
Appl. Math. Inf. Sci.8, No. 4, 1583-1593 (2014) 1583

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/080412

Efficient Inference of AS-Level Paths in the Internet
Qixin Gao1, Feng Wang2 and Lixin Gao3,∗

1 Department of Computer Science, Northeastern University, Qinhuangdao, China
2 School of Engineering and Computational Science, Liberty University,Lynchburg, VA 24502, USA
3 Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA 01003, USA

Received: 13 Jul. 2013, Revised: 15 Oct. 2013, Accepted: 16 Oct. 2013
Published online: 1 Jul. 2014

Abstract: Routing protocols maintain connectivity of Internet routers and hosts anddetermine the path that a packet traverses. Inferring
Internet paths is critical for evaluating the performance of Internet applications and services, such as cloud services and content delivery.
Unlike intra-domain routing protocols, which typically use the shortest paths, inte-domain routing protocol apply local policies for
selecting routes/paths and propagating routing information. These routingpolicies are typically constrained by contractual commercial
agreements between ASes. It is well-known that routing policies can impact the AS path that an AS may select for delivering a
packet. Thus, the ability to infer the AS-level paths is critical to evaluate the impact of routing policies on the performance of Internet
applications and services. In addition, inferring AS-level paths is also important for content providers, such as Google and Amazon,
to determine routing policies to ensure small latency in delivering content. However, inferring AS-level paths is challenging. Internet
path selection largely depends on routing policies, which in turn are determined independently by network administrators and are
considered as confidential information. In this paper, we present three common routing policies in the Internet and formulate the
problem of inferring routing policy conforming AS-level paths. We present efficient algorithms for inferring the Internet AS-level
paths. The algorithms are proved to be optimal in terms of the ability of derive the policy-conforming AS-level paths. We further
quantify the efficiency of these algorithms.

Keywords: BGP, policy-conforming path, AS-level path, algorithm

1 Introduction

With the continued growth of the Internet, large-scale
Internet applications and services, such as cloud
computing, on-line social applications, and content
delivery, are widely deployed. The performance of those
applications and services depends on the underlying
routing protocols and routing policies. Routing within an
Autonomous System (AS) is controlled by intra-domain
protocols such as OSPF (Open Shortest Path First) and
IS-IS (Intermediate System to Intermediate System),
while routing between ASes is exchanged by an
inter-domain routing protocol. Border Gateway Protocol
(BGP) [20] is an inter-domain routing protocol that
allows Autonomous Systems (ASes) to apply local
policies for selecting routes and propagating routing
information. These routing policies are typically
constrained by contractual commercial agreements
between ASes. It is well known that routing policies can
impact the AS path that an AS may select for delivering a
packet. A route in the Internet may take a longer AS path

than the shortest AS path due to routing policies [18,19,
7].

The ability to infer/predict the AS-level paths is
critical to evaluate the impact of routing policies on the
performance of Internet applications and services.
However, inferring AS-level paths is not challenging.
First, Internet path selection largely depends on routing
policies, which in turn are defined independently by
network operators in each individual AS and are
considered as confidential information. Second, using
traceroute probing to infer a large set of end-to-end paths
is resource consuming. In addition, access to a large
collection of hosts is challenging. Most of the studies on
the Internet paths [5] focus on router-level path or on
inferring AS-level paths from traceroute [6,7,8]. These
studies are limited in the scope since traceroute data is
typically collected from only a few vantage points.

In this paper, we present three common routing
policies and formulate the problem of inferring AS-level
paths in the Internet. In particular, we exploit the BGP
routing tables from several vantage points, e.g.,

∗ Corresponding author e-mail:lgao@ecs.umass.edu

c© 2014 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/080412


1584 Q. Gao et. al. : Efficient Inference of AS-Level Paths...

RouteViews [16] and the RIPE RIS [17], to infer the AS
relationships. Based on the AS relationships, we present
three common properties of the routing policies. First, it
is typical that an AS does not transit traffic between its
providers or peers. Second, it is common that an AS
prefers its customer route over its provider or peer routes.
Third, it is common that an AS prefers its peer routes over
its provider routes. Based on these three properties, we
formulate the problems of deriving the shortest path that
conforms to these properties. We prove that it is possible
to infer the shortest AS-level paths that conform to
routing policy properties. Finally, we present several
algorithms to infer the AS-level paths that conform to the
three properties, and quantify the efficiency of the
algorithms.

The remainder of the paper is structured as follows.
Section 2 presents an overview of AS-level topology,
commercial agreements, and common routing policies. In
Section 3, we present an algorithm that computes the
paths that conform the no-valley and prefer-customer
routing policy, and an algorithm that conforms to
no-valley, prefer-customer, and prefer-peer-over-provider
routing policy. Section4 presents an algorithm that
computes the paths that conform to the no-valley routing
policy. In Section5, we review the related work. We
conclude the paper in Section6 with a summary.

2 Background

In this section, we first review the AS-level topology
background and focus on annotating the topology with
commercial relationships. We then describe routing
policies commonly deployed in the Internet.

2.1 Internet Topology and Commercial
Relationships

The Internet consists of a large collection of hosts
interconnected by networks of links and routers, which is
partitioned into thousands of autonomous systems (ASes).
An AS has its own routers and routing policies, and
connects to other ASes to exchange traffic with remote
hosts. A router typically has very detailed knowledge of
the topology within its AS, and limited reachability
information about other ASes. Figure1 shows an example
of interconnectivity between ASes in the Internet.

Since we mainly concern AS-level paths in this paper,
we model the connectivity between ASes in the Internet
using an AS graphG = (V,E), where the node setV
consists of ASes and the edge setE consists of AS pairs
that exchange traffic with each other. Note that the edges
of AS graph represent logical connections between ASes
and do not represent the form of the physical connection.
The logical connection indicates that the two ASes
exchange traffic. Such traffic exchange can occur at

Fig. 1: An AS graph representing AS-level connectivity

multiple physical connections such as at a public
exchange point or directed connected link. Further the
physical connection at an exchange point does not
necessarily mean a logical connection. Each AS in the
Internet is represented by a 16-bit AS number, which
brings to a total of 65,536 possible ASes. In 2013, the
Internet has at least 43,000 ASes in use.

Routing policies are constrained by the commercial
contractual agreements negotiated between administrative
domain pairs. These contractual agreements include
customer-providerand peering. A customer pays its
provider for connectivity to the rest of the Internet. A pair
of peers agree to exchange traffic between their respective
customers free of charge. A mutual-transit agreement
allows a pair of administrative domains to provide
connectivity to the rest of the Internet for each other. This
mutual-transit agreement is typically between two small
administrative domains such as local ISPs who are
located close to each other and who can not afford
additional Internet services for better connectivity.

AS relationships are the key in determining AS paths.
In order to represent the relationships between ASes, we
use anannotated AS graph– a partially directed graph
whose nodes represent ASes and whose edges are
classified into provider-to-customer, customer-to-
provider, and peer-to-peer edges. Furthermore, only
edges between providers and customers in an annotated
AS graph are directed. Figure2 shows an example of an
annotated AS graph. Note that when traversing an edge
from a provider to a customer in a path, we refer to the
edge as aprovider-to-customer edge. When traversing an
edge from a customer to a provider, we refer to the edge
as acustomer-to-provider edge. We call the edge between
two ASes that have a peer-to-peer relationship a
peer-to-peer edge. When an AS pair (u,v) has a
provider-to-customer relationship, this implies that(v,u)
has a customer-to-provider relationship. Throughout this

c© 2014 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.8, No. 4, 1583-1593 (2014) /www.naturalspublishing.com/Journals.asp 1585

Fig. 2: An Annotated AS graph representing contractual
relationships between connected ASes

paper, we use the term “provider-to-customer
relationship” to imply both provider-to-customer and
customer-to-provider relationships whenever it is clear.

Furthermore, we assume that provider-to-customer
relationships are hierarchical. That is, there is no cycle
among the provider-customer relationships. More
formally, consider that the annotated AS graph consisting
of only provider-to-customer edges, the graph is a
directed acyclic graph,i.e., there is no cycle in the graph.
This is a reasonable assumption in practice since it is
unlikely that an AS’s indirect provider is a customer of
the AS, since an AS is typically a customer of an AS with
a larger geographic coverage. Even in the presence of
complex AS relationships [9], it is possible that
provider-customer relationships are hierarchical for a
specific destination.

2.2 Routing Policy

Routing policies typically conform to the commercial
relationships between ASes. A customer pays its provider
for connectivity to the rest of the Internet. A pair of peers
agree to exchange traffic between their respective
customers free of charge. A mutual-transit agreement
allows a pair of administrative domains to provide
connectivity to the rest of the Internet for each other. The
commercial contractual relationships between ASes
translate into the export rule that an AS does not transit
traffic between two of its providers and peers. Formally,
we definecustomer(a), peer(a), and provider(a) as the
set of customers, peers, and providers ofa, respectively.
We classify the set of routes in an AS into customer,
provider, and peer routes. A router of AS u is acustomer
(provider, or peer) routeif the first consecutive AS pair in
r.as path has a provider-to-customer (customer-to-
provider, or peer-to-peer) relationship. Given a router,
function f irst(r) is used to return the first consecutive AS
pair in the route. More precisely, let

r.as path= (u1,u2, . . . ,un). If f irst(r.as) = (u1,u2) is a
provider-to-customer (customer-to-provider or peer-to-
peer) edge, thenr is a customer (provider or peer) route.
An AS selectively provides transit services for its
neighboring ASes. The selective export rule translates
into no-valleyrouting policy. Intuitively, if we image that
a provider is always above its customers and two peering
ASes are at the same level, then once an AS path goes
down or remains at the same level, it does not go up or
remain at the same level.

Furthermore, a router is classified as a customer route
of a if f irst(r.as path) ∈ customer(a), a private-peer
route if f irst(r.as path) ∈ peer(a), or a provider route if
f irst(r.as path) ∈ provider(a). The AS relationships
translate into the following rules that govern BGP export
policies [10,11]; we refer to these rules as theselective
export rules.

– Exporting to a provider: In exchanging routing
information with a provider, an AS can export its
routes and its customer routes, butusually does not
exportits provider or peer routes. That is, an AS does
not provide transit services for its provider.

– Exporting to a customer:In exchanging routing
information with a customer, an AS can export its
routes and its customer routes, as well as its provider
and peer routes. That is, an ASdoesprovide transit
services for its customers.

– Exporting to a peer: In exchanging routing
information with a peer, an AS can export its routes
and its customer routes, butusually does not exportits
provider or peer routes. That is, an AS doesnot
provide transit services.

As a result of the above export polices, paths received
by an AS have theno-valley property. In a no-valley path,
after traversing a provider-to-customer or peer-to-peer
edge, it can not traverse a customer-to-provider or
peer-to-peer edge. In other words, after traversing a
provider-to-customer or peer-to-peer edge, the AS path
must traverse provider-to-customer edges. That is, in a
no-valley AS path(u1,u2, . . . ,un), there is i such that
0 ≤ i < n + 1 and for all 0< j < i, (u j ,u j+1) is a
customer-to-provider edge,(u j ,u j+1) must be a
provider-to-customer edge for anyi + 1 < j < n, and
(ui+1,ui+2) can be either a peer-to-peer or
provider-to-customer edge. For example, in Figure2, AS
paths (1, 4, 6, 2) and (1, 4, 5) are no-valley paths while
aspath (4, 5, 2) and (4, 1, 2, 6) are not no-valley paths.
Note that the selective export rule ensures that BGP
routing table entries contain only no-valley AS paths. For
example, if AS path (1, 4, 3) appears in a BGP routing
table, then AS 4 exports its provider route (3) to its
provider AS 1. This violates the selective export rule.

In addition to the no-valley routing policy, an AS
typically chooses a customer route over a route via a
provider or peer since an ISP does not have to pay its
customer to carry traffic or maintain a traffic volume ratio
between the traffic from and to a peer. In addition to the

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1586 Q. Gao et. al. : Efficient Inference of AS-Level Paths...

prefer-customer property, an AS might choose a peer
route over a provider route since an AS has to pay for the
traffic its provider carries for it. Note that these import
polices donot restrict the preference among customer
routes or among provider or peer routes, which provides
ISPs with significant flexibility in selecting local policies.
Formally, we have the following import policies for ASa:

– Prefer-customer:If f irst(r1.as path) ∈ customer(a)
and f irst(r2.as path) ∈ peer(a) ∪ provider(a), then
r1.loc pre f > r2.loc pre f.

– Prefer-peer-over-provider:If f irst(r1.as path) ∈

peer(a) and f irst(r2.as path) ∈ provider(a), then
r1.loc pre f > r2.loc pre f.

Note that each AS has economic incentive to follow
the import routing policies, since traffic through a provider
route will lead to payment to the provider. Further, these
routing policy guidelines can ensure routing stability of
the global Internet [12].

Based on import policies, each AS selects its best
route among all received routes and announced its best
route to neighbors based on its export policies. The route
selection process determines the best route using the
local-preference attribute first. It chooses the route with
the highest local preference. If there is a tie, it should
choose a route with the shortest AS path length. Note that
this is a simplified version of the BGP decision process
since we have not considered other possible attribute such
as MED or IGP weight. However, for the sake of deriving
possible AS-level paths, this is the first order
approximation to estimate AS-level paths.

2.3 Policy-conforming Paths

Based on the analysis of possible routing policies, we have
the following three common routing policies.

– No-Valley Routing Policy: each AS exports all routes
that follow the selective export rule. Furthermore, each
AS sets local preference for all routes to be the same.
That is, each AS chooses an AS path that is the shortest
among received paths.

– No-Valley-and-Prefer-Customer (No-Valley-PC)
Routing Policy: each AS exports all routes that follow
the selective export rule. Furthermore, each AS follow
the prefer-customer import policy, and the
local-preference of all customer routes is the same,
and the local-preference of all provider and peer
routes is the same.

– No-Valley-and-Prefer-Customer-and-Peer-Over-
Provider (No-Valley-PCPoP) Routing Policy: each AS
exports all routes that follow the selective export rule.
Furthermore, each AS follows the prefer-customer
and prefer-peer-over-provider import policy, and the
local-preference of all customer routes is the same,
the local-preference of all peer routes is the same, and
the local-preference of all provider routes is the same.

Note that these three routing policies are the simplest
routing policies that conform to routing policy guidelines.
In reality, an AS can specify a diverse set of routing
policies including its preference on customer (peer or
provider) routes and filtering policies. For example, an
AS can specify that it prefers routes through one of its
neighbors over others. As we will see later our algorithms
for No-Valley-PC and No-Valley-PCPoP Routing Policies
can be expanded to more routing policies that conform to
the guidelines.

Based on these common routing policies, we define the
following policy-conforming paths:

– No-Valley paths: The AS paths derived from that all
ASes follow the no-valley routing policies.

– No-Valley-PC paths: The AS paths derived from that
all ASes follow the No-Valley-PC routing policy.

– No-Valley-PCPoP paths: The AS paths derived from
that all ASes follow the No-Valley-PCPoP routing
policy.

We note that these policy-conforming paths are
derived from distributed routing decision processes by all
ASes. As a result, No-Valley path might be different from
the shortest path among all no-valley paths. We will
derive the paths derived from distributed routing decision
based on these routing policies. Further, each AS chooses
only one best path for a destination. However, we do not
enforce any tie breaking mechanism in route decision
process. As a result, it is possible to have multiple
policy-conforming paths for a destination. Therefore,
policy-conforming paths is a set of possible paths that can
be the best route. Throughout this paper, we describe
paths relative to a fixed destinationd. All our algorithms
apply to any destinationd.

3 Computing No-Valley-PC and
No-Valley-PCPoP Paths

In order to derive policy-conforming paths, we need to
classify all paths destined to the same destination address
into three classes.

– Straight path: a path that contains
provider-to-customer edges but does not contain any
customer-to-provider or peer-to-peer edge. Note that a
straight path can be announced to any neighbor, and
therefore can be extended by any edge.

– Step path: a path that first traverses a peer-to-peer
edge and then traverses zero, one or more
provider-to-customer edges. Note that a step path can
be announced to a customer only, and therefore can be
extended by a customer-to-provider edge only.

– Arc path: a path that contains one or several
customer-to-provider edges, followed by zero or one
peer-to-peer edge, followed by zero, one or several
provider-to-customer edges. Note that an arc path can
be announced to a customer only and therefore can be
extended by a customer-to-provider edge only.

c© 2014 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.8, No. 4, 1583-1593 (2014) /www.naturalspublishing.com/Journals.asp 1587

Fig. 3: An annotated AS graph for illustrating arc, step, and
straight paths to destination d

For example, in Figure3, AS paths (4,5,d), (6, 7, 5, d)
and (6, 2, d) are the straight paths to reach destinationd.
AS path (4, 6, 2, d) and (1, 5, d) are the step paths to reach
destinationd. AS path (3, 1, 4, 6, 2, d), (3, 1, 4, 6, 7, 5,
d), (3, 1, 4, 5, d) and (3, 1, 5, d) are the arc paths to reach
destinationd.

For the ease of exposition, we define two directed
graphs with respect to the same destination prefix.Gdown
is the AS graph that consists provider-customer
relationships only. It is the DAG where the edge of the
graph goes from provider to customer when the traffic
towards the destination is forwarded along the edge.Gup
is the AS graph that consists customer-provider
relationships only. It is the DAG where the edge of the
graph goes from customer to provider when the traffic
towards the destination is forwarded along the edge.
Therefore, all the paths inGdown are straight paths, and all
the paths inGup are arc paths. For example, in Figure3,
Gdown for d consists of AS 2, 4, 5, 6, and 7, whileGup
consists of AS 3, 1, and 4.

For the three types of policy-conforming paths, we
have the following lemmas:

Lemma 1. If there is a straight path from an AS to d, the
AS will receive a straight path whose length is the shortest
among all straight paths.

Proof. We prove by induction. Clearly, the lemma holds
for d. In order to enumerate all ASes inG, we perform a
topological sort onGup. Suppose the lemma holds for all
ASes beforeu in the topological order. We now show that
it holds for ASu. Since there is a straight path fromu to
d, u has at least one customer. For eachv∈ customer(u), v
receives a shortest straight path. As a result,u will receive
a shortest straight path from its customers according to the
export policy.

Lemma 2. If there is a step path from an AS to d, the AS
will receive a shortest step path.

Proof.Since there is a step path from the ASu to d, u has at
least one peer. Further, for each ofu’s peers,v, which has

a straight path, based on Lemma1, v receives a shortest
straight path. We know thatv will announce the path tou
according the export policy. Therefore,u will receive those
paths. One of them must be the shortest step path foru
since all received paths are shortest straight paths fromu’s
peer.

Lemma 3. If there is an arc path from an AS to d, the AS
will receive a shortest arc path.

Proof. We prove by induction. In order to enumerate all
ASes in G, we perform a topological sort onGdown. It
clearly holds for those ASes who do not have providers in
Gdown, since those ASes do not have an arc path tod.
Suppose the lemma holds for all ASes beforeu in the
topological order. We now show that it holds for ASu.
For eachv ∈ provider(u), v receives a shortest straight,
arc or step path. As a result,u will receive a shortest arc
path from its providers according to the export policy.

Combining the above three lemmas, we have the
following two theorems.

Theorem 1.If an AS has a straight path to d, then its No-
Valley-PC paths are the shortest paths among all straight
paths. Otherwise, if the AS has an arc or step path to d, its
No-Valley-PC paths are shortest paths among all step and
arc paths.

Theorem 2. If an AS has a straight path to d, then its
No-Valley-PCPoP paths are the shortest paths among all
straight paths. Otherwise, if the AS has a step path to d,
then No-Valley-PCPoP paths are the shortest paths
among all step paths. If the AS has neither a step or
straight path to d, then No-Valley-PCPoP paths are the
shortest paths among all arc paths.

In the following subsections, we first show how to
compute shortest straight, step, and arc paths. In later
subsections, we illustrate how to compute
policy-conforming paths for common routing policies.

3.1 Shortest Straight Paths

In order to compute the shortest straight path, we focus on
Gdown and perform the shortest path search fromd to all
nodes. We find the shortest path fromd to all other nodes
by performing breadth-first search onGdown from d. This
will give us shortest straight paths from all nodes tod by
reversing the paths discovered. The algorithm is shown in
Algorithm 1. Since this algorithm is based on breadth-first
search, we can easily prove the following Lemma.

Lemma 4.Algorithm1 derives the shortest straight paths
for each node.

For example, in Figure3, the shortest straight path at
AS 6 is the AS path (6, 2, d), and the shortest straight path
at AS 4 is (4, 5, d).

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1588 Q. Gao et. al. : Efficient Inference of AS-Level Paths...

Algorithm 1: Compute shortest straight paths
input : Annotated AS graphG and destination noded
output: Shortest straight path set from all nodes to noded

1 Set the straight path set of noded to be a path with zero
length ;

2 Set the straight path set of all nodes other thand to be
empty ;

3 Perform breadth-first search fromd on directed graph
Gdown ;

4 for each level i of the breath-first searchdo
5 for each node u in level i of the breadth-first search

do
6 Let u’s parent set be the set of nodes in leveli−1

that connect tou ;
7 for each of u’s parents, vdo
8 append each of shortest straight paths of v

with u and add the path to shortest straight
path set ;

9 end
10 end
11 end

3.2 Shortest Step Paths

Once we derive the shortest straight paths, the shortest
step paths of nodeu will be the shortest straight paths of
all peers ofu appended withu. Algorithm 2 presents the
details of deriving the shortest step path. We also can
easily prove Lemma5 based on Algorithm2.

Algorithm 2: Compute step paths
input : Annotated AS graphG and destination noded

and shortest straight paths for all nodes
output: Shortest step paths from all nodes to noded

1 Set the shortest step path of noded to be a path of length
zero ;

2 for each node udo
3 for each of u’s peer, vdo
4 if v’s shortest straight path has shortest length

among all of u’s peerthen
5 append each ofv’s shortest straight paths tou

and add the path tou’s shortest step path set ;
6 end
7 end
8 end

Lemma 5. Algorithm 2 derives the shortest step path for
each node.

3.3 Shortest Arc Paths

Once we derive the shortest straight and arc paths, the
shortest arc paths of nodeu will be the shortest arc, step,

or straight paths ofu’s providers appended withu.
Algorithm 3 presents the details of deriving the shortest
arc paths.

Algorithm 3: Compute Arc Path
input : Annotated AS graphG and destination noded,

straight, step and arc paths for all nodes
output: Shortest arc paths for all nodes to noded

1 Sort the nodes in the topological order of the DAG given
by Gup;

2 for each node, u, in the topological orderdo
3 if u does not have any providerthen
4 Assignu’s shortest arc path set to be empty ;
5 end
6 else
7 for each provider, v, of udo
8 if v’s shortest arc, step or straight path is the

shortest among all of u’s providersthen
9 Appendv’s shortest arc, step or straight

paths withu and add the path to theu’s
shortest arc path set ;

10 end
11 end
12 end
13 end

Lemma 6. Algorithm 3 derives the shortest arc path for
each node.

Proof.The algorithm extends all step and straight paths to
arc paths. Since we do so in the topologically sorting
order ofGup, each node uses the shortest arc path possible
from all of its providers to derive the shortest arc path.
Therefore, we can show by induction, we derive the
shortest arc path for all nodes.

3.4 No-Valley-PC Paths

Once we derive the shortest straight, step and arc paths, we
can derive No-Valley-PC path to be shortest straight paths
if such a path exists. Otherwise, No-Valley-PC paths are
shortest paths among arc and step paths. The algorithm is
presented as follows.

Let us present the detailed description of the
algorithm. Lines 1–3 are the phases of deriving the
shortest straight, step and arc paths by using Algorithm 1,
2, and 3, respectively. Lines 4–22 are the main loop of the
algorithm. At each execution of the loop as long as there
is one or more straight paths, use the shortest straight path
as the No-Valley-PC path set (line 6–8). Next, if a node
does not have any straight path, it is checked if the node
has any step path and arc path. If so, the shortest step path
is used as the No-Valley-PC path set (line 10–12). If the
arc path and the step path have the same length, both the

c© 2014 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.8, No. 4, 1583-1593 (2014) /www.naturalspublishing.com/Journals.asp 1589

Algorithm 4: Compute No-Valley-PC Paths
input : Annotated AS graphG and destination noded
output: No-Valley-PC paths for all nodes to noded

1 Phase 1: Compute the shortest straight path ;
2 Phase 2: Compute the shortest step path ;
3 Phase 3: Compute the shortest arc path ;
4 Phase 4: Compute No-Valley-PC path ;
5 for each nodedo
6 if its straight path set is not emptythen
7 Set its No-Valley-PC paths to be shortest straight

path set ;
8 end
9 else

10 if shortest step path length≤ shortest arc path
lengththen

11 Set its No-Valley-PC path set to be the
shortest step path set ;

12 end
13 else
14 if shortest step path length= shortest arc

path lengththen
15 Set its No-Valley-PC path set to be

union of the shortest arc path set and
shortest step path set ;

16 end
17 else
18 Set its No-Valley-PC path set to be the

shortest arc path set ;
19 end
20 end
21 end
22 end

paths are used as the No-Valley-PC path set (line 14–16).
Otherwise, the shortest arc path is used as the
No-Valley-PC path set (line 18–19).

Based on Theorem1, we have the following theorem.

Theorem 3.Algorithm4 derives No-Valley-PC paths.

3.5 No-Valley-PCPoP Paths

Similar to the algorithm for computing No-Valley-PC
paths, the algorithm for computing No-Valley-PCPoP
path using straight and step paths first. If such a path does
not exist, we derive No-Valley-PCPoP paths based on step
and arc paths. The key difference here is that
No-Valley-PCPoP paths are the shortest step if such a
path exists. The algorithm is presented as follows.

We present the detailed description of the algorithm.
Lines 1–3 are the phases of deriving the shortest straight,
step and arc paths by using Algorithm 1, 2, and 3,
respectively. Lines 4–17 are the main loop of the
algorithm. At each execution of the loop a node’s the
shortest straight path is used as the No-Valley-PC path set
(line 6–8). Next, if a node does not have any straight path,

Algorithm 5: Compute No-Valley-PCPoP Paths
input : Annotated AS graphG and destination noded
output: No-Valley-PCPoP path set for all nodes to noded

1 Phase 1: Compute the shortest straight path ;
2 Phase 2: Compute the shortest step path ;
3 Phase 3: Compute the shortest arc path ;
4 Phase 4: Compute No-Valley-PCPoP path ;
5 As long as there is a straight path, use it.for each nodedo
6 if its straight path set is not emptythen
7 Set its No-Valley-PCPoP path set to be shortest

straight path set ;
8 end
9 else

10 if its step path set is not emptythen
11 Set its No-Valley-PCPoP path set to be

shortest step path set ;
12 end
13 else
14 Set its No-Valley-PCPoP path set to be

shortest arc path set ;
15 end
16 end
17 end

it is checked if the node has a step path. If so, the shortest
step path is used as the No-Valley-PC path set (line
10–12). Otherwise, the shortest arc path is used as the
No-Valley-PC path set (line 14–16).

Based on Theorem2, we have the following theorem.

Theorem 4. Algorithm 5 derives the shortest No-Valley-
PCPoP path.

Proof. It is clear that the derived path is no-valley and
prefer-customer from Theorem 3.
Prefer-peer-over-provider is reflected in the fact that
No-Valley-PCPoP path is set to the arc path only if there
is no straight or step path.

Both the algorithms of computing No-Valley-PC
paths and No-Valley-PCPoP paths traverse each edge of
the annotated AS graph at most twice. Therefore, it takes
O(E+N) time to derive the desired paths from all ASes
to a destination AS, whereN and E are the number of
ASes and edges, respectively, in the annotated AS graph.
For all pair AS paths, it takesO((E + N)N) time to
compute AS paths from all ASes to all destination ASes.

4 Computing No-Valley Paths

We first show the algorithm that derives the shortest path
among all arc, step and straight paths. We note that the
No-Valley path is derived from distributed routing
decision process given the no-valley routing policy. As a
result, No-Valley shortest path might be different from the
shortest paths among all arc, step and straight paths. For

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1590 Q. Gao et. al. : Efficient Inference of AS-Level Paths...

Fig. 4: An AS graph showing that the shortest no-valley path is
not necessarily the same path derived from distributed routing
decision with the no-valley shortest path routing policy.

the sake of the contrast, we defineGlobal-No-Valley paths
to be the shortest paths among arc, step and straight paths.
Algorithm 6 is used to derive the Global-No-Valley path
for each node.

Algorithm 6: Compute Global-No-Valley Paths
input : Annotated AS graphG and destination noded
output: Global-No-valley paths for all nodes to noded

1 Phase 1: Compute the shortest straight path ;
2 Phase 2: Compute the shortest step path ;
3 Phase 3: Compute the shortest arc path ;
4 Phase 4: Compute No-Valley path ;
5 for each nodedo
6 Set global-no-valley path set to be the shortest among

arc, straight, step path set of the node.
7 end

While we have shown the algorithm for computing
the shortest arc, step and straight paths, the derived
algorithm might not be the no-valley paths derived from
distributed decision process. For example, in Figure4, the
distributed decision process will give a no-valley path of
(4,5,6,10,2,d) for AS 4 while the Global-No-Valley path
is (4,7,8,9,d), since the no-valley path for AS 7 is
(7,2,d) instead of (7,8,9,d). Thus, (7,8,9,d) is not
announced to AS 4. Therefore, the no-valley path of AS 4
is (4,5,6,10,2,d).

We present an algorithm for computing the no-valley
path for each node. Since each node does not have the
prefer-customer routing policy, essentially, it will choose
the shortest path among the paths received from its
neighbors. Despite the fact that each node chooses the
path among the paths received, it still needs to keep track
of the kind (arc, step, or straight) of the path it chooses,
since it will propagate the chosen path in a way that is

consistent with the type of the path. That is, it announces
all paths to customers, only straight paths to providers
and peers.

In order to ensure that each node always chooses the
shortest path received, we use the similar mechanism as
the Dijkstra’s algorithm. Each node keeps track all the
paths received from neighbors and their corresponding
type. We select nodes to finalize their no-valley paths
based on the length of their chosen paths. The node with
shortest chosen path is selected. Once selected, the node
propagate its paths to all its neighbors based on the type
of the path. In order to differ a no-valley path derived
from distributed routing decision from a
Global-No-Valley path, we call the no-valley path derived
from distributed routing decision as a
No-Valley-Consistentpath. We present the algorithm in
Algorithm 7. Note that although we present the
algorithms for computing the no-valley path length, our
algorithms can be easily extended to derive no-valley path
set.

We present the detailed description of Algorithm 7.
Lines 1–3 are the initialization phase. First, a given
destinationd is selected. Lines 6–35 are the main loop of
the algorithm. At each execution of the loop a node’s
no-valley path is propagated to its neighbors. If the
no-valley path is a straight path, the path is propagated to
the node’s all neighbors and the neighbor chooses the
shortest path among its arc, step and straight paths (line
9–21). If the no-valley path is a step or an arc path, the
path is propagated only to the node’s customers, and the
customers choose the shortest path among their arc, step
and straight paths (line 22–35).

Theorem 5.Algorithm7 derives no-valley paths.

Proof.First of all, the derived path is a no-valley path since
we use only straight, step, and arc path to derive the no-
valley path. Second, we can show by induction that each
selected node gets the no-valley path. Assume all nodes
selected before this node get the no-valley paths. Then this
node gets the shortest path among all received paths at this
point. This path is the no-valley path for the node.

The above algorithm traverses each edge of the
annotated AS graph at most twice. Further, selecting
nodes with shortest arc, step and straight path requires
N logN time (if we use a heap to store the information of
each node path length), whereN is the number of nodes
in the annotated AS graph. Therefore, it takes
O(E+N logN) time to compute no-valley paths from all
ASes to a destination AS, whereN andE are the number
of ASes and edges, respectively, in the annotated AS
graph. For all pair AS paths, it takesO(NE+N2 logN)
time to compute AS paths from all ASes to all destination
ASes.

c© 2014 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.8, No. 4, 1583-1593 (2014) /www.naturalspublishing.com/Journals.asp 1591

Algorithm 7: Compute No-Valley Path
input : Annotated AS graphG and destination noded
output: No-valley path length for all nodes to noded

1 Initialization ;
2 Set the straight, arc, step, and no-valley path of noded to

be an empty path ;
3 Set the straight, arc, step, and no-valley path length of all

nodes other than noded to be infinity ;
4 Make noded to be the selected node and set its no-valley

path to be straight type;
5 Propagate paths to neighbors ;
6 while the selected node, u’s no-valley path length is not

infinity do
7 Update the path length of neighbors ofu as follows ;
8 if u’s no-valley path is of type straightthen
9 for each provider of udo

10 set the straight path length of the provider to
be the min of no-valley path length ofu +1
and the straight path length of the provider ;

11 set the no-valley path of the provider to be
the min of its arc, straight, step paths ;

12 end
13 for each peer of udo
14 set the step path length of the peer to be the

min of no-valley path length ofu +1 and the
step path length of the peer ;

15 set the no-valley path of the peer to be the
min of its arc, straight, step paths ;

16 end
17 for each customer of udo
18 set the arc path length of the customer to be

the min of no-valley path length ofu +1 and
the arc path length of the customer ;

19 set the no-valley path of the customer to be
the min of its arc, straight, step paths ;

20 end
21 end
22 if u’ no-valley path is of type stepthen
23 for each customer of udo
24 set the arc path length of the customer to be

the min of no-valley path length ofu +1 and
the arc path length of the customer ;

25 set the no-valley path of the customer to be
the min of its arc, straight, step paths ;

26 end
27 end
28 if u’s no-valley path is of type arcthen
29 for each customer of udo
30 set the arc path length of the customer to be

the min of no-valley path length ofu +1 and
the arc path length of the customer ;

31 set the no-valley path of the customer to be
the min of its arc, straight, step paths ;

32 end
33 end
34 Select a node with shortest no-valley path length

among nodes that have not been selected ;
35 end

5 Related Work

Several work have been focused on inferring AS-level
paths. To the best of our knowledge, the most related to
our work is [7], Mao et al. investigate the feasibility of
inferring AS-level path without direct access to
end-points. The AS-level paths are inferred by finding the
shortest policy paths in an AS graph. The AS graph is
built based on BGP tables from multiple vantage points
and router-level paths from traceroute servers. And then,
the AS paths is obtained by inferring the shortest policy
paths in the AS graph. Their algorithm to infer the policy
path is similar to ours. But we propose several algorithms
to infer AS level paths under different routing policies.
Therefore, our study complements their work.

In [13], Sobrinhoet al. presented an algebraic theory
to understand the minimum number of links in a network
whose failure causes the network to become
disconnected. They investigate the connectivity provided
by route-vector protocols in the presence of
customer-provider and peer-peer routing policies. Even
though our work does not consider failures in a network,
the proposed algorithms can be used to infer the
minimum number of AS paths in a fault tolerance
scenario. Feamsteret.al. [14] studied routing protocol
stability under certain rankings and filters that are
commonly used in practice. They prove that ranking
routes and configuring filters autonomously may not
ensure routing stability so that a stable path assignment
requires ASes to rank routes based on AS-path lengths.
Different with their work, our work is based on the
assumption that the underlying routing is stable.

Some work at discovering AS-level topology are
based on using traceroute data. For example, in [15], Mao
et.al. present methods to solve the challenge of mapping
of an IP address to the correct AS number. Their
techniques can improve the mapping of IP addresses to
corresponding ASes, which could be used as an AS-level
traceroute tool. In this paper, we infer AS level paths. We
plan to use traceroute data to infer AS level paths as our
future work.

6 Discussion and conclusion

We describe common routing policies in the Internet and
formulate the problem of computing the paths that
conform to these routing policies. ISPs have incentive to
conform to the two routing policies described and
therefore it is important to understand how to compute the
routing paths that conform to these routing policies. We
present efficient algorithms for these computations and
show the complexity of these algorithms. We show that
our algorithms are efficient for a large AS graph of the
Internet.

We notice that our algorithms to derive the
policy-conforming paths require prior knowledge about
the Internet topology on AS level and AS relationships.

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1592 Q. Gao et. al. : Efficient Inference of AS-Level Paths...

Just like other methods to infer AS level paths, such as
RouteScope [7], our method is a static method. Therefore,
they are intended to predict the potential AS path rather
than infering real-time AS level paths. We also note that
The AS-level paths and AS relationships are relatively
stable and do not change significantly comparing with
BGP routing dynamics.

Inferring AS path has an important implication on AS
path inflation occurring in the Internet. Here, we give one
example to highlight that AS path inflation can impact the
content-driven architecture. Today, content traffic, suchas
YouTube video, becomes the dominant type of traffic in
today’s Internet, the underlying internet architecture is
required to deliver the content efficiently. Large-scale
content providers, such as Google, Yahoo and Facebook
move the content closer to the end user to reduce the
origin content server and improve performance for
clients. However, moving content physically close to an
end user does not necessarily mean the paths taken by
content traffic are the shortest paths. Based on our
analysis in AS path inflation, we believe that the paths
taken by an end user to pull the content could be longer
than we expect. Therefore, the content placement
selection need to take policy-conforming paths into
consideration.

Acknowledgement

This work is partially supported by the NSF grant
CNS-0917078. The authors are grateful to the anonymous
referees for helpful comments and constructive
feedbacks.

References

[1] J. W. Stewart, BGP4: Inter-Domain Routing in the Internet.
Addison-Wesley, (1999).

[2] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian, “Delayed
Internet routing convergence, in Proc. ACM SIGCOMM,
(2000).

[3] C. Labovitz, R. Wattenhofer, S. Venkatachary, and A. Ahuja,
“The impact of Internet policy and topology on delayed
routing convergence, in Proc. IEEE INFOCOM, (2001).

[4] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-
law relationships of the Internet topology, in Proc. ACM
SIGCOMM, (1999).

[5] H. Tangmunarunkit, R. Govindan, D. Estrin, and S. Shenker,
“The impact of routing policy on Internet paths, in Proc.
IEEE INFOCOM, (2001).

[6] Z. M. Mao, D. Johnson, J. Rexford, J. Wang, and R.
Katz, “Scalable and Accurate Identification of AS-level
Forwarding Paths, in IEEE INFOCOM, (2004).

[7] Z. Morley, M. Lili, Q. Jia, and W. Y. Zhang, “On AS-level
Path Inference, in ACM SIGMETRICS, (2005).

[8] L. Gao and F. Wang, “The extent of as path inflation
by routing policies, in Proc. IEEE GLOBAL INTERNET,
(2002).

[9] Y. Liao, L. Gao, R. Guerin, and Z.-L. Zhang, “Safe
interdomain routing under diverse commercial agreements,
IEEE/ACM Trans. Netw.,18, 1829-1840 (2010).

[10] C. Alaettinoglu, “Scalable router configuration for the
Internet, in Proc. IEEE IC3N, (1996).

[11] G. Huston, “Interconnection, peering and settlementsPart II,
in Internet Protocol Journal, (1999).

[12] L. Gao and J. Rexford, “A stable Internet routing without
global coordination, in Proc. ACM SIGMETRICS, (2000).

[13] J. L. Sobrinho and T. Quelhas, “A theory for the connectivity
discovered by routing protocols, IEEE/ACM Trans. Netw.,
20, 677-689 (2012).

[14] N. Feamster, R. Johari, and H. Balakrishnan, “Implications
of Autonomy for the Expressiveness of Policy Routing, in
ACM SIGCOMM, (Philadelphia, PA), (2005).

[15] Z. M. Mao, J. Rexford, J. Wang, and R. H. Katz, “Towards
an accurate as-level traceroute tool, in SIGCOMM, 365-378
(2003).

[16] D. Meyer, “University of Oregon Route Views Project”,
http://www.routeviews.org/, (2004).

[17] “RIPE RIS, Ripe routing information service”,
http://www.ripe.net/ris

[18] Hongsuda Tangmunarunkit, Ramesh Govindan, Scott
Shenker and Deborah Estrin, “The Impact of Routing Policy
on Internet Paths”, in INFOCOM, 736-742 (2001).

[19] Neil Spring, Ratul Mahajan and Thomas Anderson, “The
causes of path inflation”, in SIGCOMM ’03, 113–124
(2003).

[20] Y. Rekhter, T. Li and S. Hares, “A Border Gateway Protocol
4 (BGP-4)”, Request for Comments,4271, (2006).

Qixin Gao received
the Ph.D. degree in Institute
of Computer Science and
Engineering, Northeastern
University, Shenyang, China,
in 2008. He is currently
with Northeastern University
at Qinhuangdao, China.
His research interests include
Internet routing, image

processing, and massive data processing.

Feng Wang
is an associate professor with
the School of Engineering
and Computational Sciences
at Liberty University.
He received his Ph.D degree
in Electrical and Computer
Engineering at the University
of Massachusetts, Amherst.
He received his B.E degree

from Zhejiang University in China, and M.S. degree from
Yanshan University in China. His research interests
include network verification, Internet routing, and
wireless networks.

c© 2014 NSP
Natural Sciences Publishing Cor.

http://www.routeviews.org/
http://www.ripe.net/ris


Appl. Math. Inf. Sci.8, No. 4, 1583-1593 (2014) /www.naturalspublishing.com/Journals.asp 1593

Lixin Gao is a professor
of Electrical and Computer
Engineering at the University
of Massachusetts at Amherst.
She received her Ph.D. degree
in computer science from the
University of Massachusetts
at Amherst in 1996.
Her research interests include
social networks, Internet

routing, network virtualization and cloud computing.
Between May 1999 and January 2000, she was a visiting
researcher at AT&T Research Labs and DIMACS. She
was an Alfred P. Sloan Fellow between 2003-2005 and
received an NSF CAREER Award in 1999. She won the
best paper award from IEEE INFOCOM 2010, and the
test-of-time award in ACM SIGMETRICS 2010. Her
paper in ACM Cloud Computing 2011 was honored with
Paper of Distinction. She received the Chancellors Award
for Outstanding Accomplishment in Research and
Creative Activity in 2010, and is a fellow of ACM and
IEEE.

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	Background
	Computing No-Valley-PC and No-Valley-PCPoP Paths
	Computing No-Valley Paths
	Related Work
	Discussion and conclusion

