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Abstract: In this work we consider the Von&man system with frictional damping acting on the displacement and using ttielle
of Nakao we prove the exponential decay of the solution. The numeigbaime is presented for calculate the solution and to verify the
long-time decay energy.
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1 Introduction exponentially or algebraically with the same rate of decay
; of the relaxation function.
For several years the system of Theodor vamrén Based on multipliers method, the exponential decay
[19] was studied in different situations and methods. of solution for the full von Karman System of Dynamic

_ The exponential decay of the energy to the vonThermoelasticity was proved by Benabdallah and
Karman equations with memory in noncylindrical Lasiecka &] in 2000.

domains was studied by Park and Kari/][in 2009
using the same method as @f].
To the models of von Krman taking into account for

For von Karman System with memory Raposo and
Santos 13] in 2011 obtained the General Decay of
rotational forces, Bradley and Lasieck#] [in 1994 solution using the idea of Mgssaoudi;LI n the_study of
showed the uniform decay rates for the solutions inthe asymptotic behawor of viscoelastic equatlons.
cylindrical domain For the numerical scheme we mention for example

The uniform decay of the solution was considered for Réinhart 4] in 1982 where was studied the
frictional dissipative at the boundary, for example, in the @Pproximation of the von rman equations stationary by
works of Horn and Lasiecka8] in 1994, Horn and the mixed finite element. The work of Yosibash, Kirby
Lasiecka 9] in 1995, and Horn, Favini, Lasiecka and and Gottlieb PQ] in 2004 where was studied the von
Tataru [7] in 1996. Karman system over rectangular domains and

Applying multipliers method Avalos and Lasieckd [ numerically solved using both the Chebyshev-collocation
in 1987 showed the uniform decay for two-dimensional@nd Legendre-collocation methods for the spacial
linear thermoelastic plates and Avalos and Lasiekén[ ~ discretization and the implicit Newmayk- scheme

1998 the one-dimensional thermoelastic vorari@an  combined with a non-linear fixed point algorithm for the
model was studied. temporal discretization, and Bilbadb][ in 2007 used

For thermal damp|ng Menzala and Zuazum][in numerical Stabl|lty for numerical methods for the von

1998 proved the exponential decay by the semigroug<arman system, through the use of energy-conserving
properties. methods.

For Viscoelastic plates with memory, using energy =~ What distinguishes this paper from other related
method, we cite Rivera and Menzaleb] in 1999, and the  works is that we apply the Method of Nakao in the von
work of Rivera, Oquendo and Santdsf] in 2005 where  Karman system to prove the exponential decay of the
was proved that the energy decays uniformly, solution and we present an numerical scheme by finite
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differences method to numerical

in the literature.

The remainder of this paper is organized as follows.
In section 2 we present the result of existence of weak
solution, in the section 3 we prove the exponential decayU
of the solution, in the section 4 we applied the Finite

solution and the Proof. Multiplying (1) by U’ and integrating if2, we have
long-time decay energy, in this sense, there is few result

1d ’
28 R+ 18U — (uO.v0)] 1 (1)

sing (2) we obtain

Difference Method in the von &man system and finally (u(t),v()], U (1)) = ([u(t),u'(t)], v(t))
in the section 5 we give the conclusion. 1 d
= {5 [u®,u], v(v)
. . 1
2 Existence of solution —5 {8 ([),v())
We use the standard Lebesgue space and Sobolev Space = %%\Av(tﬂz

with their usual properties as in Adams (1978) &nd in
this sense(-,~) and (-,-) denote the inner product in?

andHg respectively. By - | we denote the usual norm in

from where follows

1
L2, Let Q C R? be a bounded domain of the plane with g U/ (0)]*+ |Au(t)[*+ 2|AV(t)|2} +

regular boundary . For a real number > 0 we denote
Q=0 x(0,T)andX =T x (0,T). Hereu=u(x,y,t) is
the displacement; = v(x,y,t) the Airy stress function and
n is the unit normal external iQ andu’ = u. With this
notation we have the following system

U —A2u—[uv+u=f in Q 1)
A%+ [uu=0 in Q ()
and
u0)=uop, U(O)=uy in Q, ®3)
Ju ov
u=v=0, %f%fo on 2, (4)
where
02ud®v _ 0%u 0  d%udv

vl = X2 9y2  “axdy dxdy oy Y2 9x2

Now using the same idea as ihd] we have the following
result of existence of solution.

Theorem1l. For up € H3(Q), u; € L?*Q) and
f € L2, (R*;L?(Q)) there exists v : Q — R such that
u,veL®(0,T;HE(Q)), U eL™(0,T;L3(Q)),

and u, v weak solutiorLf-(4).

3 Asymptotic behavior

In this section, we will use the Method of Nakao (1978)
[12] to prove the exponential decay of the solution. First

we define

E(M) = WO +AuOR+ a0 ()

Lemma 1. The functional of energy ) is limited.

U )7 = 2(f(1), U (1)

Performing integration from O tot
Cauchy-Schwarz inequality we obtain

(6)
follows by
16 [2 2 1 2 a2
WO+ |AuO) 2+ 51av0P+2 [ (9)ds<

t t 1
| W (@Fds+ [[[f(9)Pds+ >+ |Auof + 5 AvP
then

E t)+/0t|u’(s)|2ds§ E(O)+/Ot|f(s)|2ds

from where follows E(t) < C with C constant
independently of.

Now we introduce a new functional.

+1+/

t+1
| ePds<

Proof. Integrating 6) from 11 to 72 with 0 < 11 < T2, we
obtain

Lemma 2. The functional
F2(t) = E(t) — s)|?ds

satisfies

“|0(9)2ds = E(my)

0

E(12)+2

L

+2[ (f(s),u(9)ds (7)
and for allt > 0
(t+1) +2/ (9)2ds= E(t +2/ (9),U(9))ds
2 2
(t)+/t ds+/ (s)|“ds
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then

t+1
/t U(s)2ds < E(t) — E(t + 1)

t+1
.

Lemma 3. The functional

s)|?ds = F2(t) (8)

G2(t) = 8CesssupAu(s)|F(t) +2(1+C?) /tt2 (1) [2dt

seft,t+1]
t2
+202/ I ()2t
<]

satisfies

[ (1au i+ SlavoR ) ar< )

Proof. First we note that
([u(t),v(t)], u(t)) = (u(t),u(t)], v(t)) = —(A%v(t), v(t))
—lav(t)[? ©)

From @) there existd; € [t,t + 1] andtp € [t + 3,t + 1]
such that
U (L) <2F(t), i=12

Multiplying (1) by u and integrating in2, we have

%(U’(ILU(U) = V() +[Aut)] — ([u(t),v(t)], u(t))

(U (1),u(t) = (f(t),u(t))
Performing integration frory to t, and using ) we have
[ (14w + v ) dt = (1) ut)
(U’(tz),U(tz)H/t:z(IU’(t) 2 (U(t),u(t))) dt
t2

+ [ (f(t),u(t))dt

€]

Now, choosingC such that|u| < C|Au| and applying
Cauchy-Schwarz inequality we get

/ttz (1|Au(t)|2+ |Av(t)|2) dt

< Cesssu|Au(s)|(|u'(t2) [+ | (t2)]))
seltt+1]

1.
+(1+c2)/ |u’(t)\2dt+C2/2|f(t)|2dt,
t Jt1

/tt2 <;|Au(t)|2 + Av(t)|2) dt

t
< 8CesssupAU(S)|F (t) + 2(1+C?) / * U (t)[2dt
scltt+1] ty

(10)

using (0),

ot
42c2 / ’ £ (t)]?dt,

Jty

and then
/ttz <|Au(t)|z+;Av(t)|z> dt<G2(t)  (11)

Theorem 2. For f € LZ (R*;L2(Q)) with [5|f(s)|ds<
aie ' for allt > 1 and ayq,az > 0, then the solution

(u,v) satisfies
- \Av /

< kle

U O+ |Au(t)?+ (9)[*ds
(12)

for almost every t> 1, with k,ko > 0, constants
independently from t.

Proof. From @) and (1) we concludes

to 1
[ (e imu -+ Jlavo? ) de< F2o + 62
1 2

There ist* € [t1,tp] such that

E(t) = Iu’(t")\2+Ié\u(t*)|2+%|AV(t*)l2
< 2(F*(t)+G*(t))

From (7) we get

(13)

t* t*
Ett) =E({t*)+2 [ |U(s)|?ds— 2/ (f(s),u(s))ds
t t

Then
t* t*
= E(t") +2/ U (s)| 2ds—Z/ (f(s),U(s))ds
+3/ \st+/ 9)|%ds
and
esssufE(s) < E(t +3/ 2ds+/ s)|?ds
set,t+1]

Now using 8) and (L3) we obtain

essSSuliE(s)

< 2(F2(t) + GA(t)) + 3F(t +/ 9)%ds
seft,t+1]

< 5F2(t) + 16CesssupAu(s)|F (t)
selt,t+1]

4(1+C2)/tt+1|u’(s)|2ds
+ (1+4C2)/tt+1|f(s)\2ds

< (9+4C?)F2(t) + }esssu;E(s)
2citiry

t+1
n 128c2F2(t)+(1+402)/ f(s)2ds
t

© 2014 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

1578

D. C. Pereira et. al.

: Numerical Solution and Exponential Decay to...

from where follows

t+1
esSSUJE(S) < (274+8c2)|:2(t)+(2+8c2)/ If(s)2ds
seft,t+1] t

and then
t+1
E(t) < Co(E(t) —E(t+1)) +c2/ 1£(5)|2ds
t
whereCi, i = 1,2, constants independently from

Without lost of generality, we can suppdSe> 1 and for
O<[3=C—1l < 1 we, have

E(t+1) < (1- B)E(t) +BC2/tt+l\f(s)|2ds
Fort >1andne Nsuchthan<t<n+1
E(M) < (1-BEC-1+6C; | |f(9[ds
<(@-BYEC-+BC [ [H(5)Pds

Now
(1-B)"™ < (1-pB)" implies (1-B)"<(1-p)*
Then
E(t) < (1—B)" lesssuf(s +[3C2/ |f(s)|?ds
s<[0,1]
Mo
= {1 p)+hC: [ 1(9)Pds

with mp = essSUufE(s) <

sc[0,1]

Now we have

t
< &e“”<1*5)+ﬁcz/ If(s)2ds
1-B8 0
Mo —Bit —aot
< —l_Be + BCrae ¥

E()

for almost every > 1, with 1 = —In(1— ) > 0 and then

1
V(1) + |Au(t) |* + §|AV(t)|2 <ype?t  (14)
From @), we have
t+1 t+1
/ W(9)Pds< E(t) +/ 2 - e Wt (15)
t

with y > 0 constants. Finally we concludes frod#j and
(15) that there is constankg, ko, > 0 such that

I ()24 |Au(t) 2+ \Av |2+/ (9)2ds < ke et

This completes the proof.

4 Numerical solution
For a given small constaat> 0 we define a thin plate by

{(xy,.2) eR%: (x,y) € Q, z€ (—¢,€)}

whose midsurface is identified wi@.

We resolve the von Erman system in a square thin elastic
plate by Finite Difference Method, subjected to a
perpendicular load and boundary condition of clamped

type.

Qx(—¢,6)=

4.1 Discrete formulation

Consider the discrete domain the midsurface of the square
plate, @, = (0,m?> with uniform  grid

X =ih,y; = jh,i,j=0,.,N+1 h=m/(N+1). The
internal point arex; = ih,y; = jh,1 <i,j < N. The
boundary of2, is denoted},. The temporal discretization

of interval Iy = (0,T) is given by
th=nk n=0,...,M+1, k=Cph/2 whereCy is a positive
constant andl = k(M + 1). Denote byu'; and v'; the
functionsu andv evaluate in the poingx, y,) and at the
instantt,, respectively. It also, denoted k@’ﬁ = Op x Ik
andzk = x Iy

We show in Figurel the pattern mesh of2 with its
points: internal (circles), boundary (squares) and ghost
(diamonds). We define the following discrete differential

(i,N+2)

<
<
@
<
<

o GNFD |

@N)

() [ (NG (NFL DN +2.)

@D

@)

@
@

@
@
<

MRS

Fig. 1: The pattern mesh d® with internal, boundary and ghost
points.

operators:
1 i
aufj = L (uly—u ),
1
& = @( ut—2u?; +ut (16)
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> 1 ., . '
o = p(ui+1J 2u +u, 1) For calculateu in the level 2, we first calculate
1 20— g U n -
(X?UEJ = ﬁ(upj+1—2u,r]]+uﬂj_l) (17) Ahvlrjj - [u|7l’u|7l]h+g|-,J’ n_17”"M' (31)
Using @2) for functionv, the equation3l) is given by
Souij = &(Qulj) = AV = BV !+ DV — [, uMln+gf, n=1,...M (32)

1
W(uir]+l,j+1 —Ulhgjo1—Ulgja+ulyjq) (18)

@?Uﬂj = 65?(6xzunj):
1

o (Ulpj—4uliqy+6ulj —4ul g +ul,;)  (19)
G/l = & (guy) =
1
F(unj+274unj+l+6uﬂj74uirfj*1+uin-,j*2) (20)
65<yu| i = 65<2 5y2U| j =
1
i (Ul ja— 20 g U g g — 200 4 + AU
—2u Ul 20 U ) (21)
The discrete biharmonic operator is given by
AUy = Sul; + &luf + 283 (22)
The discrete bracket operator is given by
[l Vil = SEul &P + GFul; 30 —
28U M) (23)

Using the equationsl) to (23) we obtain the discrete
model of von Karman system,

&uY; —azAguY; —ag[uly, il + agau

=% in Q (24)
Aﬁvirjj“'[uﬁjvuir:j]h:giljj in Q5 (25)
W = (W) j, &uU; = (w);; in Q, (26)
u,=w;=0  on 3 (27)

au\" (dv)” p
—-— == =0 on 2/, 28
(0’7>i,j an i " (8)

where a;,a, and ag are constantsag is the damping

parameter,f and g are perpendicular and horizontal
loads, respectively. Note that we obtain the discrete model

of equations ) to (4) whena; = a =az=1andg=0.
For the temporal computation of the equatioB4) (o

(28), we have splitted in three levels;Dand 2.

For calculateu in the level 0, we use(), i.e.,

= (Uo); |

For calculateu in the level 1, we use2() and @9), i.e.,

u; (29)

Ut = ufj+k(un), | (30)

where A = (& j)\2.n2 IS @ symmetric matrix,
B= (bi"j)Nszb and D = (dL,-)Nszg, where N, is the
number the boundary pointbly is the number the ghost
points andy* andv® denote the function evaluate in the
boundary and ghost points, respectively. Thus, for all
n=1,...M
v"=0 (33)
VN =y (34)
The equations33) and 34) are due to a clamped boundary
condition, given by 27) and £8), and because the exterior
normal coincides with canonical vectors. Thus, the linear
system 82) is resolved by the SOR method.
Once knownv we can calculate foralln=1,....M
Ut = ‘le(wluj (1/8)wsy j + w3i )
+ HaUj + pat + pis i (35)
where,

p = agk?/n*, pp = adk2/h?, 3 =2 — adk
Ha = a\%k, 1, Us = kzv

~N n n n n n
i) = Uiboj+ 2001 41 —8UL g j+2Uk g g +Uijo

n n n n n
— 8Ujj1+ 200 —8uUij g +Uij o +2Ui g g
n n n
—8uly;+t2u g 1+Uy,

wiij= 20 Ul ) (Ve — 29 V1) s

( i+1,]
wznil (U|+1J+1 U|+1,j—1_uin—l.,j+l+uin—1-,i—l>
(v +1,+1 Migjor—Vityjer HVitejo1)s
w3 = (Ul =20+ Ul ) (Ve — 24 +Vile )

4.2 Numerical tests

Consider the following analytical solution of the equaton
(29 - (28

Ua(X,Y,t) = sin’xsirdy e

Va(X,y,t) = sin’sirdy

with loads given by

f(x,y,t) =e" [(1— a3) simxsin?y + 8a3(cos Xsinfy
— cos XC0S ¥+ cos ¥/sinX)
— 2a5(4cos Xsinfycos 3/sin’ — sin22xsin22y)} (38)

(36)
(37)

—8(cos Xsiny — cos Xcos &/ -+ cos ¥/sinX)
(4cos Xsinfycos ¥/sin’ — sinf2xsin2y) (39)

gx,y,t) =
+2e2
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We use for size of mesN = 19. For caseg = 0 the
mechanical energy is given by

1
E(t) = IU'(t)|2+aiIAU(t)IZJr5<’:\%\AV(t)I2 (40) )
Example 1. The first problem we consider the following
data:a; = 0.01,a, = 0.5 andaz = 1.25. f andg are given o

in (38) and @9), respectivelyup andu; are obtained from
(36) and u and v satisfies the clamping conditions. For
constant C; = 0.4 a convergence is attained in

T = k(M + 1) ~ 0.031416830) ~ 26.075 s. In Figure 2
we present for all € (0,T], theabsolute errordefined by

lu(t) — ua(t)|. In Figure 3, we show the long-time
behavior of the transversal displacement in the point
(rt/2,1/2). In Figure 4, we show in 3D the transversal
displacement of plate for different time steps:
to = 0, tos ~ 0.785 t79 ~ 2.199 tg3g ~ 26.075. We
initially observe that the deflections are larger in the
corners of the plate and then they reduce smoothly and
expand rapidly near the boundary. o

o
=

Absolute Error
o
©

0.2

0.1

Fig. 2: The absolute error &2 norm the long-time.

0.785 s, (C)l7p~ 2.199 s and (djs3p~ 26.075 s.

Fig. 3: Transversal displacement in the pofmt/ 2, 11/2).

Example

2.

In

this

example

we

Fig. 4: Transversal displacement of plate. {ay 0 s, (b)tys ~

consider

a3 =0.01,ap=1andag = 1. f is given in 38) andg = 0.
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Up andu; are obtained from36) andu andv satisfy the
clamping conditions. For consta@g = 0.2 a convergence

is attained inT = k(M + 1) ~ 0.03141591862) ~ 58.496

s. For calculate of energy of system, given #0)( we
have computated in all the plate using the Composite
Simpson’s rule. In Figure 5 and 6 we show the long-time
behavior of the solution in the pointrr/2,11/2) and
energy of system, respectively. Note that energy converge
to 0. In Figure 7, we show the transversal displacement of
the plate, in 3D, for different time steps:
to = O,t45 ~ 1.4141t140 ~ 4.398 11843 ~ 58496. We
initially observe that the deflections are larger near the
boundary, but in long-time these deflections disappear.

e

m\\l

Fig. 5: Transversal displacement in the pofr/ 2,

10

20

30
t

40

50

Fig. 6: The energy of system through long-time.

y 25 N 3

(d)

Fig. 7: Transversal displacement of plate. {a} 0 s, (b)ts5 ~
1.414 s, (Cl140~ 4.398 and (d}1g43~ 58496 s.

5 Conclusion

The Nakao’s method proved to be an efficient method for
the demonstration of the exponential decay of the solution
of the system of von Erman. Numerical tests have shown
the decay of the mechanical energy of the system.
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