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Received: 12 Jul. 2013, Revised: 14 Oct. 2013, Accepted: 15 Oct. 2013
Published online: 1 Jul. 2014

Abstract: In this work we consider the Von Ḱarmán system with frictional damping acting on the displacement and using the Method
of Nakao we prove the exponential decay of the solution. The numericalscheme is presented for calculate the solution and to verify the
long-time decay energy.
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1 Introduction

For several years the system of Theodor von Kármán
[19] was studied in different situations and methods.

The exponential decay of the energy to the von
Kármán equations with memory in noncylindrical
domains was studied by Park and Kang [17] in 2009
using the same method as in [18].

To the models of von Ḱarmán taking into account for
rotational forces, Bradley and Lasiecka [6] in 1994
showed the uniform decay rates for the solutions in
cylindrical domain

The uniform decay of the solution was considered for
frictional dissipative at the boundary, for example, in the
works of Horn and Lasiecka [8] in 1994, Horn and
Lasiecka [9] in 1995, and Horn, Favini, Lasiecka and
Tataru [7] in 1996.

Applying multipliers method Avalos and Lasiecka [3]
in 1987 showed the uniform decay for two-dimensional
linear thermoelastic plates and Avalos and Lasiecka [2] in
1998 the one-dimensional thermoelastic von Kármán
model was studied.

For thermal damping Menzala and Zuazua [10] in
1998 proved the exponential decay by the semigroup
properties.

For Viscoelastic plates with memory, using energy
method, we cite Rivera and Menzala [15] in 1999, and the
work of Rivera, Oquendo and Santos [16] in 2005 where
was proved that the energy decays uniformly,

exponentially or algebraically with the same rate of decay
of the relaxation function.

Based on multipliers method, the exponential decay
of solution for the full von Ḱarmán System of Dynamic
Thermoelasticity was proved by Benabdallah and
Lasiecka [4] in 2000.

For von Ḱarmán System with memory Raposo and
Santos [13] in 2011 obtained the General Decay of
solution using the idea of Messaoudi [11] in the study of
the asymptotic behavior of viscoelastic equations.

For the numerical scheme we mention for example
Reinhart [14] in 1982 where was studied the
approximation of the von Ḱarmán equations stationary by
the mixed finite element. The work of Yosibash, Kirby
and Gottlieb [20] in 2004 where was studied the von
Kármán system over rectangular domains and
numerically solved using both the Chebyshev-collocation
and Legendre-collocation methods for the spacial
discretization and the implicit Newmark-β scheme
combined with a non-linear fixed point algorithm for the
temporal discretization, and Bilbao [5] in 2007 used
numerical stability for numerical methods for the von
Kármán system, through the use of energy-conserving
methods.

What distinguishes this paper from other related
works is that we apply the Method of Nakao in the von
Kármán system to prove the exponential decay of the
solution and we present an numerical scheme by finite
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differences method to numerical solution and the
long-time decay energy, in this sense, there is few result
in the literature.

The remainder of this paper is organized as follows.
In section 2 we present the result of existence of weak
solution, in the section 3 we prove the exponential decay
of the solution, in the section 4 we applied the Finite
Difference Method in the von Ḱarmán system and finally
in the section 5 we give the conclusion.

2 Existence of solution

We use the standard Lebesgue space and Sobolev Space
with their usual properties as in Adams (1975) [1] and in
this sense(·, ·) and 〈·, ·〉 denote the inner product inL2

andH1
0 respectively. By| · | we denote the usual norm in

L2. Let Ω ⊂ R
2 be a bounded domain of the plane with

regular boundaryΓ . For a real numberT > 0 we denote
Q= Ω × (0,T) andΣ = Γ × (0,T). Hereu= u(x,y, t) is
the displacement,v= v(x,y, t) the Airy stress function and
η is the unit normal external inΩ andu′ = ut . With this
notation we have the following system

u′′−∆ 2u− [u,v]+u′ = f in Q, (1)

∆ 2v+[u,u] = 0 in Q, (2)

and

u(0) = u0, u′(0) = u1 in Ω , (3)

u= v= 0,
∂u
∂η

=
∂v
∂η

= 0 on Σ , (4)

where

[u,v] =
∂ 2u
∂x2

∂ 2v
∂y2 −2

∂ 2u
∂x∂y

∂ 2v
∂x∂y

+
∂ 2u
∂y2

∂ 2v
∂x2

Now using the same idea as in [10] we have the following
result of existence of solution.

Theorem 1. For u0 ∈ H2
0(Ω), u1 ∈ L2(Ω) and

f ∈ L2
loc(R

+;L2(Ω)) there exists u,v : Q→ R such that

u,v∈ L∞(0,T;H2
0(Ω)), u′ ∈ L∞(0,T;L2(Ω)),

and u, v weak solution (1)-(4).

3 Asymptotic behavior

In this section, we will use the Method of Nakao (1978)
[12] to prove the exponential decay of the solution. First
we define

E(t) = |u′(t)|2+ |∆u(t)|2+
1
2
|∆v(t)|2 (5)

Lemma 1. The functional of energy E(t) is limited.

Proof. Multiplying (1) by u′ and integrating inΩ , we have

1
2

d
dt

[

|u′(t)|2+ |∆u(t)|2
]

− 〈[u(t),v(t)] , u′(t)〉

+ |u′(t)|2 = ( f (t),u′(t))

Using (2) we obtain

〈[u(t),v(t)] , u′(t)〉 = 〈[u(t),u′(t)] , v(t)〉

=
1
2
〈

d
dt
[u(t),u(t)] , v(t)〉

−
1
2
〈∆ 2v′(t),v(t)〉

=
1
4

d
dt
|∆v(t)|2

from where follows

d
dt

[

|u′(t)|2+ |∆u(t)|2+
1
2
|∆v(t)|2

]

+

2|u′(t)|2 = 2( f (t),u′(t)) (6)

Performing integration from 0 to t follows by
Cauchy-Schwarz inequality we obtain

|u′(t)|2+ |∆u(t)|2+
1
2
|∆v(t)|2+2

∫ t

0
|u′(s)|2ds≤

∫ t

0
|u′(s)|2ds+

∫ t

0
| f (s)|2ds+ |u1|

2+ |∆u0|
2+

1
2
|∆v0|

2

then

E(t)+
∫ t

0
|u′(s)|2ds≤ E(0)+

∫ t

0
| f (s)|2ds

from where follows E(t) ≤ C with C constant
independently oft.

Now we introduce a new functional.

Lemma 2. The functional

F2(t) = E(t)−E(t +1)+
∫ t+1

t
| f (s)|2ds

satisfies
∫ t+1

t
|u′(s)|2ds≤ F2(t)

Proof. Integrating (6) from τ1 to τ2 with 0< τ1 < τ2, we
obtain

E(τ2)+2
∫ τ2

τ1

|u′(s)|2ds= E(τ1)

+ 2
∫ τ2

τ1

( f (s),u′(s))ds (7)

and for allt > 0

E(t +1)+2
∫ t+1

t
|u′(s)|2ds= E(t)+2

∫ t+1

t
( f (s),u′(s))ds

≤ E(t)+
∫ t+1

t
| f (s)|2ds+

∫ t+1

t
|u′(s)|2ds
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then
∫ t+1

t
|u′(s)|2ds≤ E(t)−E(t +1)

+
∫ t+1

t
| f (s)|2ds = F2(t) (8)

Lemma 3. The functional

G2(t) = 8Cesssup
s∈[t,t+1]

|∆u(s)|F(t)+2(1+C2)
∫ t2

t1
|u′(t)|2dt

+2C2
∫ t2

t1
| f (t)|2dt

satisfies
∫ t2

t1

(

|∆u(t)|2+
1
2
|∆v(t)|2

)

dt ≤ G2(t)

Proof. First we note that

〈[u(t),v(t)] , u(t)〉 = 〈[u(t),u(t)] , v(t)〉=−〈∆ 2v(t) , v(t)〉

= −|∆v(t)|2 (9)

From (8) there existst1 ∈ [t, t + 1
4] and t2 ∈ [t + 3

4, t + 1]
such that

|u′(ti)| ≤ 2F(t), i = 1,2 (10)

Multiplying (1) by u and integrating inΩ , we have

d
dt
(u′(t),u(t))−|u′(t)|2+ |∆u(t)|2−〈[u(t),v(t)] , u(t)〉

+(u′(t),u(t)) = ( f (t),u(t))

Performing integration fromt1 to t2 and using (9) we have
∫ t2

t1

(

|∆u(t)|2+ |∆v(t)|2
)

dt = (u′(t1),u(t1))

−(u′(t2),u(t2))+
∫ t2

t1

(

|u′(t)|2− (u′(t),u(t))
)

dt

+
∫ t2

t1
( f (t),u(t))dt

Now, choosingC such that|u| ≤ C|∆u| and applying
Cauchy-Schwarz inequality we get

∫ t2

t1

(

1
2
|∆u(t)|2+ |∆v(t)|2

)

dt

≤Cesssup
s∈[t,t+1]

(

|∆u(s)|(|u′(t1)|+ |u′(t2)|)
)

+(1+C2)

∫ t2

t1
|u′(t)|2dt+C2

∫ t2

t1
| f (t)|2dt,

using (10),
∫ t2

t1

(

1
2
|∆u(t)|2+ |∆v(t)|2

)

dt

≤ 8Cesssup
s∈[t,t+1]

|∆u(s) |F(t)+2(1+C2)
∫ t2

t1
|u′(t)|2dt

+2C2
∫ t2

t1
| f (t)|2dt,

and then
∫ t2

t1

(

|∆u(t)|2+
1
2
|∆v(t)|2

)

dt ≤ G2(t) (11)

Theorem 2. For f ∈ L2
loc(R

+;L2(Ω)) with
∫ t

0 | f (s)|ds≤
α1e−α2 t , for all t ≥ 1 and α1,α2 > 0, then the solution
(u,v) satisfies

|u′(t)|2+ |∆u(t)|2+
1
2
|∆v(t)|2 +

∫ t+1

t
|u′(s)|2ds

≤ k1e−k2 t , (12)

for almost every t≥ 1, with k1,k2 > 0, constants
independently from t.

Proof. From (8) and (11) we concludes
∫ t2

t1

(

|u′(t)|2+ |∆u(t)|2+
1
2
|∆v(t)|2

)

dt ≤ F2(t)+G2(t)

There ist∗ ∈ [t1, t2] such that

E(t∗) = |u′(t∗)|2+ |∆u(t∗)|2+
1
2
|∆v(t∗)|2

≤ 2(F2(t)+G2(t)) (13)

From (7) we get

E(t1) = E(t∗)+2
∫ t∗

t1
|u′(s)|2ds−2

∫ t∗

t1
( f (s),u′(s))ds

Then

E(t) = E(t∗)+2
∫ t∗

t
|u′(s)|2ds−2

∫ t∗

t
( f (s),u′(s))ds

≤ E(t∗)+3
∫ t+1

t
|u′(s)|2ds+

∫ t+1

t
| f (s)|2ds,

and

esssup
s∈[t,t+1]

E(s)≤ E(t∗)+3
∫ t+1

t
|u′(s)|2ds+

∫ t+1

t
| f (s)|2ds

Now using (8) and (13) we obtain

esssup
s∈[t,t+1]

E(s) ≤ 2(F2(t)+G2(t))+3F2(t)+
∫ t+1

t
| f (s)|2ds

≤ 5F2(t)+16Cesssup
s∈[t,t+1]

|∆u(s)|F(t)

+ 4(1+C2)
∫ t+1

t
|u′(s)|2ds

+ (1+4C2)
∫ t+1

t
| f (s)|2ds

≤ (9+4C2)F2(t)+
1
2

esssup
s∈[t,t+1]

E(s)

+ 128C2F2(t)+(1+4C2)
∫ t+1

t
| f (s)|2ds,
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from where follows

esssup
s∈[t,t+1]

E(s)≤ (274+8C2)F2(t)+(2+8C2)
∫ t+1

t
| f (s)|2ds,

and then

E(t)≤C1(E(t)−E(t +1))+C2

∫ t+1

t
| f (s)|2ds,

whereCi , i = 1,2, constants independently fromt.

Without lost of generality, we can supposeC1 > 1 and for
0< β = 1

C1
< 1 we, have

E(t +1)≤ (1−β )E(t)+βC2

∫ t+1

t
| f (s)|2ds

For t ≥ 1 andn∈ N such thatn≤ t ≤ n+1

E(t) ≤ (1−β )E(t −1)+βC2

∫ t

t−1
| f (s)|2ds

≤ (1−β )nE(t −n)+βC2

∫ t

t−n
| f (s)|2ds

Now

(1−β )n+1 < (1−β )t implies (1−β )n < (1−β )t−1

Then

E(t) ≤ (1−β )t−1esssup
s∈[0,1]

E(s)+βC2

∫ t

0
| f (s)|2ds

=
m0

1−β
(1−β )t +βC2

∫ t

0
| f (s)|2ds,

with m0 = esssup
s∈[0,1]

E(s)< ∞.

Now we have

E(t) <
m0

1−β
et ln(1−β )+βC2

∫ t

0
| f (s)|2ds

<
m0

1−β
e−β1 t +βC2α1e−α2 t ,

for almost everyt ≥ 1, with β1 =− ln(1−β )> 0 and then

|u′(t)|2+ |∆u(t)|2+
1
2
|∆v(t)|2 < γ1e−γ2 t (14)

From (8), we have

∫ t+1

t
|u′(s)|2ds≤ E(t)+

∫ t+1

t
| f (s)|2 < γ3e−γ4 t (15)

with γi > 0 constants. Finally we concludes from (14) and
(15) that there is constantsk1,k2 > 0 such that

|u′(t)|2+ |∆u(t)|2+
1
2
|∆v(t)|2+

∫ t+1

t
|u′(s)|2ds< k1e−k2 t

This completes the proof.

4 Numerical solution

For a given small constantε > 0 we define a thin plate by

Ω × (−ε ,ε) = {(x,y,z) ∈ R
3 : (x,y) ∈ Ω , z∈ (−ε ,ε)}

whose midsurface is identified withΩ .
We resolve the von Ḱarmán system in a square thin elastic
plate by Finite Difference Method, subjected to a
perpendicular loadf and boundary condition of clamped
type.

4.1 Discrete formulation

Consider the discrete domain the midsurface of the square
plate, Ωh = (0,π)2 with uniform grid
xi = ih, y j = jh, i, j = 0, ...,N + 1, h = π/(N + 1). The
internal point arexi = ih, y j = jh, 1 ≤ i, j ≤ N. The
boundary ofΩh is denotedΓh. The temporal discretization
of interval Ik = (0,T) is given by
tn = nk, n= 0, ...,M+1, k=C0h/2 whereC0 is a positive
constant andT = k(M + 1). Denote byun

i, j and vn
i, j the

functionsu andv evaluate in the point(xi ,y j) and at the
instanttn, respectively. It also, denoted byQk

h = Ωh × Ik
andΣ k

h = Γh× Ik.
We show in Figure1 the pattern mesh ofΩ with its
points: internal (circles), boundary (squares) and ghost
(diamonds). We define the following discrete differential

Fig. 1: The pattern mesh ofΩ with internal, boundary and ghost
points.

operators:

δtu
n
i, j =

1
k
(un

i, j −un−1
i, j ),

δ 2
t un

i, j =
1
k2 (u

n+1
i, j −2un

i, j +un−1
i, j ) (16)
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δ 2
x un

i, j =
1
h2 (u

n
i+1, j −2un

i, j +un
i−1, j),

δ 2
y un

i, j =
1
h2 (u

n
i, j+1−2un

i, j +un
i, j−1) (17)

δxyu
n
i, j = δx(δyu

n
i, j) =

1
4h2 (u

n
i+1, j+1−un

i+1, j−1−un
i−1, j+1+un

i−1, j−1) (18)

δ 4
x un

i, j = δ 2
x (δ 2

x un
i, j) =

1
h4 (u

n
i+2, j −4un

i+1, j +6un
i, j −4un

i−1, j +un
i−2, j) (19)

δ 4
y un

i, j = δ 2
y (δ 2

y un
i, j) =

1
h4 (u

n
i, j+2−4un

i, j+1+6un
i, j −4un

i, j−1+un
i, j−2) (20)

δ 2
xyu

n
i, j = δ 2

x (δ 2
y un

i, j) =

1
h4 (u

n
i+1, j+1−2un

i+1, j +un
i+1, j−1−2un

i, j+1+4un
i, j

−2un
i, j−1+un

i−1, j+1−2un
i−1, j +un

i−1, j−1) (21)

The discrete biharmonic operator is given by

∆ 2
hun

i, j = δ 4
x un

i, j +δ 4
y un

i, j +2δ 2
xyu

n
i, j (22)

The discrete bracket operator is given by

[un
i, j , vn

i, j ]h = δ 2
x un

i, j δ 2
y vn

i, j +δ 2
y un

i, j δ 2
x vn

i, j −

2δxyu
n
i, j δxyv

n
i, j (23)

Using the equations (16) to (23) we obtain the discrete
model of von Ḱarmán system,

δ 2
t un

i, j −a2
1∆ 2

hun
i, j −a2

2[u
n
i, j , vn

i, j ]h + a2
3δtu

n
i, j

= f n
i, j in Qk

h, (24)

∆ 2
hvn

i, j +[un
i, j , un

i, j ]h = gn
i, j in Qk

h, (25)

u0
i, j = (u0)i, j , δtu

0
i, j = (u1)i, j in Ωh (26)

un
i, j = vn

i, j = 0 on Σ k
h, (27)

(

∂u
∂η

)n

i, j
=

(

∂v
∂η

)n

i, j
= 0 on Σ k

h, (28)

where a1,a2 and a3 are constants.a3 is the damping
parameter, f and g are perpendicular and horizontal
loads, respectively. Note that we obtain the discrete model
of equations (1) to (4) whena1 = a2 = a3 = 1 andg= 0.

For the temporal computation of the equations (24) to
(28), we have splitted in three levels: 0,1 and 2.
For calculateu in the level 0, we use (27), i.e.,

u0
i, j = (u0)i, j (29)

For calculateu in the level 1, we use (27) and (29), i.e.,

u1
i, j = u0

i, j +k(u1)i, j (30)

For calculateu in the level 2, we first calculate

∆ 2
hvn

i, j =−[un
i, j , un

i, j ]h+gn
i, j , n= 1, ...,M . (31)

Using (22) for functionv, the equation (31) is given by

Avn
i, j = Bv⋆n

i, j +Dv⋄n
i, j − [un

i, j , un
i, j ]h+gn

i, j , n= 1, ...,M (32)

where A = (ai, j)N2×N2 is a symmetric matrix,
B = (bi, j)N2×Nb

and D = (di, j)N2×Ng
, where Nb is the

number the boundary points,Ng is the number the ghost
points and,v⋆ andv⋄ denote the functionv evaluate in the
boundary and ghost points, respectively. Thus, for all
n= 1, ...,M

v⋆n = 0 (33)

v⋄n = v⋆n (34)

The equations (33) and (34) are due to a clamped boundary
condition, given by (27) and (28), and because the exterior
normal coincides with canonical vectors. Thus, the linear
system (32) is resolved by the SOR method.
Once knownv we can calculateu for all n= 1, ...,M

un+1
i, j = µ1ũn

i, j +µ2
(

ω n
1i, j − (1/8)ω n

2 i, j +ω n
3 i, j

)

+ µ3un
i, j +µ4un−1

i, j +µ5 f n
i, j (35)

where,

µ1 = a2
1k2/h4, µ2 = a2

2k2/h4, µ3 = 2−a2
3k

µ4 = a2
3k−1, µ5 = k2,

ũn
i, j = un

i+2, j +2un
i+1, j+1−8un

i+1, j +2un
i+1, j−1+un

i, j+2

− 8un
i, j+1+20un

i, j −8un
i, j−1+un

i, j−2+2un
i−1, j+1

− 8un
i−1, j +2un

i−1, j−1+un
i−2, j ,

ω n
1i, j = (un

i+1, j −2un
i, j +un

i−1, j)(v
n
i, j+1−2vn

i, j +vn
i, j−1) ,

ω n
2i, j = (un

i+1, j+1−un
i+1, j−1−un

i−1, j+1+un
i−1, j−1)

(vn
i+1, j+1−vn

i+1, j−1−vn
i−1, j+1+vn

i−1, j−1) ,

ω n
3i, j = (un

i, j+1−2un
i, j +un

i, j−1)(v
n
i+1, j −2vn

i, j +vn
i−1, j)

4.2 Numerical tests

Consider the following analytical solution of the equations
(24) - (28)

ua(x,y, t) = sin2xsin2y e−t (36)

va(x,y, t) = sin2xsin2y (37)

with loads given by

f (x,y, t) = e−t
[

(1−a2
3)sin2xsin2y +8a2

1(cos2xsin2y

− cos2xcos2y+cos2ysin2x)

−2a2
2(4cos2xsin2ycos2ysin2x−sin22xsin22y)

]

(38)

g(x,y, t) = −8(cos2xsin2y−cos2xcos2y+cos2ysin2x)

+2e−2t(4cos2xsin2ycos2ysin2x−sin22xsin22y) (39)
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We use for size of meshN = 19. For caseg = 0 the
mechanical energy is given by

E(t) = |u′(t)|2+a2
1|∆u(t)|2+

1
2

a2
2|∆v(t)|2 (40)

Example 1.The first problem we consider the following
data:a1 = 0.01,a2 = 0.5 anda3 = 1.25. f andg are given
in (38) and (39), respectively.u0 andu1 are obtained from
(36) and u and v satisfies the clamping conditions. For
constant C0 = 0.4 a convergence is attained in
T = k(M + 1) ≈ 0.031416(830) ≈ 26.075 s. In Figure 2
we present for allt ∈ (0,T], theabsolute errordefined by
|u(t) − ua(t)|. In Figure 3, we show the long-time
behavior of the transversal displacement in the point
(π/2,π/2). In Figure 4, we show in 3D the transversal
displacement of plate for different time steps:
t0 = 0, t25 ≈ 0.785, t70 ≈ 2.199, t830 ≈ 26.075. We
initially observe that the deflections are larger in the
corners of the plate and then they reduce smoothly and
expand rapidly near the boundary.
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Fig. 2: The absolute error atL2 norm the long-time.
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Fig. 3: Transversal displacement in the point(π/2,π/2).
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Fig. 4: Transversal displacement of plate. (a)t = 0 s, (b)t25 ≈
0.785 s, (c)t70 ≈ 2.199 s and (d)t830≈ 26.075 s.

Example 2. In this example we consider
a1 = 0.01,a2 = 1 anda3 = 1. f is given in (38) andg= 0.
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u0 andu1 are obtained from (36) andu andv satisfy the
clamping conditions. For constantC0 = 0.2 a convergence
is attained inT = k(M+1)≈ 0.0314159(1862)≈ 58.496
s. For calculate of energy of system, given by (40), we
have computated in all the plate using the Composite
Simpson’s rule. In Figure 5 and 6 we show the long-time
behavior of the solution in the point(π/2,π/2) and
energy of system, respectively. Note that energy converge
to 0. In Figure 7, we show the transversal displacement of
the plate, in 3D, for different time steps:
t0 = 0, t45 ≈ 1.414, t140 ≈ 4.398, t1843 ≈ 58.496. We
initially observe that the deflections are larger near the
boundary, but in long-time these deflections disappear.
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Fig. 5: Transversal displacement in the point(π/2,π/2).
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Fig. 6: The energy of system through long-time.
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Fig. 7: Transversal displacement of plate. (a)t = 0 s, (b)t45 ≈
1.414 s, (c)t140≈ 4.398 and (d)t1843≈ 58.496 s.

5 Conclusion

The Nakao’s method proved to be an efficient method for
the demonstration of the exponential decay of the solution
of the system of von Ḱarmán. Numerical tests have shown
the decay of the mechanical energy of the system.
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