,i), 3<i<k
(k,k,k+1), i=k+1:
(2k—i+3,2k—i+1,2k—i+4),
k+2<i<2k
For | =m, r(vy)|W) = (4,4,1), r(vac11|W) = (4,3,2),
r(vax W) = (4,3,1) and
(i+2,i+3,i), 2<i<k-1;
_ ) (k+2,k+1,k), i=k
Vit W) =0 (k=143 2k—i+1,2k—i+1),
K+1<i<2k—2
and for 3 < | < m -1, we have
rvgw) = (I — LI - 2m — 1),
r.(V:I.J |W) = (I - 17' 717m7|)1 r(V2k,| |W) = (3?| 727m
—l+1)and
r (Vi |W) =
(i+1-=3i+1-2,i), 2<i<k-1;
(i+ 32k—|+1|) i=kk+1;
(2k—|+32k i+1L,2k+m—i—1+1),

k+2<i<2k—1.

It can be seen that all vertices &' have distinct
representations with respect %/. This shows that
B(AY) <3for3<m<5andn>6.

Conversely, suppose th8tAT) > 3, where 3< m<5
andn > 6. Suppose on contrary thB{A}') = 2, but then
by Theorem 1.2 we get a contradiction. Hence
B(AM =3,when2< m<5andn>6.00

5 Exchange property for resolving sets in
rotationally-symmetric graphs

We have seen that a sub¥®étof vertices of a grapks is a
resolving set if every vertex i is uniquely determined

by its distances to the vertices o¥. Resolving sets
behave like bases in\ector spacen that each vertex in

the graph can be uniquely identified relative to the
vertices of these sets. But though resolving sets do share
some of the properties of bases in a vector space, they do
not always have the exchange property from linear
algebra. Resolving sets are said to have éxehange
propertyin G if wheneverS andR are minimal resolving
sets forG andr € R, then there exists € S so that

(S\ {s})U{r} is a minimal resolving se#].

If the exchange property holds for a gragh then
every minimal resolving set fo& has the same size and
algorithmic methods for finding the metric dimension of
G are more feasible. Thus to show that the exchange
property does not hold in a given graph, it is sufficient to
show two minimal resolving sets of different size.
However, since the converse is not true, knowing that the
exchange property does not hold does not guarantee that
there are minimal resolving sets of different size.

The following results concerning exchange property
for resolving sets were deduced #.[

Theorem 5.1[4] The exchange property holds for
resolving sets in trees.

Theorem 5.2.[4] For n > 8, resolving sets do not have the
exchange property in wheeal,.

It has been proved recently that exchange property for
resolving sets of necklace grapNs, does not hold.

Theorem 5.3[25] For n > 4, n even, resolving sets of the
necklace grapiNe, do not have the exchange property.

In the next theorem, we show that exchange property does
not hold for resolving sets of quasi flower snarksrior 4.

Theorem 5.4. The exchange property for minimal
resolving sets does not hold in quasi flower snarks for
n>4.

Proof. We consider the following two cases.

Case (i) For n = 2k+ 1, where k > 2. Since
W = {bp,Cp,dn_1} is @ metric basis [see Theoretnl]
and hence a minimal resolving set. Also
W* = {ap,bo,Cp,a1} is @ minimal resolving set. There is
now € W* such thats= W\ {w} is still a resolving set.

If w=ag, thenr(ax|S) = r(dz|S) = (3,3,2). When
w = by, thenr (dz|S) = r(b1|S) = (3,3,2). If w= cp, then
r(dz|S) =r(c1|S) = (3,3,2) and wherw = ay, thenr (dk|S)
=r(ds1|9) = (k+ 1,k+1,k+1). Therefore, we ggW| =
3andW*| =

Case (ii). Forn_ 2k, wherek > 2. SinceW’ = {ag, by,
Co,dn_1} is a metric basis [see Theore2rl] and hence a
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minimal resolving set. AlsWW* = {ap,dp,as,dk,C«} is a
minimal resolving set. There is ne € W* such thatS=
W\ {w} is still a resolving set.

If w= ag, thenr(ax_1|S) =r(b1|S) = (2,2, k,k+1).
Whenw = dyp, then we get (dak_1|S) =r(co|S) = (2,3, k+
L.k). If w=ay, thenr(d1|S) =r(dx-1/|S) = (2,3,k+1,Kk).
If w=dy, thenr(az|S) = r(di|S) = (2,3,1,k) and when
w = ¢, thenr (bg|S) =r(co|S) = (2,1, 3,k+1). Therefore,
W'| = 4 and|W*| = 5.

W) = (i+1—-1k+1—1i—1). In order to have distinct
representations we add the vertex; to W. Then
d(vy1,vi)) =i+1 -2 andd(vy1,Vac—ij) =i+, where
1<i<k-—1 Thus we haveN' =W U {vy1} which
resolvesV(ChJR). This mean tha{3(C,CR) < 3 for
n= 2k, wherek > 2.
Conversely, we show thg(C,OR) > 3 for n = 2Kk,
wherek > 2. Suppose that the sets of vertides 1,v11,
-, Vn—11} and{vog,Vit, -+ ,Vn—1t} induce the inner and

There are minimal resolving sets of different size in outer cycles respectively. Suppose on contrary (&,

both cases.

n>4.0

Hence exchange property for minimaldR) =
resolving sets does not hold in quasi flower snarks for

2, then the following possibilities arise.
(2). If we take any of the basis vertex from the set
{Vo2,v12,"--,V03,V13, --*,Vn-1¢t-1}, then by Theorem

The metric dimension of cartesian product of cycles 1.2 we get a contradiction.

and paths has been determined6hly using the idea of

(2). Without loss of generality, suppose that both basis

doubly resolving sets. In the next theorem, first we find vertices belong to the inner cycle. Then we mawgx as
the metric bases of cartesian product of cycles and patha basis vertex. If we choosg;, where 1<i <2k—1, as
by using the appropriate choice of basis vertices and thea second basis vertex, then we get

we use this result to explore the exchange property for e If i = 1,

resolving sets of cartesian product of cycles and paths.
Theorem 5.5.For every positive integar > 3,

2, if nis odd;
B(GR) = {3, otherwise.

Proof. We denot&/(C,[0R) =
t}.

Case (i) Whenn = 2k+ 1, wherek > 1. We will
show thatW = {vo 1,1} resolves all vertices o€,CIR
by giving the representations ¥{C,JR) \W. Forl =1

{vij:0<i<n-11<I<

(i,k—i), 1<i<k—-1;
r(viy W) = {(2k i+1,i—k), k+1<i<2k
and forl > 2, we have
_ i+l =Lk+1—-i-1), 0<i<k;
r(VuW)—{(2k+|—i,i+l—k—l),k+1§i§2k.

It can be seen that all
representations. It shows thg#(C,OOR) < 2 when
n=2k+1, wherek > 1.

Conversely, we show thg8(C,OR) > 2. Suppose
contrarily that8(C,0JR) = 1, but then from Theorerh.1,
a contradiction. Henc@(C,[JR) = 2 whenn = 2k + 1,
wherek > 1.

Case (ii) Whenn = 2k, wherek > 2. First, we will
give the representations Wf(C,CJR) \ W with respect to
W. Forl =1

(i,k—1i), <i<k
r(vis|W) = {(2k—||—k),k+1§|§2k
and forl > 2, we have
i+l —-Lk+1—-i-1), 0<i<k;
r(vijW)=«¢ (k+1—-i—1i+1-k-1),
k+1<i<2k-1.

It can be seen that ford i <k—1,r(v;||W) = r(va_i||

then

r(Vool{Vo1,Vi,1}) = r(vak-1,1/{vo.1,vi1}) = (1,2)

° If 2 < i < k - 1, then
r(virri{Vo1,Via}) =r(viz2l{vo1, via}) = (i+1,1)

° If i = k, then
r(vii{vo1,vi1}) =r(vak-11{vo1,vi1}) = (L,k—1)

° If k +1 < i < 2k — 2, then
r(vicy,1[{vVo1,vi1}) =r(viz2| {vo1,vi1}) = (2k—i+1,1)

o Ifi =2k—1, thenr(vac21/{Vo1,Vi1}) = r(Vox_1.2]
{vo1via}) =(2,1),

a contradiction in each case.

(3). When one vertex is from inner cycle and other
vertex is from outer cycle. Now we may fixg1 from
inner cycle, if the other vertex ig; where 0<i < 2k—1.

° If i = 0, then
r(via/{Vo,Vit}) =r(Va-11/{Vo1.Vit}) = (L)

o If 1 <i <k thenr(vit—1|{Vo1,Vit}) =r(Vi—1t[{Vo1,
vigd) = (i+t-21)

o Ifk+1<i<2k—1,thenr(vii_1|{Vo1,Vit}) =T
(Vit1tl{vo1,Vit}) = (2k+t —i—2,1), where the indices

vertices have distinct are taken modulo n.

A contradiction in all cases. Hence we hg3¢C,[0R)
=3forn=2k+1, wherek > 2.]

In the next theorem, we study the exchange property
for resolving sets in cartesian product of cycles and path
(generalized prism).

Theorem 5.6.For every positive integem > 4, resolving
sets do not have exchange propertZialR for n=2k+1
whent > 2 and forn = 2k whent > 3.

Proof. Case (i) Forn =2k + 1, wherek > 2 andt > 2.
SinceW = {vp 1,V 1} is a metric basis [see Theoresrb]
and hence a minimal resolving set. A6 = {vp 1,V11,
Vot } is @ minimal resolving set. There is moe W* such
thatS=W=*\ {w} is still a resolving set.

If w=vg1, thenr(vp1|S) = r(vi2|S = (1,t —1).
Whenw = vy 1, we getr(vy11|S) = r(vx1|S) = (1,t) and
(t —1,1).

if w = voy, then r(vot|S) = r(vai-1|S) =
Therefore|W| = 2 and/W*| = 3.
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Case (ii) For n = 2k, wherek > 2 andt > 3. Since
W' = {vo1,V1,V1,1} iS @ metric basis [see Theoresrf]
and hence a minimal resolving set. A" = {vp 1, V1 2,
Vi2,Vok—1,2} iS @ minimal resolving set. There is moe
W* such thaS=W*\ {w} is still a resolving set.

If w=vp 1, thenr(vy1|S) =r(v13|S) = (1,k,3). When
W = V12, then we ger (Voz|S) = r(va-11|S) = (1,k,1).
If w= v 2, then forn = 4 we have (v21|S) =r(vo3|S) =
(2,2,2) and forn > 6 we have (v22|S) =r(v13|S) = (3,1,
3). And whenw = vy_1 2, we getr(v11]S) =r(Vo2|S) =
(1,1,k). Therefore|W’'| = 3 and|W*| = 4.

square cycle with a path. It can be seen that these families
of graphs have bounded or constant metric dimension,
that is their metric dimensions do not depend upon the
number of vertices they have. For generalized antiprism
we can find the exact value of its metric dimension when
2 <m< 5. It has been shown that exchange property does
not hold for minimal resolving sets of generalized
antiprism when 3 m < 5, generalized prism and quasi
flower snarks. We close this section by raising questions
that naturally arise from the text.

Open Problem 1 Determine the exact value for the

In each case, there are minimal resolving sets ofmetric dimension of generalized antiprismfy' Avhen
different size. Hence exchange property does not hold irm > 6.

C,OPR for n = 2k+ 1 whent > 2 and forn = 2k when
t>3.0

The exchange property for
generalized antiprismAT, where 3< m < 5 will be
discussed in the next theorem.

Theorem 5.7 For every positive integem > 6, resolving
sets do not have exchange propertpfiwhen 3< m<5.

Proof. Case (i) Forn= 2k+ 1, wherek > 3. SinceW =
{vzyl,vo‘@}l J7vo‘,m} is a metric basis [see Theorefnl]

and hence a minimal resolving set. AMO" = {vp 2, V1 2,
Vom, Vi2} is @ minimal resolving set. There is moc W*
such thaS=W*\ {w} is still a resolving set.

If  w = vgo, then r(Vk+171|S) = r(vk+1,2|
S = (kk + 1,1). When w = vi, we get
r(vi1lS = r(vaz|S = (L m—21,k). If w=vom, then
r(viaS = r(voslS = (1,1,k) and whenw = v », then
r(vo1|S) = r(v2|S) = (1,2,m—1). Therefore, we get
|W| =3 andW*| = 4.

Case (i) Forn = 2k, wherek > 3. SinceW = {v»1,
Vo,{ﬁ;ﬁlj ,Vom} is a metric basis [see Theoretrd] and hen-

ce a minimal resolving set. Als&/* = {Vop1,V12,Vk_12,
Vor—12} is @ minimal resolving set. There is moc W*
such thaS=W*\ {w} is still a resolving set.

If w=vg1, thenr(vi1|S) =r(vo3|S = (1.k—1,2).
Whenw = vy , then any pair of vertices frorfivax_1 m,
Vok—2m, Vok—3m} have the same representation{ 1, k
or k+1, m—2) with respect toS. If w= v,_12, then
r(Mkpr2l S = r(Vir13lS) = (k— 1k k—2) and when
w = Vok—1.2, then we have
r(vi1lS = r(vo2|S) = (1,1,k—1). Therefore,|W| = 3
and|wW*| = 4.

Since there are minimal resolving sets having different

size, hence exchange property does not hollfior n >
6 and when X m<5.0

6 Conclusion

The problem of determining whethg®(G) < k is an

Open Problem 2 Determine the exact value for the
metric dimension of quasi flower snarks, ®r n=0

resolving sets of (mod 2.

Open Problem 3 Determine the exact value for the
metric dimension of &R when n=1 (mod 4).
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