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Abstract: Due to importance of the slip effect on modeling the boundary layer flows of nanofluids, theoretical and numerical
investigations have been introduced in this paper for studying the effect of a partial slip boundary condition on the heat transfer of
nanofluids over a stretching sheet. The exact solutions of the investigatingmodel were obtained in terms of exponential, Gamma,
and incomplete Gamma functions at some values of the physical parameters. These solutions were then numerically validated by using
Chebyshev pseudospectral differentiation matrix (ChPDM) technique.The numerical results reveal that this approach is really effective,
very accurate, and convenient in studying the similar problems.
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1 Introduction

In the recent times, the study of fluid flow over a
stretching sheet has gained much interest because of its
numerous industrial applications for example, in the
polymer processing of a chemical engineering plant and
in metallurgy. Flows due to a continuously moving
surface are encountered in several processes of thermal
and moisture treatment of materials, predominantly in
processes involving continuous pulling of a sheet through
a reaction zone; as in metallurgy, in textiles and paper
industries, and in the manufacture of glass sheets and
crystalline materials. In addition, nanotechnology is
nowadays considered as a significant factor which affects
the industrial revolution of the current century. Nanofluids
are base–fluids containing suspended nanoparticles.
These nanoparticles are typically made of metals, oxides,
carbides, or carbon nanotubes. The common base fluids
include water, ethylene glycol, toluene and oil. Therefore,
many researchers have focused on modeling the thermal
conductivity and examined different viscosities of
nanofluids over the past decade, etc ([1], [2], [3]).

Choi [4] may be the first author to use the term
“nanofluid”, where it was reported that one of the
promising nanofluids applications is heat transfer
enhancement. In [5], Choi et al. showed that the addition
of a small amount (less than 1% by volume) of
nanoparticles to conventional heat transfer liquids
increased the thermal conductivity of the fluid up to
approximately two times. Masuda et al. [6], Lee et al. [7],
Xuan and Li [8], and Xuan and Roetzel [9] stated that
with low nanoparticles concentrations (1–5 Vol %), the
thermal conductivity of the suspensions can increase
more than 20%. Such an increase depends mainly on
several factors such as the form and size of the particles
and their concentration, the thermal properties of the
base–fluid as well as those of the particles. Hence, the
nanofluids can constitute an interesting alternative for
advanced applications in heat transfer in the future,
especially those in micro scale, see for example [7].

Recently, some interest has been given to the study of
the boundary layer flow of nanofluids past a stretching
sheet. In [10], Nield and Kuznetsov discussed the
Cheng–Minkowycz problem for natural convective
boundary layer flow in a porous medium saturated by a
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nanofluid. Besides, Kuznetsov and Nield [11] investigated
the natural convective boundary–layer flow of a nanofluid
past a vertical plate. Further attempts in this direction
have been done by Khan and Pop [12] and later in the
same year by Bachok et al. [13] who studied the steady
boundary layer flow of a nanofluid past a moving
semi–infinite flat plate. Very recently, the model obtained
in [12] has been solved theoretically by Aly and Ebaid
[14], where exact solutions at several particular values of
the physical parameters have been reported. However, the
slip effect at the wall was ignored in all of the previous
studies.

It has been shown in [15] that nanofluidic flow usually
exhibits partial slip against the solid surface, which can be
characterized by the so–called slip length (around 3.4–68
mm for different liquids). Accordingly, Noghrehabada et
al. [16] discussed the effect of partial slip boundary
condition on the flow and heat transfer of nanofluids past
stretching sheet at constant wall temperature.
Furthermore, the no-slip condition is no longer valid for
fluid flows at the micro and nano scale and, instead, a
certain degree of tangential slip must be allowed (see for
example [17] and [18]).

The objective of the present research is therefore to
extend the work of Noghrehabada et al. [16], stated in
Section2, where new analytical and numerical results are
deduced at some values of the investigating physical
parameters. In general, it is shown that the current exact
solutions are obtained in the view of exponential, Gamma
and incomplete Gamma functions with a simple but very
effective manner. They are then validated and plotted by
using Chebyshev pseudospectral differentiation matrix
(ChPDM) approach, introducing briefly in Section3.
Moreover, it is proved that the exact analytical solutions
of the present study can be easily reduced to those
obtained in [14] when the slip factor finishes.

2 The studying model

In this paper, we focus on the physical model derived by
Noghrehabadi et al. [16] and given by

f ′′′(η)+ f (η) f ′′(η)− [ f ′(η)]2 = 0, (1)
1

Pr
θ ′′(η)+ f (η)θ ′(η)+Nb β ′(η)θ ′(η)

+Nt [θ ′(η)]2 = 0, (2)

β ′′(η)+Le f (η)β ′(η)+
Nt
Nb

θ ′′(η) = 0, (3)

subject to the following boundary conditions:

f (0) = 0, f ′(0) = 1+λ f ′′(0), θ(0) = 1, β (0) = 1, (4)

f ′(∞) = 0, θ(∞) = 0, β (∞) = 0, (5)

where f , θ and β are the dimensionless of the stream
function, temperature and nanoparticle volume fraction,
respectively. Further, primes denote to differentiation with
respect to the similarity variableη andPr, Le, Nb, Nt and

λ are the Prandtl number, Lewis number, Brownian
motion parameter, thermophoresis parameter and slip
factor, respectively. Whenλ = 0, i.e. with no effect of the
slip parameter, the system (1)–(5) is reduced to that one
obtained in [12]. In addition, the exact solution of Eq. (1)
with the boundary conditions in (4)–(5) can be easily
found as ([19]–[20])

f (η) = ε
(

1− e−εη) , where λε3+ ε2−1= 0, (6)

whereε is the maximal root of the equation. By Descartes’
rule of signs and from the fact thatλ > 0, there is only
one positive root; this is the root to be considered [18].
Therefore, the given system reduces to the following set of
ordinary differential equations:

1
Pr

θ ′′+
[

ε
(

1− e−εη)+Nb β ′
]

θ ′+Nt
[

θ ′
]2

= 0, (7)

β ′′+Le ε
(

1− e−εη)β ′+
Nt
Nb

θ ′′ = 0, (8)

where the boundary conditions onθ(η) and β (η) are
given in Eqs. (4) and (5). According to Kuznetsov and
Nield [11], the quantities of practical interest are the
reduced Nusselt number(Nur) and reduced Sherwood
number(Shr) which are defined by

Nur =−θ ′(0), Shr =−β ′(0). (9)

3 ChPDM approach

Chebyshev pseudospectral differentiation matrix
(ChPDM) technique was applied successfully by Aly et
al. [21], Guedda et al. [22], Aly and Ebaid ([19], [23]) and
Aly and Hassan [24]. It is briefly introduced here.
On supposing that the domain of the problem is[0,η∞],
then the following algebraic mapping

z =
2η
η∞

−1 (10)

transfers the domain to the Chebyshev one, i.e.[−1, 1]. It
is known that the Chebyshev polynomials are usually
taken with their associated collocation points in the
interval[−1, 1] given by

z j = cos
( π

N
j
)

, j = 0,1, .....,N. (11)

Therefore, thekth derivative of any function, sayF(z), at
these collocation points can be approximated by the
equation:

F(k) = D(k)F, (12)

where D(k)F is the Chebyshev pseudospectral
approximation ofF(k) where
F = [F(z0),F(z1), .....,F(zN)]

T and
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F(k) = [F(k)(z0),F(k)(z1), .....,F(k)(zN)]
T . The entries of

the matrixD(k) are given by,

d(k)
i, j =

2φ j

N

N

∑
r=k

r−k

∑
n=0

(n+r−k)
even

φr bk
n,r (−1)[

r j+ni
N ] zr j−N[ r j

N ]
zni−N[ ni

N ],

(13)
whereφ j = 1, except forφ0 = φN = 1

2 and

bk
n,r =

2kr
(k−1)! cn

(v−n+ k−1)! (v+ k−1)!
(v)! (v−n)!

, (14)

where 2v = r + n − k and c0 = 2, c j = 1, j ≥ 1. The

elementsd(k)
0,1 are the major elements concerning its

values. Accordingly, they bear the major error
responsibility comparing the other elements. It is shown

that the error ind(1)
0,1 is of orderO(N2εr), whereεr is the

machine precision [25].
On the view of Refs. [21] to [24], on applying ChPDM
approach; derivatives of the functionf (η), θ(η) and
β (η) at the pointszi are given by

χ(k)(zi) =
N

∑
j=0

d(k)
i, j χ(z j),

χ ≡ f , θ , β ,k = 1,2,3, i = 1,2, ...,N. (15)

Therefore, Eqs. (1)–(5) become
N

∑
j=0

d(3)
i, j f (z j)+ f (zi)

(η∞

2

) N

∑
j=0

d(2)
i, j f (z j)

−
(η∞

2

)

(

N

∑
j=0

d(1)
i, j f (z j)

)2

= 0. (16)

1
Pr

N

∑
j=0

d(2)
i, j θ(z j)+ f (zi)

(η∞

2

) N

∑
j=0

d(1)
i, j θ(z j)

+Nb
N

∑
j=0

d(1)
i, j β (z j)

N

∑
j=0

d(1)
i, j θ(z j)

+Nt

(

N

∑
j=0

d(1)
i, j θ(z j)

)2

= 0. (17)

N

∑
j=0

d(2)
i, j β (z j)+Le f (zi)

(η∞

2

) N

∑
j=0

d(1)
i, j β (z j)

+
Nt
Nb

N

∑
j=0

d(2)
i, j θ(z j) = 0. (18)

f (zN) = 0,
(η∞

2

) N

∑
j=0

d(1)
N, j f (z j) =

(η∞

2

)2
+λ

N

∑
j=0

d(2)
N, j f (z j),

θ(zN) = 1, β (zN) = 1, (19)
N

∑
j=0

d(1)
0, j f (z j) = 0, θ(z0) = 0, β (z0) = 0, (20)
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Fig. 1: Comparison of ChPDM (solid lines) and Runge–Kutta–
Fehlberg scheme (circles) [16] solutions for f ′(η) and f ′′(η) at
λ = 0,1,3, Pr = Le = 10 andNb = Nt = 0.5.
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Fig. 2: ChPDM (solid line) and Runge–Kutta–Fehlberg scheme
(circles) [16] solutions forθ(η) at λ = 0,1,3,10,Pr = Le = 10
andNb = Nt = 0.1

respectively.

Before starting the current analysis, ChPDM technique is
applied by using the system (16)–(20). Figs.1, 2 and3(a)
and (b) show the comparison between ChPDM and
Runge–Kutta–Fehlberg scheme [16] for the solutions of
f ′(η) and f ′′(η), θ(η) and β (η), respectively, for
various values of the investigated parameters. As shown,
these figures are very close to Figs. 2, 3 and 4,
respectively, given in [16]. Hence, without any hesitation,
ChPDM technique may be applied with highly trust in the
next section.
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Fig. 3: ChPDM (solid line) and Runge–Kutta–Fehlberg scheme
(circles) [16] solutions forβ (η) at λ = 0,1,3,10,Pr = Le = 10
andNb = Nt = 0.1.

4 Exact solutions for special cases at Nt = 0

The possibility of obtaining exact solutions for the
present governing equations, i.e. the system (1)–(5), at
several particular values of the physical parameters are
introduced in this section with validating them by using
the ChPDM approach. In addition, it is proved that the
results obtained by Aly and Ebaid [14] are a special case
of the present ones when there is no effect of the slip
parameter, i.e. atλ = 0.

4.1 Case 1: at Nb 6= 0

At Nt = 0, the system (7)–(8) reduces to two coupled
ordinary differential equations:

θ ′′(η)+Pr
[

ε
(

1− e−εη)+Nbβ ′(η)
]

θ ′(η) = 0, (21)

β ′′(η)+Le ε
(

1− e−εη)β ′(η) = 0, (22)

On integrating Eq. (22) twice w.r.t. η and using the
boundary conditions (4−5) we obtain

β (η) = 1+ eLeβ ′(0)
∫ η

0
e−εLe[σ+ 1

ε e−εσ ]dσ . (23)

On using the assumptionµ = Le e−σ , the last integration
can be analytically performed in the terms of Gamma and

incomplete Gamma functions as follows:
∫ η

0
e−εLe[σ+ 1

ε e−εσ ]dσ

=
1
ε
(Le)−Le

∫ Le

Le e−εη
µLe−1e−µ dµ

=
1
ε
(Le)−Le

[

∫ ∞

Le e−εη
µLe−1e−µ dµ −

∫ ∞

Le
µLe−1e−µ dµ

]

=
1
ε
(Le)−Le [Γ (Le, Le e−εη)−Γ (Le, Le)

]

, (24)

whereΓ (a, z) =
∫ ∞

z µa−1e−µ dµ is the incomplete Gamma
function. Substituting (24) into Eq. (23), it then results

β (η)= 1+
1
ε
(e/Le)Leβ ′(0)

[

Γ (Le, Le e−εη)−Γ (Le,Le)
]

.

(25)
Applying the boundary conditionβ (∞) = 0, we get

1
ε
(e/Le)Leβ ′(0) =

−1
Γ (Le)−Γ (Le, Le)

. (26)

On inserting (26) into (25), we obtainβ (η) in an exact
form as

β (η) =
Γ (Le)−Γ (Le, Le e−εη)

Γ (Le)−Γ (Le, Le)
. (27)

It should be noted that whenε = 1, i.e. atλ = 0 (no effect
of the slip factor), Eq. (27) reduces to that special case in
[14]. Inserting (27) into (21) and repeating the same
analysis made above, we obtainθ(η) in a closed
analytical form as

θ(η) = 1− I(η)
I(∞) ,

I(η) =
∫ η

0 e
−Pr

[

ε
(

σ+ e−εσ
ε

)

+Nb

(

Γ (Le)−Γ (Le,Le e−εη )
Γ (Le)−Γ (Le,Le)

)]

dσ .(28)

According to (9), the exact values ofNur andShr numbers
are given by

Nur =
e−Pr(1+Nb)

I(∞)
, Shr =

ε(Le/e)Le

Γ (Le)−Γ (Le, Le)
. (29)

Fig. 4 shows comparison of the exact and numerical
solutions for β (η) at different values of
Nb = 0.1,0.2,0.3,0.4,0.5 whenλ = 1 andPr = Le = 10.
This figure indicates that there is no effect ofNb and is
clearly matching with Eq. (27), where Nb is not exist.
Therefore, the value ofNb is considered as 0.1 in the rest
of this section.
Exact and numerical solutions forβ (η) at different values
of λ = 0,1,3,5,10 whenNb = 0.1 andPr = Le = 10 are
plotted in Fig. 5, which shows a very good agreement
between these two types of solutions. In addition, as
expecting from [16], the profiles ofβ (η) increase with
the increase inλ .
Profiles of β (η) in the exact and numerical view at
different values ofLe = 1,3,10,15,25 whenNb = 0.1
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η
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Exact

0.1,0.2,0.3,0.4,0.5Nb =

Fig. 4: Exact (dotted line) and numerical (solid line) solutions for
β (η) atNb= 0.1,0.2,0.3,0.4,0.5 whenλ = 1 andPr = Le= 10.
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Fig. 5: Exact (dotted line) and numerical (solid line) solutions for
β (η) at Nb = 0.1, λ = 0,1,3,5,10 andPr = Le = 10.

andPr = 10 are presented in Fig.6 for (a) λ = 1 and (b)
λ = 3. Besides the typical matching of the exact and
numerical solutions at the specific value ofλ , these
profiles decrease with the increase inLe. However,η∞
increase with the increase inλ .

4.2 Case 2: at Nb 6= 0 and Pr = Le = 1

In this case a simpler exact expression forβ (η) is given
below

β (η) = δ
(

1− e−e−εη
)

, where δ =
(

1− e−1)−1
.

(30)
In order to determineθ(η), the integral in (28) should be
first performed. By insertingPr = Le= 1 intoI(η) defined
in (28), yields

I(η) =
1

εδNb

[

e−Nb β (η)− e−Nb
]

, (31)

I(∞) =
1

εδNb

[

1− e−εNb
]

. (32)

2 4 6 8
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η

( )β η

1,3,10,15,25Le =

(a)

2 4 6 8 10
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0.4

0.6

0.8

1.0

1,3,10,15,25Le =

Numerical

Exact

η

( )β η

(b)

Fig. 6: Exact (dotted line) and numerical (solid line) solutions for
β (η) atNb = 0.1, Pr = 10 andLe = 1,3,10,15,25 for (a)λ = 1
and (b)λ = 3.

Therefore

θ(η) =
1− e−Nb β (η)

1− e−Nb . (33)

Here, the exact values ofNur andShr numbers are given
respectively by

Nur =
εδNb e−(1+Nb)

1− e−Nb , Shr =
ε

e−1
. (34)

The results in this section are again the same ones that
obtained in [14] whenε = 1, i.e. atλ=0.

Fig. 7(a, b) shows the comparison ofβ (η) and θ(η) in
the exact (dotted line) and numerical (solid line) view at
different values ofλ = 0,1,3,10 whenLe = Pr = 1 for
(a) Nb = 0.1 and (b)Nb = 0.5. In addition to the typical
matching of these two type of solutions at the specific
value ofλ , these profiles increase with the increase inλ .
It should be also noted thatβ (η) andθ(η) behave in the
same manner. However,θ(η) > β (η) with a slightly
bigger difference atNb = 0.5.

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1644 E. H. Aly et. al. : Analytical and Numerical Investigations for the Flow and...

η

(a)

2 4 6 8 10 12

0.2

0.4

0.6

0.8

1.0

1,3,5,10λ =

( )θ η

Numerical
Exact( )β η

1,3,5,10λ =

η

(b)

2 4 6 8 10 12

0.2

0.4

0.6

0.8

1.0

( )β η

( )θ η

Numerical
Exact

Fig. 7: Exact (dotted line) and numerical (solid line) solutions for
β (η) andθ(η) at Nb = 0.1, Le = Pr = 1 andλ = 0,1,3,10 for
(a) Nb = 0.1 and (b)Nb = 0.5.

4.3 Case 3: at Nb = 0

In this case, the system (7−8) reduces to a single boundary
value problem forθ while the boundary value problem for
β becomes ill–posed and is of no physical significance.
The BVP forθ becomes

θ ′′(η)+Pr ε
(

1− e−εη)θ ′(η) = 0, (35)

whereθ(0) = 1 andθ(∞) = 0. The exact solution of the
current case is given as

θ(η) =
Γ (Pr)−Γ (Pr, Pr e−εη)

Γ (Pr)−Γ (Pr, Pr)
. (36)

Differentiating (36) w.r.t η , we get the reduced Nusselt
number as

Nur =
ε(Pr/e)Pr

Γ (Pr)−Γ (Pr, Pr)
. (37)

5 Conclusion

New theoretical and numerical investigations have been
conducted in this paper for studying a system of ordinary
differential equations describing the slip effect on the
boundary layer flow of nanofluids flow with heat transfer.
The theoretical analysis resulted in a set of exact
solutions, in terms of exponential, Gamma, and
incomplete Gamma functions, at some values of the
studying physical parameters;Nt, Nb, Pr and Le. In
addition, the numerical results, achieved by using the
ChPDM technique, confirm its ability for studying the
similar problems with high trust; even if the exact
solutions are not available.
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