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1 Department of Mathematics, Faculty of Science, Gazi University, Ankara, Turkey
2 Department of Mathematics, Faculty of Science and Arts, Amasya University, Amasya, Turkey
3 Department of Mathematics, Faculty of Science and Arts, Atılım University,Ankara, Turkey

Received: 8 Jul. 2013, Revised: 10 Oct. 2013, Accepted: 11 Oct. 2013
Published online: 1 Jul. 2014

Abstract: Very recently, Jleli and Samet [53] and Samet et. al. [52] reported that some fixed point result in G-metric spaces can be
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1 Introduction

The wide application potential of fixed point theory is the
main motivation of research activities in this field. The
theoretical studies are advancing in two main directions:
one of them is related with the attempts to generalize the
contractive conditions on the maps and thus, weaken
them; the other with the attempts to generalize the space
on which these contractions are defined. Among the
results in the first direction one can mention cyclic
contractions, almost contractions, non-expansive and
expansive maps [3,4,28,29,30,31,32,33,34,37,50]. In
the second direction some of the most extensively studied
fields are the cone metric spaces, partial metric spaces
and G-metric spaces [1,2,6,7,8,9,10,12,15,16,17,20,21,
39,40]. There is also a rapidly growing interest in studies
combining the two directions [11,13,18,19,22,23,24,25,
26,27,36,51].

The concepts of G-metric spaces and cyclic
contractions, more specifically, various types of cyclic
contractions on G-metric spaces have been investigated in
the past few years [25,36]. On the other hand, recently,
Jleli and Samet [53] and Samet et. al. [52] proved that
some fixed point result in G-metric spaces can be easily
deduced from their analogs in usual metric spaces.
However, this is not possible in general, that is, not all the
results in G-metric spaces can be derived from those in

usual metric spaces. In this paper, we prove the existence
and uniqueness of fixed points of certain cyclic mappings
in the context of G-metric spaces which cannot be
obtained from usual fixed point results via the techniques
used in [53,52]. We also improve some existing
statements regarding these two topics. For the sake of
completeness, we will state the basic definitions and
crucial results that we need throughout the paper.

Cyclic maps have been first introduced by
Kirk-Srinavasan-Veeramani [29] in 2003 together with
the concept of best proximity points. The main advantage
of cyclic maps is that they do not need be continuous.
After this first article, best proximity theorems and, in
particular, the fixed point theorems in the context of
cyclic mapping have been studied extensively (see, e.g.,
[30,31,32,33,34,35,36,37,38,41,42,43,44,45].

Definition 1.Let X be a nonempty set and let Y= ∪m
j=1A j

where{A j}
m
j=1 is a family of nonempty subsets of X. A map

T : Y →Y is called cyclic map if

T(A j)⊆ A j+1, j = 1, . . .m, where Am+1 = A1. (1)

The conceptG-metric spaces introduced by Mustafa
and Sims [6] is actually an improvement of the concept
of D-metric spaces defined in [39],[40]. G-metrics andG-
metric spaces have been thoroughly studied so far. Basic
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notions including the definition and properties ofG-metric
are listed below.

Definition 2.(See [6]). Let X be a non-empty set,
G : X × X × X → R

+ be a function satisfying the
following properties :
(G1)G(x,y,z) = 0 if x = y= z,
(G2) 0< G(x,x,y) for all x,y∈ X with x 6= y,
(G3)G(x,x,y)≤ G(x,y,z) for all x,y,z∈ X with y 6= z,
(G4) G(x,y,z) = G(x,z,y) = G(y,z,x) = · · · (symmetry in
all three variables),
(G5) G(x,y,z) ≤ G(x,a,a) + G(a,y,z) (rectangle
inequality) for all x,y,z,a∈ X.

Then the function G is called a generalized metric, or
a G-metric on X, and the pair(X,G) is called a G-metric
space.

It can be easily shown that everyG-metric on X
induces a metricdG onX defined by

dG(x,y) = G(x,y,y)+G(y,x,x), forall x,y∈ X. (2)

The following trivial examples give a better idea about
the notion ofG-metrics:

Example 1.Let (X,d) be a metric space. The function
G : X×X×X → [0,+∞), defined by

G(x,y,z) = max{d(x,y),d(y,z),d(z,x)},

for all x,y,z∈ X, is aG-metric onX.

Example 2.(See e.g. [6]) Let X = [0,∞). The function
G : X×X×X → [0,+∞), defined by

G(x,y,z) = |x−y|+ |y−z|+ |z−x|,

for all x,y,z∈ X, is aG-metric onX.

The following basic topological concepts onG-metric
spaces have also been defined by Mustafa and Sims [6].

Definition 3.(See [6]). Let(X,G) be a G-metric space, and
let {xn} be a sequence of points of X. The sequence{xn}
is said to be G-convergent to x∈ X if

lim
n,m→+∞

G(x,xn,xm) = 0,

that is, if for any ε > 0, there exists N∈ N such that
G(x,xn,xm)< ε, for all n,m≥ N. We call x the limit of the
sequence and write xn → x or lim

n→+∞
xn = x.

Proposition 1.(See [6]). Let (X,G) be a G-metric space.
The following statements are equivalent:
(1) {xn} is G-convergent to x,
(2) G(xn,xn,x)→ 0 as n→+∞,
(3) G(xn,x,x)→ 0 as n→+∞,
(4) G(xn,xm,x)→ 0 as n,m→+∞.

Definition 4.(See [6]). Let (X,G) be a G-metric space. A
sequence{xn} is called a G-Cauchy sequence if, for any
ε > 0, there exists N∈N such that G(xn,xm,xl )< ε for all
m,n, l ≥ N, that is, G(xn,xm,xl )→ 0 as n,m, l →+∞.

Proposition 2.(See [6]). Let (X,G) be a G-metric space.
The following statements are equivalent:
(1) the sequence{xn} is G-Cauchy,
(2) for any ε > 0, there exists N∈ N such that
G(xn,xm,xm)< ε, for all m,n≥ N.

Definition 5.(See [6]). A G-metric space(X,G) is called
G-complete if every G-Cauchy sequence is G-convergent
in (X,G).

Definition 6.Let (X,G) be a G-metric space. A mapping
F : X×X×X → X is said to be continuous if for any three
G-convergent sequences{xn}, {yn} and {zn} converging
to x, y and z respectively,{F(xn,yn,zn)} is G-convergent
to F(x,y,z).

Every G-metric onX generates a topologyτG on X with
base a family of openG-balls {BG(x,ε),x ∈ X,ε > 0},
whereBG(x,ε) = {y∈ X,G(x,y,y)< ε} for all x∈ X and
ε > 0. A non-empty setA ⊂ X is G- closed in the
G-metric space(X,G) if A= A where

x∈ A⇐⇒ BG(x,ε)∩A 6= /0,

for all ε > 0.

Proposition 3.(See e.g. [36]) Let (X,G) be a G-metric
space and A be a nonempty subset of X. The set A is
G-closed if for any G-convergent sequence{xn} in A with
limit x, we have x∈ A.

The celebrated Banach Contraction Principle (see [5])
in the context ofG-metric spaces has been stated in [9] as
follows:

Theorem 1.(See [9]) Let (X,G) be a complete G-metric
space and T: X →X be a mapping satisfying the following
condition for all x,y,z∈ X:

G(Tx,Ty,Tz)≤ kG(x,y,z), (3)

where k∈ [0,1). Then T has a unique fixed point.

A particular case of Theorem1 is given below.

Theorem 2.(See [9]) Let (X,G) be a complete G-metric
space and T: X →X be a mapping satisfying the following
condition for all x,y∈ X:

G(Tx,Ty,Ty)≤ kG(x,y,y), (4)

where k∈ [0,1). Then T has a unique fixed point.

Remark.Observe that the condition (3) implies the
condition (4). However, the converse is not true unless
k∈ [0, 1

2) (see [10] for details).

Lemma 1.[9] For a G-metric G defined on a set X, the
following inequality holds

G(x,y,y) = G(y,y,x)≤ G(y,x,x)+G(x,y,x) = 2G(y,x,x),
(5)

for all x,y∈ X.
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One of the attempts to improve the contractive
condition on a map is the so-called weakφ - contraction
introduced by Alber and Guerre-Delabriere [47].

A map T : X → X on a metric space(X,d) is called
a weakφ -contraction if there exists a strictly increasing
functionφ : [0,∞)→ [0,∞) with φ(0) = 0 such that

d(Tx,Ty)≤ d(x,y)−φ(d(x,y)),

for all x,y ∈ X. It is worth to mention that these types of
contractions have also been a subject of considerable
interest(see e.g. [41,48,49,50]).

Some very recent results regarding cyclic maps on
G-metric spaces are given in [36,54]. In [36], the authors
discussed two types cyclic contractions: cyclic type
Banach contractions and cyclic weakφ -contractions.
Their main results are listed below.

Denote the set of continuous functions
φ : [0,∞) → [0,∞) with φ(0) = 0 andφ(t) > 0 for t > 0
byΨ .

Theorem 3.Let (X,G) be a G-complete G-metric space
and{A j}

m
j=1 be a family of nonempty G-closed subsets of

X with Y= ∪m
j=1A j . Let T : Y →Y be a map satisfying

T(A j)⊆ A j+1, j = 1, . . .m, where Am+1 = A1. (6)

Suppose that there exists a functionφ ∈ Ψ such that the
map T satisfies the inequality

G(Tx,Ty,Tz)≤ M(x,y,z)−φ(M(x,y,z)) (7)

for all x ∈ A j and y,z∈ A j+1, j = 1, . . .m where

M(x,y,z)
= max{G(x,y,z),G(x,Tx,Tx),G(y,Ty,Ty),G(z,Tz,Tz)}.

(8)
Then T has a unique fixed point in∩m

j=1A j .

As a particular case of Theorem3, authors presented
the following result [36].

Theorem 4.(See [36]) Let (X,G) be a G-complete
G-metric space and{A j}

m
j=1 be a family of nonempty

G-closed subsets of X. Let Y= ∪m
j=1A j and T : Y →Y be

a map satisfying

T(A j)⊆ A j+1, j = 1, . . .m, where Am+1 = A1. (9)

If there exists k∈ (0,1) such that

G(Tx,Ty,Tz)≤ kG(x,y,z) (10)

holds for all x∈ A j and y,z∈ A j+1, j = 1, . . .m then, T has
a unique fixed point in∩m

j=1A j .

On the other hand, Bilgili and Karapınar [54] proved a
more general version of the contractive condition given in
[36]. We next give their result.

Theorem 5.Let (X,G) be a G-complete G-metric spaces
and{A j}

m
j=1 be a family of nonempty G-closed subsets of

X with Y=
m
⋃

j=1

A j . Let T : Y →Y be a map satisfying

T(A j)⊆ A j+1, j = 1,2, ...,m, where Am+1 = A1. (11)

Suppose that there exist functionsφ andψ satisfying

ψ,φ : [0,∞]→ [0,∞], ψ(t) = φ(t) = 0⇐⇒ t = 0,

ψ is continuous and nondecreasing,φ is lower
semi-continuous for which the map T satisfies the
inequality

ψ(G(Tx,Ty,Ty))≤ ψ(M(x,y,y))−φ(M(x,y,y)) (12)

for all x ∈ A j and y∈ A j+1, j = 1,2, ...,m where

M(x,y,y) = max

{

G(x,y,y),G(x,Tx,Tx),G(y,Ty,Ty),

G(x,y,Tx), 1
3[2G(x,Ty,Ty)+G(y,Tx,Tx)],

1
3[G(x,Ty,Ty)+2G(y,Tx,Tx)]

}

.

(13)
Then T has a unique fixed point in∩m

j=1A j .

The aim of this paper is to generalize the results
regarding cyclic contractions onG-metric spaces reported
so far.

2 Main Results

In our discussion we will need some sets of auxiliary
functions which are defined below.

Let F denote all functionsf : [0,∞)→ [0,∞) such that
f (t) = 0 if and only if t = 0. LetΨ andΦ be the subsets
of F such that

Ψ = {ψ ∈ F : ψ is continuous and nondecreasing},
Φ = {φ ∈ F : φ is lower semi-continuous}.

The following results are needed in the proof of the main
theorem.

Lemma 2.Let (X,G) be a G-complete G-metric spaces
and{xn} be a sequence in X such that G(xn,xn+1,xn+1) is
nonincreasing and

lim
n→∞

G(xn,xn+1,xn+1) = 0. (14)

If {xn} is not a Cauchy sequence, then there existsε > 0
and two sequences{nk} and{ℓk} of positive integers such
that the following sequences have the same limitε as k→
∞:

{G(xℓ(k),xn(k),xn(k))}, {G(xn(k),xℓ(k),xℓ(k))},
{G(xℓ(k),xn(k)+1,xn(k)+1)}, {G(xn(k)+1,xℓ(k),xℓ(k))},
{G(xℓ(k)−1,xn(k),xn(k))}, {G(xn(k),xℓ(k)−1,xℓ(k)−1)},
{G(xℓ(k)−1,xn(k)+1,xn(k)+1)}, {G(xn(k)+1,xℓ(k)−1,xℓ(k)−1)},
{G(xn(k)+1,xℓ(k)+2,xℓ(k)+2)}, {G(xℓ(k)+2,xn(k)+1,xn(k)+1)}.

(15)
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Proof.Since {xn} is not G-Cauchy then, according to
Proposition2 there existsε > 0 and subsequences{n(k)}
and{ℓ(k)} of N such thatn(k)≥ ℓ(k)> k for which

G(xℓ(k),xn(k),xn(k))≥ ε andG(xn(k),xℓ(k),xℓ(k))≥ ε,
(16)

where n(k) ≥ ℓ(k) are chosen as the smallest integers
satisfying (16), that is,

G(xℓ(k),xn(k)−1,xn(k)−1)< ε and
G(xn(k),xℓ(k)−1,xℓ(k)−1)< ε . (17)

From the rectangle inequality(G5) and (16),(17) we have

ε ≤ G(xℓ(k),xn(k),xn(k)) ≤ G(xℓ(k),xn(k)−1,xn(k)−1)
+G(xn(k)−1,xn(k),xn(k))
< ε +G(xn(k)−1,xn(k),xn(k)),

(18)
and

ε ≤ G(xn(k),xℓ(k),xℓ(k)) ≤ G(xn(k),xℓ(k)−1,xℓ(k)−1)
+G(xℓ(k)−1,xℓ(k),xℓ(k))

< ε +G(xℓ(k)−1,xℓ(k),xℓ(k)).
(19)

Lettingk→ ∞ in (18) ,(19) and making use of (14) we
get

lim
k→∞

G(xℓ(k),xn(k),xn(k)) = ε . (20)

and
lim
k→∞

G(xn(k),xℓ(k),xℓ(k)) = ε . (21)

We next notice that

G(xℓ(k),xn(k),xn(k)) ≤ G(xℓ(k),xn(k)+1,xn(k)+1)
+ G(xn(k)+1,xn(k),xn(k)),

(22)

and

G(xℓ(k),xn(k)+1,xn(k)+1) ≤ G(xℓ(k),xn(k),xn(k))
+ G(xn(k),xn(k)+1,xn(k)+1).

(23)
Taking limit ask→ ∞ and using (14) and (20), we obtain

lim
k→∞

G(xℓ(k),xn(k)+1,xn(k)+1) = ε . (24)

By similar arguments we have

G(xn(k),xℓ(k),xℓ(k)) ≤ G(xn(k),xn(k)+1,xn(k)+1)
+ G(xn(k)+1,xℓ(k),xℓ(k)),

(25)

and

G(xn(k)+1,xℓ(k),xℓ(k)) ≤ G(xn(k)+1,xn(k),xn(k))
+ G(xn(k),xℓ(k),xℓ(k)).

(26)

Taking limit ask→ ∞ and using (14) and (21), we deduce

lim
k→∞

G(xn(k)+1,xℓ(k),xℓ(k)) = ε . (27)

On the other hand, the inequalities

G(xℓ(k)−1,xn(k),xn(k)) ≤ G(xℓ(k)−1,xℓ(k),xℓ(k))
+ G(xℓ(k),xn(k),xn(k)),

(28)

and

G(xℓ(k),xn(k),xn(k)) ≤ G(xℓ(k),xℓ(k)−1,xℓ(k)−1)
+ G(xℓ(k)−1,xn(k),xn(k)),

(29)

will give
lim
k→∞

G(xℓ(k)−1,xn(k),xn(k)) = ε . (30)

upon lettingk → ∞ and using (14) and (20). By using
rectangle inequality again we observe that

G(xn(k),xℓ(k)−1,xℓ(k)−1) ≤ G(xn(k),xℓ(k),xℓ(k))
+ G(xℓ(k),xℓ(k)−1,xℓ(k)−1),

(31)
and

G(xn(k),xℓ(k),xℓ(k)) ≤ G(xn(k),xℓ(k)−1,xℓ(k)−1)
+ G(xℓ(k)−1,xℓ(k),xℓ(k)).

(32)

Therefore

lim
k→∞

G(xn(k),xℓ(k)−1,xℓ(k)−1) = ε (33)

follows from (14) and (21). Repeated application of(G5)
results in

G(xℓ(k−1),xn(k)+1,xn(k)+1) ≤ G(xℓ(k−1),xℓ(k),xℓ(k))
+ G(xℓ(k),xn(k),xn(k))
+ G(xn(k),xn(k)+1,xn(k)+1),

(34)
and

G(xℓ(k),xn(k),xn(k)) ≤ G(xℓ(k),xℓ(k−1),xℓ(k−1))
+ G(xℓ(k−1),xn(k)+1,xn(k)+1)
+ G(xn(k)+1,xn(k),xn(k)).

(35)

As k→ ∞ we have

lim
k→∞

G(xℓ(k)−1,xn(k)+1,xn(k)+1) = ε (36)

due to (14) and (20). Next, observe that

G(xn(k)+1),xℓ(k)−1,xℓ(k)−1) ≤ G(xn(k)+1),xn(k),xn(k))
+ G(xn(k),xℓ(k),xℓ(k))
+ G(xℓ(k),xℓ(k)−1,xℓ(k)−1),

(37)
and

G(xn(k),xℓ(k),xℓ(k)) ≤ G(xn(k),xn(k)+1),xn(k)+1))
+ G(xn(k)+1),xℓ(k)+1,xℓ(k)+1)
+ G(xℓ(k)+1,xℓ(k),xℓ(k)).

(38)

Lettingk→ ∞ and using (14) and (21), we obtain

lim
k→∞

G(xn(k)+1,xℓ(k)−1,xℓ(k)−1) = ε . (39)
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Now we consider the inequalities

G(xn(k)+1),xℓ(k)−1,xℓ(k)−1) ≤ G(xn(k)+1),xℓ(k)+2,xℓ(k)+2)
+ G(xℓ(k)+2,xℓ(k)+1,xℓ(k)+1)
+ G(xℓ(k)+1,xℓ(k),xℓ(k))
+ G(xℓ(k),xℓ(k)−1,xℓ(k)−1),

(40)
and

G(xn(k)+1),xℓ(k)+2,xℓ(k)+2) ≤ G(xn(k)+1),xℓ(k)−1,xℓ(k)−1)
+ G(xℓ(k−1),xℓ(k),xℓ(k))
+ G(xℓ(k),xℓ(k)+1,xℓ(k)+1)
+ G(xℓ(k)+1,xℓ(k)+1,xℓ(k)+2).

(41)
which together with (14) and (20) imply that

lim
k→∞

G(xn(k)+1),xℓ(k)+2,xℓ(k)+2) = ε . (42)

Finally, from

G(xℓ(k)−1),xn(k)+1,xn(k)+1) ≤ G(xℓ(k)−1),xℓ(k),xℓ(k))
+ G(xℓ(k),xℓ(k)+1,xℓ(k)+1)
+ G(xℓ(k)+1,xℓ(k)+2,xℓ(k)+2)
+ G(xℓ(k)+2,xn(k)+1,xn(k)+1),

(43)
and

G(xℓ(k)+2),xn(k)+1,xn(k)+1) ≤ G(xℓ(k)+2),xℓ(k)+1,xℓ(k)+1)
+ G(xℓ(k)+1,xℓ(k),xℓ(k))
+ G(xℓ(k),xℓ(k)−1,xℓ(k)−1)
+ G(xℓ(k)−1,xn(k)+1,xn(k)+1),

(44)
we conclude by using (14) and (21) that

lim
k→∞

G(xℓ(k)+2,xn(k)+1),xn(k)+1)) = ε . (45)

This comlpetes the proof of the Lemma.

The main result is stated next.

Theorem 6.Let (X,G) be a G-complete G-metric space
and{A j}

m
j=1 be a family of nonempty G-closed subsets of

X with Y=
m
⋃

j=1

A j . Let T : Y →Y be a map satisfying

T(A j)⊆ A j+1, j = 1,2, ...,m, where Am+1 = A1. (46)

Suppose that there exist functionsφ ∈ Φ andψ ∈Ψ such
that the map T satisfies the inequality

ψ(G(Tx,T2x,Ty))≤ ψ(M(x,y,y))−φ(M(x,y,y)) (47)

for all x ∈ A j and y∈ A j+1, j = 1,2, ...,m where

M(x,y,y) = max

{

G(x,y,y),G(x,Tx,Tx),G(y,Ty,Ty),

G(x,Tx,y), 1
2G(x,T2x,Ty), 1

2G(y,Ty,Tx),
1
2G(y,T2x,Ty), 1

2[G(x,Ty,Ty)+G(y,Tx,Tx)],

1
2[G(x,T2x,Ty)+G(y,Tx,Tx)]

}

.

(48)

Then T has a unique fixed point in
m
⋂

j=1

A j .

Proof.First we consider the existence part. To show the
existence of a fixed point of the mapT we pick an
arbitrary x0 ∈ A1 and construct the sequence{xn} as
follows:

xn = Txn−1, n= 1,2,3, · · · . (49)

SinceT is cyclic, we havex0 ∈ A1,x1 = Tx0 ∈ A2,x2 =
Tx1 ∈ A3, · · · . If xn0+1 = xn0 for somen0 ∈ N, then clearly
xn0 is the fixed point ofT. Assume thatxn+1 6= xn for all
n ∈ N. Setx = xn andy = xn+1 in the inequality (47) to
obtain

ψ(G(Txn,T2xn,Txn+1)) = ψ(G(xn+1,xn+2,xn+2))
≤ ψ(M(xn,xn+1,xn+1))
− φ(M(xn,xn+1,xn+1)),

(50)
where

M(xn,xn+1,xn+1) = max{G(xn,xn+1,xn+1),G(xn,Txn,Txn),
G(xn+1,Txn+1,Txn+1),G(xn,Txn,xn+1),

1
2G(xn,T2xn,Txn+1),

1
2G(xn+1,Txn+1,Txn),

1
2G(xn+1,T2xn,Txn+1),

1
2[G(xn,Txn+1,Txn+1)+G(xn+1,Txn,Txn)],
1
2[G(xn,T2xn,Txn+1)+G(xn+1,Txn,Txn)]}

= max{G(xn,xn+1,xn+1),G(xn,xn+1,xn+1),
G(xn+1,xn+2,xn+2),G(xn,xn+1,xn+1),

1
2G(xn,xn+2,xn+2),

1
2G(xn+1,xn+2,xn+1),

1
2G(xn+1,xn+2,xn+2),

1
2[G(xn,xn+2,xn+2)+G(xn+1,xn+1,xn+1)],
1
2[G(xn,xn+2,xn+2)+G(xn+1,xn+1,xn+1)]}

= max{G(xn,xn+1,xn+1),G(xn+1,xn+2,xn+2)}.
(51)

If M(xn,xn+1,xn+1) = G(xn+1,xn+2,xn+2), then (50)
becomes

ψ(G(xn+1,xn+2,xn+2)) ≤ ψ(G(xn+1,xn+2,xn+2))
− φ(G(xn+1,xn+2,xn+2)).

(52)

This yieldsφ(G(xn+1,xn+2,xn+2)) = 0 and we conclude
that

G(xn+1,xn+2,xn+2) = 0,

which contradicts the assumptionxn 6= xn+1 for all n∈ N.

Hence, we should have

M(xn,xn+1,xn+1) = G(xn,xn+1,xn+1). (53)

In this case the inequality (50) turns into

ψ(G(xn+1,xn+2,xn+2)) ≤ ψ(G(xn,xn+1,xn+1))
− φ(G(xn,xn+1,xn+1))
≤ ψ(G(xn,xn+1,xn+1)).

(54)

Sinceψ ∈ Ψ , then{G(xn,xn+1,xn+1)} is a nonnegative,
non-increasing sequence that converges to someL ≥ 0. To
show thatL = 0 we assume the contrary, that is,L > 0.
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Taking limsupn→+∞ in (54) we obtain

limsup
n→+∞

ψ(G(xn+1,xn+2,xn+2))

≤ limsup
n→+∞

ψ(G(xn,xn+1,xn+1))

− liminf
n→+∞

φ(G(xn,xn+1,xn+1))

≤ limsup
n→+∞

ψ(G(xn,xn+1,xn+1)).

(55)

Taking into account the continuity ofψ and the lower
semi-continuity ofφ we deduce

ψ(L)≤ ψ(L)−φ(L). (56)

which impliesφ(L) = 0, and hence,L = 0. Thus,

lim
n→∞

G(xn,xn+1,xn+1) = 0. (57)

Regarding Lemma1 with x= xn andy= xn−1 we note that

G(xn,xn−1,xn−1)≤ 2G(xn−1,xn,xn), (58)

which gives

lim
n→∞

G(xn,xn−1,xn−1) = 0. (59)

Next, we shall show that{xn} is aG-Cauchy sequence in
(X,G). Assume that{xn} is not G-Cauchy. Then, by the
Proposition 2 there existsε > 0 and corresponding
subsequences{n(k)} and {ℓ(k)} of N satisfying
n(k)> ℓ(k)> k for which

G(xℓ(k),xn(k),xn(k))≥ ε , (60)

where n(k) is chosen as the smallest integer satisfying
(60), that is,

G(xℓ(k),xn(k)−1,xn(k)−1)< ε . (61)

By (60),(61) and the rectangle inequality(G5), it is easy
to see that

ε ≤ G(xℓ(k),xn(k),xn(k))
≤ G(xℓ(k),xn(k)−1,xn(k)−1)+G(xn(k)−1,xn(k),xn(k))
< ε +G(xn(k)−1,xn(k),xn(k)).

(62)
Lettingk→ ∞ in (62) and using (57) we get

lim
k→∞

G(xℓ(k),xn(k),xn(k)) = ε . (63)

Observe that for everyk ∈ N we can finds(k) satisfying
0≤ s(k)≤ m such that

n(k)− ℓ(k)+s(k)≡ 1(m). (64)

Then, for large enough values ofk we haver(k) = ℓ(k)−
s(k) > 0 andxr(k) andxn(k) lie in the adjacent setsA j and

A j+1 respectively for some 0≤ j ≤ m. If we setx= xr(k)
andy= xn(k) in (47), we obtain

ψ(G(Txr(k),T
2xr(k),Txn(k))) ≤ ψ(M(xr(k),xn(k),xn(k)))

− φ(M(xr(k),xn(k),xn(k))),
(65)

where

M(xr(k),xn(k),xn(k)) = max{G(xr(k),xn(k),xn(k)),
G(xr(k),Txr(k),Txr(k)),G(xn(k),Txn(k),Txn(k)),

G(xr(k),Txr(k),xn(k)),
1
2G(xr(k),T

2xr(k),Txn(k)),
1
2G(xn(k),Txn(k),Txr(k)),

1
2G(xn(k),T

2xr(k),Txn(k)),
1
2[G(xr(k),Txn(k),Txn(k))+G(xn(k),Txr(k),Txr(k))],
1
2[G(xr(k),T

2xr(k),Txn(k))+G(xn(k),Txr(k),Txr(k))]}

= max{G(xr(k),xn(k),xn(k)),G(xr(k),xr(k)+1,xr(k)+1),
G(xn(k),xn(k)+1,xn(k)+1),G(xr(k),xr(k)+1,xn(k)),
1
2G(xr(k),xr(k)+2,xn(k)+1),
1
2G(xn(k),xn(k)+1,xr(k)+1),

1
2G(xn(k),xr(k)+2,xn(k)+1),

1
2[G(xr(k),xn(k)+1,xn(k)+1)+G(xn(k),xr(k)+1,xr(k)+1)],
1
2[G(xr(k),xr(k)+2,xn(k)+1)+G(xn(k),xr(k)+1,xr(k)+1)]}.

(66)
Repeated application of the rectangle inequality(G5)
results in

lim
k→∞

G(xr(k),xn(k),xn(k)) = ε . (67)

On the other hand,

lim
k→∞

G(xr(k),xr(k)+1,xr(k)+1) = 0,

lim
k→∞

G(xn(k),xn(k)+1,xn(k)+1) = 0. (68)
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In addition, from the rectangle inequality(G5) it follows
that

G(xr(k),xr(k)+1,xn(k)) = G(xn(k),xr(k),xr(k)+1)
≤ G(xn(k),xr(k),xr(k))
+ G(xr(k),xr(k),xr(k)+1),

1
2G(xr(k),xr(k)+2,xn(k)+1) ≤

1
2[G(xr(k),xr(k)+1,xr(k)+1)

+ G(xr(k)+1,xr(k)+2,xr(k)+2)
+ G(xr(k)+2,xr(k)+2,xn(k)+1)],

1
2G(xn(k),xn(k)+1,xr(k)+1) =

1
2G(xr(k)+1,xn(k)+1,xn(k))

≤ 1
2[G(xr(k)+1,xr(k),xr(k))

+ G(xr(k),xn(k)+1,xn(k)+1)
+ G(xn(k)+1,xn(k)+1,xn(k))],

1
2G(xn(k),xr(k)+2,xn(k)+1) ≤

1
2[G(xn(k),xr(k),xr(k))

+ G(xr(k),xr(k)+1,xr(k)+1)
+ G(xr(k)+1,xr(k)+2,xr(k)+2)
+ G(xr(k)+2,xr(k)+2,xn(k)+1)],

1
2[G(xr(k),xn(k)+1,xn(k)+1) + G(xn(k),xr(k)+1,xr(k)+1)]

≤ 1
2[G(xr(k),xn(k)+1,xn(k)+1)

+ G(xn(k),xr(k),xr(k))
+ G(xr(k),xr(k)+1,xr(k)+1)],

1
2[G(xr(k),xr(k)+2,xn(k)+1) + G(xn(k),xr(k)+1,xr(k)+1)]

≤ 1
2[G(xr(k),xr(k)+1,xr(k)+1)

+ G(xr(k)+1,xr(k)+2,xr(k)+2)
+ G(xr(k)+2,xr(k)+2,xn(k)+1)
+ G(xn(k),xr(k),xr(k))
+ G(xr(k),xr(k)+1,xr(k)+1)].

(69)
Passing to the limit ask→ ∞ in (69) and using Lemma2,
as well as (67) and (68), we end up with
lim
k→∞

M(xr(k),xn(k),xn(k)) = ε. Thus we have

ψ(ε)≤ ψ(ε)−φ(ε), (70)

which implies φ(ε) = 0. We conclude thatε = 0.
However, this contradicts the assumption that{xn} is not
G-Cauchy. Hence, the sequence{xn} is G-Cauchy. Since
(X,G) is G-complete, it isG-convergent to a limit, say

w ∈ X. It easy to see thatw ∈
m
⋂

j=1

A j . Indeed, ifx0 ∈ A1,

then the subsequence{xm(n−1)}
∞
n=1 ∈ A1, the subsequence

{xm(n−1)+1}
∞
n=1 ∈ A2 and continuing in this way, the

subsequence {xmn−1)}
∞
n=1 ∈ Am. All the above

subsequences areG-convergent in theG-closed setsA j

and hence, they all converge to the same limitw∈
m
⋂

j=1

A j .

We next show that the limitw is the fixed point ofT, that
is, w = Tw. We employ again (47) with x = xn,y = w.

This results in

ψ(G(Txn,T
2xn,Tw))≤ ψ(M(xn,w,w))−φ(M(xn,w,w)),

(71)
where

M(xn,w,w) =
max{G(xn,w,w),G(xn,Txn,Txn),G(w,Tw,Tw),
G(xn,Txn,w), 1

2G(xn,T2xn,Tw),
1
2G(w,Tw,Txn),

1
2G(w,T2xn,Tw),

1
2[G(xn,Tw,Tw)+G(w,Txn,Txn)],
1
2[G(xn,T2xn,Tw)+G(w,Txn,Txn)]}

(72)

Using Lemma1 and taking limsup asn→ ∞, we get

ψ(G(w,Tw,Tw))≤ ψ(G(w,Tw,Tw))−φ(G(w,Tw,Tw)).
(73)

Thenφ((G(w,Tw,Tw)))= 0 and hence,G(w,Tw,Tw)= 0,
that is,w= Tw.

We prove next the uniqueness part of the theorem. Let
v ∈ X be another fixed point ofT such thatv 6= w. Then,

bothv andw belong to
m
⋂

j=1

A j . Settingx= v andy= w in

(47) results in

ψ(G(Tv,T2v,Tw))≤ ψ(M(v,w,w))−φ(M(v,w,w)),
(74)

where

M(v,w,w) =
max{G(v,w,w),G(v,Tv,Tv),G(w,Tw,Tw),G(v,Tv,w),
1
2G(v,T2v,Tw), 1

2G(w,Tw,Tv), 1
2G(w,T2v,Tw),

1
2[G(v,Tw,Tw)+G(w,Tv,Tv)],
1
2[G(v,T2v,Tw)+G(w,Tv,Tv)]}

(75)
On the other hand, settingx= w andy= v in (47) gives

ψ(G(Tw,T2w,Tv))≤ ψ(M(w,v,v))−φ(M(w,v,v)),
(76)

where

M(w,v,v) =
max{G(w,v,v),G(w,Tw,Tw),G(v,Tv,Tv),G(w,Tw,v),
1
2G(w,T2w,Tv), 1

2G(v,Tv,Tw), 1
2G(v,T2w,Tv),

1
2[G(w,Tv,Tv)+G(v,Tw,Tw)],
1
2[G(w,T2w,Tv)+G(v,Tw,Tw)]}

(77)
Now, if G(v,w,w) = G(w,v,v) thenv = w. Note that the
Definition 2 of the induced metric impliesdG(v,w) = 0
and hence,v = w. If G(v,w,w) > G(w,v,v) then by (75)
M(v,w,w) = G(v,w,w) and regarding (74) we get

ψ(G(v,w,w))≤ ψ(G(v,w,w))−φ((G(v,w,w))), (78)

so thatG(v,w,w) = 0. We conclude thatv = w. On the
other hand, if G(w,v,v) > G(v,w,w) then by (77)
M(w,v,v) = G(w,v,v) and by (76),

ψ(G(w,v,v))≤ ψ(G(w,v,v))−φ(G(w,v,v)), (79)

from which we deduceG(w,v,v) = 0. Hence,v = w.
Therefore, the fixed point ofT is unique.
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The following example helps to illustrate Theorem6.

Example 3.Let X = [−1,1] and the functionG : X ×X ×
X → [0,∞) defined as

G(x,y,z) = |x−y|+ |y−z|+ |z−x|, (80)

be aG-metric onX.Let T : X → X be given asTx=
−x
8

.

Let A = [−1,0] and B = [0,1]. Define alsoφ : [0,∞) →

[0,∞) as φ(t) =
t
8

and ψ : [0,∞) → [0,∞) as ψ(t) =
t
2

.

Clearly, the mapT has a unique fixed pointx= 0∈ A∩B.
It is easy to see that the mapT satisfies the condition (47).
Indeed,

G(Tx,T2x,Ty) = |Tx−T2x|+ |T2x−Ty|+ |Ty−Tx|

= |
−x
8

−
−x
64

|+ |
x
64

+
y
8
|+ |

−y
8

+
x
8
|

=
9|x|+ |x+8y|+8|x−y|

64
,

(81)
which yields

ψ(G(Tx,T2x,Ty)) =
9|x|+ |x+8y|+8|x−y|

128
. (82)

Note also that

M(x,y,y) = max{|x−y|+ |y−y|+ |y−x|,
|x−Tx|+ |Tx−Tx|+ |Tx−x|, |y−Ty|+ |Ty−Ty|
+|Ty−y|, |x−Tx|+ |Tx−y|+ |y−x|,
1
2
[|x−T2x|+ |T2x−Ty|+ |Ty−x|],

1
2
[|y−Ty|+ |Ty−Tx|+ |Tx−y|],

1
2
[|y−T2x|+ |T2x−Ty|+ |Ty−y|],

1
2
[|x−Ty|+ |Ty−Ty|+ |Ty−x|

+|y−Tx|+ |Tx−Tx|+ |Tx−y|],
1
2
[|x−T2x|+ |T2x−Ty|+ |Ty−x|

+|y−Tx|+ |Tx−Tx|+ |Tx−y|]}

= max{2|x−y|,
9|x|
4

,
9|y|
4

,
9|x|
8

+
|−x−8y|

8
+ |y−x|,

1
2

[

63|x|
64

+
|8y+x|

64
+

|−8x−y|
8

]

,

1
2

[

9|y|
8

+
|x−y|

8
+

|−8y−x|
8

]

,

1
2

[

|64y−x|
64

+
|8y+x|

64
+

9|y|
8

]

,

[

|8x+y|
8

+
|8y+x|

8

]

,

1
2

[

|63x|
64

+
17|8y+x|

64
+

|−8x−y|
8

]

}.

(83)
From (83) we deduce that

|−9x|+ |−x−8y|+8|y−x|
8

≤ M(x,y,y). (84)

Notice also that the following inequality

ψ(M(x,y,y))−φ(M(x,y,y))

=
M(x,y,y)

2
−

M(x,y,y)
8

=
3M(x,y,y)

8

(85)

holds for all x ∈ A,y ∈ B. Performing some easy
calculations and using (85) and (84) we obtain

3(|−9x|+ |x+8y|+8|−y+x|)
64

≤
3M(x,y,y)

8
= ψ(M(x,y,y))−φ(M(x,y,y)).

(86)

Now, it follows from (82) and (85) that

ψ(G(Tx,T2x,Ty)) =
9|x|+ |x+8y|+8|x−y|

128

≤
3(|−9x|+ |x+8y|+8|−y+x|)

64
≤ 3M(x,y,y)

8
= ψ(M(x,y,y))−φ(M(x,y,y)).

(87)
Clearly, all conditions of Theorem6 are satisfied. Thus,
the mapT has a unique fixed point inA∩B which is 0.

Some special cases of the Theorem6 can be obtained
by choosing the functionsφ ,ψ in a particular way.

Corollary 1.Let (X,G) be a G-complete G-metric space
and{A j}

m
j=1 be a family of nonempty G-closed subsets of

X with Y=
m
⋃

j=1

A j . Let T : Y →Y be a map satisfying

T(A j)⊆ A j+1, j = 1,2, ...,m, where Am+1 = A1. (88)

Suppose that there exist a constant k∈ (0,1) such that the
inequality

G(Tx,T2x,Ty)≤ kM(x,y,y) (89)

holds for all x∈ A j and y∈ A j+1, j = 1,2, ...,m where

M(x,y,y) =

max

{

G(x,y,y),G(x,Tx,Tx),G(y,Ty,Ty),G(x,Tx,y),

1
2

G(x,T2x,Ty),
1
2

G(y,Ty,Tx),
1
2

G(y,T2x,Ty),
1
2
[G(x,Ty,Ty)+G(y,Tx,Tx)],

1
2[G(x,T2x,Ty)+G(y,Tx,Tx)]

}

.

(90)
Then T has a unique fixed point in

⋂m
j=1A j .

Proof.The proof is obvious by choosing the functionsφ ,ψ
in Theorem6 asφ(t) = (1−k)t andψ(t) = t.
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Corollary 2.Let (X,G) be a G-complete G-metric space
and{A j}

m
j=1 be a family of nonempty G-closed subsets of

X with Y=
m
⋃

j=1

A j . Let T : Y →Y satisfy

T(A j)⊆ A j+1, j = 1,2, ...,m, where Am+1 = A1. (91)

Suppose that there exist constants a,b,c,d,e, f ,h,k and l
such that0 < a+b+ c+d+e+ f +h+ k+ l < 1 and a
functionψ ∈Ψ for which the map T satisfies the inequality

ψ(G(Tx,T2x,Ty)) ≤ aG(x,y,y)+bG(x,Tx,Tx)
+ cG(y,Ty,Ty)+dG(x,Tx,y)

+
e
2

G(x,T2x,Ty)+
f
2

G(y,Ty,Tx)

+ h
2G(y,T2x,Ty)

+
k
2
[G(x,Ty,Ty)+G(y,Tx,Tx)]

+ l
2[G(x,T2x,Ty)+G(y,Tx,Tx)].

(92)
for all x ∈ A j and y∈ A j+1, j = 1,2, ...,m. Then, T has a
unique fixed point in

⋂m
j=1A j .

Proof.Clearly we have,

aG(x,y,y)+bG(x,Tx,Tx)+cG(y,Ty,Ty)+dG(x,Tx,y)

+
e
2

G(x,T2x,Ty)+
f
2

G(y,Ty,Tx)+
h
2

G(y,T2x,Ty)

+
k
2
[G(x,Ty,Ty)+G(y,Tx,Tx)]

+ l
2[G(x,T2x,Ty)+G(y,Tx,Tx)]

≤ (a+b+c+d+e+ f +h+k+ l)M(x,y,y),
(93)

where

M(x,y,y) =

max

{

G(x,y,y),G(x,Tx,Tx),G(y,Ty,Ty),G(x,Tx,y),

1
2

G(x,T2x,Ty),
1
2

G(y,Ty,Tx),
1
2

G(y,T2x,Ty),
1
2
[G(x,Ty,Ty)+G(y,Tx,Tx)],

1
2
[G(x,T2x,Ty)+G(y,Tx,Tx)]

}

.

(94)
By Corollary1, the mapT has a unique fixed point.

Integral type contractive conditions are particularly
interesting applications in fixed point theory. We consider
the following cyclic contractions of integral type and state
the related fixed point results.

Corollary 3.Let (X,G) be a G-complete G-metric space
and{A j}

m
j=1 be a family of nonempty G-closed subsets of

X with Y=
m
⋃

j=1

A j . Let T : Y →Y be a map satisfying

T(A j)⊆ A j+1, j = 1,2, ...,m, where Am+1 = A1. (95)

Suppose also that there exist functionsφ ∈ Φ andψ ∈Ψ
such that the map T satisfies

ψ
(

∫ G(Tx,T2x,Ty)
0 ds

)

≤ ψ
(

∫ M(x,y,y)
0 ds

)

− φ
(

∫ M(x,y,y)
0 ds

)

,
(96)

where

M(x,y,y) =

max

{

G(x,y,y),G(x,Tx,Tx),G(y,Ty,Ty),G(x,Tx,y),

1
2

G(x,T2x,Ty),
1
2

G(y,Ty,Tx),
1
2

G(y,T2x,Ty),
1
2
[G(x,Ty,Ty)+G(y,Tx,Tx)],

1
2
[G(x,T2x,Ty)+G(y,Tx,Tx)]

}

.

(97)
for all x ∈ A j and y∈ A j+1, j = 1,2, ...,m. Then T has a

unique fixed point in
m
⋂

j=1

A j .

Corollary 4.Let (X,G) be a G-complete G-metric space
and{A j}

m
j=1 be a family of nonempty G-closed subsets of

X with Y=
m
⋃

j=1

A j . Let T : Y →Y satisfy

T(A j)⊆ A j+1, j = 1,2, ...,m, where Am+1 = A1. (98)

Suppose also that

∫ G(Tx,T2x,Ty)

0
ds≤ k

∫ M(x,y,y)

0
ds, (99)

where k∈ (0,1) and

M(x,y,y) =

max

{

G(x,y,y),G(x,Tx,Tx),G(y,Ty,Ty),G(x,Tx,y),

1
2

G(x,T2x,Ty),
1
2

G(y,Ty,Tx),
1
2

G(y,T2x,Ty),
1
2
[G(x,Ty,Ty)+G(y,Tx,Tx)],

1
2
[G(x,T2x,Ty)+G(y,Tx,Tx)]

}

.

(100)
for all x ∈ A j and y∈ A j+1, j = 1,2, ...,m. Then T has a
unique fixed point in

⋂m
j=1A j .

Proof.The proof follows immediately by choosing the
function φ ,ψ in Corollary 3 as φ(t) = (1 − k)t and
ψ(t) = t.
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[35] E. Karapinar anḋI. M. Erhan, Applied Mathematics and

Information Sciences,5, 558–569 (2011).
[36] E. Karapınar,̇I. M. Erhan, and A. Yıldiz-Ulus, Abstract

and Applied Analysis,2012, Article Id:182947, 15 pages,
doi:10.1155/2012/182947 (2012).

[37] M. A. Alghamdi, A. Petrusel and N. Shahzad, Fixed Point
Theory and Applications,2012, doi:10.1186/1687-1812-
2012-122 (2012).

[38] M. Pacurar, Fixed Point Theory,12, 419–428 (2011).
[39] Dhage, B. C., Bull. Cal. Math. Soc.,84, 329–336 (1992).
[40] Dhage,B. C., Bull. Cal. Math. Soc.,86, 503–508 (1994).
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