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Abstract: Project portfolio selection is one of the most important problems faceahipyorganization. The decision process involves
multiple conflicting criteria, and has been commonly addressed by imptergea two-phase procedure. The first step identifies
the efficient solution set; the second step supports the decision makdedtirggonly one portfolio solution from the efficient set.
However, several recent studies show the advantages gained byizamgintowards a region of interest (according to the decision
maker’s preferences) instead of approximating the complete Patektoseever, these works have not faced synergism and its variants,
such as cannibalization and redundancy. In this paper we introducg appeoach calledNon-Outranked Ant Colony Optimization
which optimizes interdependent project portfolios wathpriori articulation of decision-maker preferences based on an outranking
model. Several experimental tests show the advantages of our pfapes the two-phase approach, providing reasonable evidence of
its potential for solving real-world high-scale problems with many objestive

Keywords: portfolio selection, interdependent projects, multiobjective metaheurigtiimization, preference incorporation,
multicriteria decision

1 Introduction 2(z) = (21(z),22(z), ..., 2,(z)) is associated with the
consequences of a portfolioconsideringp criteria. This
Portfolio problems are ubiquitous in business andis a vector representation of the portfolio’s impact. In the
government organizations. Usually, there are more googimplest case;(z) is obtained from the cumulative sum
ideas for projects or programmes than there are resource® the benefits of the selected projects, but under
(funds, capacity, time, etc.) to support theni].[ interacting project conditions, it is necessary to conside
Manufacturing enterprises recognize that success dependge contribution of interdependent project groups.
on the selection of research and development (R&D)without loss of generality, we can assume that higher
project portfolios, expecting that these projects will criterion values are preferred to lower values. The best

permit them to develop new products that generateportfolio is obtained by solving the following problem:
growing benefits. Local governments allocate public

funds to projects and programmes that improve social and max {(z1(z), z2(2), ..., zp(2)) ), 1)
educational services. Environmental regulations and vete

alternative policy measures attempt to mitigate thewhere Ry is the space of feasible portfolios, and is
harmful consequences of human activi®].[To fight usually determined by the available budget, and by
poverty, governments in underdeveloped countries fundcconstraints for the kind of projects, social roles and
many helpful social programmes. Portfolio consequencegeographic zones. Solving Probleft) (neans finding the
are usually described by multiple attributes related to thebest compromise solution according to the system of
organizational strategy. A vector preferences and values of the Decision Maker (DM).
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In the scientific literature, the problem expressed by In Equation 8), the first term is the cumulative sum of
(1) has received great interest in the management of R&[xhe benefits from the selected projects to ttte objective
by manufacturing and industrial enterprises (e3j4,5, function. The second term is the sum of the synergetic
6,7,8]). Most of these approaches can also be applied innteractions among the projects in the portfoliis the
the public sector. Perhaps what best characterizes theumber of interactions that impact the objectives. Let us
portfolio problems in non-profit organizations are the assume that those interactions have been identified by the
emphasis on intangible criteria and, probably, a higheDM. Functiong; (z) indicates if theith interaction occurs
number of project proposals and objectives to optimize.in the portfolioz. If A; = {A4;1,4;2,...,A;n} IS a
Many-objective problems are frequent in project portfolio binary vector that indicates which projects are affected by
optimization. For example, in socially responsible theith interdependency4; ; = 1 represents that thgh
organizations, the number of criteria used for capitalproject is considered in théth objective interaction),
investment may be about a dozen (sp.[Even more  ¢;(x) may be defined as
objective functions should be considered in basic research
project management (cf10]). A high number of project
proposals can apply for public support in a simple call for
projects. For instance, in 2012 the US state of Georgia
had a list of over 1600 applicant projects at the State
Department of Transportation alon&l[12,13,14], with
many potential interdependencies. There should be a In Equation 4), m; and M; are respectively the
large set of Pareto-efficient solutions t).(However, the  minimum and maximum number of projects required for
DM has to select only one portfolio according to her/his synergyi to occur, thus gaining additional benefits.
preferences for the consequences expresseday In Equation 8), a;j is the value added to théth

The specificity of such project portfolio problems objective when theith synergy is activated. The
with many objectives has been scarcely approached bynteraction has been particularly namehnibalizationif
the scientific literature. This paper is a contribution iisth  «; j, is negative.
sense. It is structured as follows. Sectidrsummarizes Suppose that there arg categories of resources
the most-widely accepted optimization model of the destined for supporting project proposals. Let
portfolio problem. Sectioi briefly reviews proposals for  {B,,B,,...,B,} be the set containing the quantity of
incorporating DM preferences in multi-objective available resources for each category (e.g. financial,
optimization metaheuristics, and on this background, thehuman or technological resources), and dej, be the
method by Fernandez et all( 15 is detailed. Our  amount of thekth resource requested by projgctThus,
proposal is presented in Sectioh followed by test the total of thekth resource needed for implementing
examples and comparisons with other approachegortfolio z, is expressed by EquatioB)(
(Sectionb). Finally, some conclusions are discussed in
Section6.

9i(z) =

N
1 ifm; < Z (@ - Aij) < M, (4)
j=1

0 otherwise.

N R
(@) =Y @i cint > hi(@) big (5)
j=1 i=1

2 Description and formalization of the
problem The first term in Equationd) is the sum of resources
consumed by the projects im, without considering
Here, we follow the proposal by Stummer and resource interactions. The second term is the sum
Heidemberger ing] that was also addressed by Doerner concerning interactions that affect costs and resources
etal [16,17] and Carazo etal1g 19]. _ requested.R is the number of these interdependencies,
Let X be the set of applicant projects competing for 1, () is a binary function that indicates if theh resource
resources. A portfolio (a subset oK) is typically interaction occurs, andl is the change in théth cost

represented by a binary vecter = {z,xzo,..., 25},
whereN is the total of project proposals; the variablgs
indicate whether the projegtis included in the portfolio
(x; =1)ornot (; =0).

Let us denote by (j) = {f1(j). f2(§).-- .. fo(j)} the
benefits provided by thgth project. The benefits provided

by portfolio = are expressed by Equatio?)(
z2(z) = {z1(2), z2(x), ..., zp(2)},

wherez(z) is defined as

)

N S
(@) =Y x5 i)+ D gi@) - aik. )
j=1 i=1

produced by theith interaction. h;(x) is defined in
Equation 6) similarly to g;(z), but considering:; and N;
as limits for activating synergy. Equatiofl) (presents the
definition of h;(x):

N
Lifn <3 (2 Ciy) < N,
hi(w) = M (5 Crg) (6)

0 otherwise,

whereC; = {C;1,Ci2,...,C; n} is a binary vector that
indicates which projects are affected by thth cost
interdependency.
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Of course, Problem1j is subject to the budgetary decision-making process, helping the DM to identify the
constraint: best compromise by an interactive process.
However, most recent works show the advantages of
cp(z) < By Vke{l,2,...,q}. (7)  multi-objective metaheuristic methods to approximate the
. . . . Pareto set (e.g8[19,22,23,24,25,26,27,28]). Doerner et
Bes!des Equation 7], other strategic gnd logical al. in [17] combine Ant Colony Optimization (ACO) with
constraints could be regarded. For example: 0-1 dynamic mathematical programming to initialize the
—Constraints to ensure equitable conditions for all algorithm with enhanced solutions. One of the most
competent areas of the organizatioAll applicant  complete proposals was suggested by Carazo efl8l. [
projects are grouped according to pre-establishedl9]; they model interactions among projects (in the same
criteria. The organization determines limits in terms way as Stummer and Heidenberger &}) [and temporal
of number of supported projects (or quantities of dependencies, enabling the allocation of resources not
allocated budget) for each group. used in previous periods. By means of a Scatter Search,
—Constraints to prevent the presence of Carazo et al.18] outperform SPEA229] in the range of
mutually-excluding projectsSome projects (primarily 25-60 projects considering up to six objective functions.
because of their nature and organizational rules) Compared with multi-objective optimization methods
cannot simultaneously receive support in the samebased on mathematical programming, metaheuristic
portfolio decision process. These projects oftenapproaches exhibit relevant advantages:

receive the adjective ‘redundant’ -they have the ability to deal with a set of solutions

We are not taking into account project scheduling, (called a population) at the same time, allowing for
thus we are tackling the stationary version of the problem the efficient frontier to be approximated in a single
presented in 16,19]; for this reason, all the concerns algorithm run, and
related to schedule are not included in either Equations -they are less sensitive to the mathematical properties
(2-7) or the above-mentioned constraints. Conditions of  of objective functions and problem constraints.

part|§1l support have no special processing, but it is However, many researchers have argued that, when
possible to include dummy projects that represent

different versions of the same project. So dummythe numbelr of ijgqtive functions incr(_aases, the seleg:tion
projects are treated like redundant propos.als, fn the sam{%f appropriate individuals for conducting the population
sense as it is suggested 516,17, 18,19, owards the Pareto fro_ntler becomes more .dlfncult (e.g.
[30,31,32,33]). According to B2], other important
concerns are the so-call@bminance Resistant Solutions
(e.g. B4)). They are not Pareto solutions, but they have

3 An outline of the state of the art near-optimal values in some objectives though with a

) . L poor value in at least one of the remaining objectives.

3.1 A brief outline and some criticisms of These solutions can be hardly dominated in a population.

previous approaches Their number grows as the dimension of the objective
space is increased.

Only non-dominated solutions tol)( can fulfil the In the presence of many objectives, there are other

conditions necessary for being considered the besimportant concerns associated with tle posteriori
portfolio. So most solution methods seek to generate thearticulation of preferences:

Pareto frontier, and later, by some interactive method
multicriteria procedure or heuristic, try to identify thedt
compromise. These approaches assume that the DM has
the capacity to make valid judgments about the set of
efficient points until the best compromise is reached. This
way to identify the best solution is commonly referred to
asa posterioripreferences modellin@{].

In [21], Ghasemzadeh et al. model preferences using a
weighted-sum function. They approximate the Pareto
frontier by changing the weights and solving the resultant
model by 0-1 programming. Stummer and Heidenberger
in [5] include synergy and redundancy in selecting R&D
projects; their procedure consists of three phases: 1)
filtering the proposals and retaining the most promising
projects in order to reduce the set of projects to a Most approaches from the field of Multi-Criteria
‘manageable’ size, 2) generating the efficient frontier of Decision Analysis (MCDA) do not perform well on large
portfolios for the reduced set by an integer linear decision problems. Incomparability, non-transitivity,
programming method, and 3) supporting the cyclic preferences and dependence with respect to

' 1.The Vvisualization of the Pareto front in
high-dimensional  objective  spaces is very
cumbersome.

2.The number of Pareto optimal points grows
exponentially, making it hard to obtain a
representative sample of the non-dominated frontier.

3.According to the famous Miller's paped9], the
human mind is limited to handling a small number of
information pieces simultaneously, thus being
questionable the issue of identifying the best
compromise solution when the DM should compare
even a small subset of non-dominated solutions in
problems with many objectives.
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‘irrelevant alternatives’ make it difficult to reach a rddla ) o(z,y) > X A [05<o(y,z) <A A
final prescription. [o(z,y) —o(y,z)] > B

In order to make the decision making phase easier, the 2.Indifference From the DM'’s perspective, the two
DM would agree incorporate his/her multicriteria alternatives have a high degree of equivalence, so
preferences into the search process. This preference he/she cannot state that one is preferred over the other.
information is used to guide the search towards the This relationship is denoted asly. In terms of

Region of Interes{Rol) [36], the privileged zone of the o(x,y) this is defined as the conjunction of:
Pareto frontier that best matches the DM’s preferences. @o(x,y) > AANo(y,x) > A
The DM's preference information can be expressedin ~ (b) |o(z,y) — o(y,z)| <e.
different ways. According to Bechikh3}], the most 3.Weak preferenceRepresented asQy, this models a
commonly-used ways are the following: state of doubt betweenPy andxIy. It can be defined

. L , as the conjunction of:
1.Those in which importance factors (weights) are @) c(z,y) < AAo(z,y) > oly, z).

assigned by the DM to each objective function (e.g. (b) ~2Py A —zly.

[38,39,40)). o _ 4 Incomparability From the point of view of the DM,
2.Those in which the DM makes pair-wise comparisons  there is high heterogeneity between the alternatives, so

on a subset of the current population, in order to rank  he/she cannot set a preference relation between them.

the sample’s solutions (e.gt1,42 43,44,45,46). _ This is denoted asRy, and is expressed in terms of
3.Those in which pair-wise comparisons between pairs o(z,y) aszRy = o(z,y) <0.5No(y,z) <0.5.

of objective functions are performed in order to rank 5 i-preferenceThis represents a state of doubt between

the set of objective functions (e.gi7,48,49)). xPy andzRy, and is denoted asKy. (z,y) € K if
4.Those based on goals or aspiration levels to be the following three conditions are true:

achieved by each objective (reference point) (63§, [ (@)0.5 < o(xz,y) < A

50,51,52,53,54)). (b) o(y,z) < 0.5.

5.Those in which the DM identifies acceptable trade-offs

o) — B
between objective functions (e.¢q]). ©o(@,y) —oly,z) > 5.

6.Those in which the DM supplies the model’s Indifference corresponds to the existence of clear and
parameters to build a fuzzy outranking relation (e.g. Positive reasons that justify equivalence between the two
[15,56]). options.  Additionally, incomparability represents

7.The construction of a desirability function which is situations where the DM cannot, or does not want to,
based on the assignment of some desirability€Xpress a preference. Strict preference is associated with
thresholds (e.g 7). conditions in which the DM has clear and well-defined
reasons justifying the choice of one alternative over the
In the field of project portfolio optimization, the other. However, because the DM usually shows non-ideal
model proposed inlf0] has shown substantial benefits for behaviour, the weak preference and thpreference also
tackling these problems. This model is briefly explainedexist. These relations can be considered as ‘weakened’
below. ways of the strict preference.
From a set of feasible portfolio®, the preferential
system defines the following sets:
3.2 The best portfolio in the sense of Fernandez 1.5(0,z) = {yec O |yPz} is composed of the
etal. [10] solutions that strictly outrank.
2NS(0) = {x €0 |S(0,z) =0} is known as the
non-strictly-outranked frontier
3W(0,x) = {y e NS(O) | yQz N yKz} is
composed of the non-strictly-outranked solutions that

The proposal by Fernandez et d0[15] is based on the
relational system of preferences describedbid] py Roy.

A crucial model is the degree of credibility of the
statement is at least as good ag. This is represented weakly outranke. .

aso(x,y) and could be calculated using proven methods 4NW(0) = {z €0 |W(0,1) = 0} is known as the
from the literature, such as ELECTRE5Y and non-weakly-outranked frontier

PROMETHEE B(Q]. Considering the parameteks 3, and Besides the weak outranking, the net flow score is
e(0 <e<p < XandA > 0.5), the proposal in]0,15] another measure used i1(g15] to identify the DM’s
identifies one of the following relations for each pair of preferences in the non-strictly-outranked frontier. Ihca

portfolios (z, y): be defined as:
1.Strict preference Denoted asxzPy, represents the Fo(x) = Z [o(z,y) — oy, x)]. (8)
situation when the DM significantly prefers It is yENS(ON {z}
defined as a disjunction of the conditions:
(a) x dominateg;. SinceF,, (z) > F,(y) indicates a preference farover
(0)o(z,y) > AN o(y,z) <0.5. y, Fernandez et al1p] define:
@© 2014 NSP
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1F(O,z) = {y € NS(O) | F,(y) > F.(z)} to be the interdependent projects. Several papers in the literature
set of non-strictly-outranked solutions that are greaterconsider synergy as an inherent characteristic of the

in net flow toz. portfolio problem (e.g. $,16,17,18,19]). Our solution
2NF(O) = {r € NS(O)| F(O,z) =0} to be the approach, called Non-Outranked Ant Colony
net-flow non-outranked frontier Optimizationshows promising results compared to other

related algorithms. Experimental results provide evidenc
that it is very capable of getting close to the Pareto
frontier when the best compromise is sought.

Fernandez et al.10] proved that the best portfolio
compatible with the fuzzy outranking relatienshould be
a non-strictly outranked solution that is simultaneously a
non-dominated solution to the problem:

min {(|S(0,2)|,[W(0, )|, [F©O,2))}. (9 4 Ourproposal

Our algorithm, NO-ACO Non-Outranked Ant Colony
As a consequence of the last remark, the best portfoli@ptimizatior), is based on the optimization idea proposed
can be found through a lexicographic search, within [64] by Dorigo and Gambardella, which has been
pre-emptive priority favouringS(O, z))|. adapted more than once to find a set of Pareto solutions
The above three-objective problem is a map of the(e.g. [16,65,66,67]), but incorporates the preference
original problem in {). When the DM is confident on the model from [l5. The algorithm performs the
preference model, he/she should accept that the begiptimization process through a set of agents called ants.
compromise is a non-dominated solution of Probl@n ( Each ant in the colony builds a portfolio by selecting a
It is also interesting that the equivalence between theproject at a time. The way of choosing each project is
problem in () and its mapped three-objective problem is called a selection rule. When all ants have finished
valid independently of the original objective space constructing their portfolios, these are evaluated anti eac
dimension. This may be very important in solving ant drops pheromone according to this assessment.
portfolio problems with many objective functiond]. Pheromone is used for learning, allowing the next
The model parameters need to be adjusted accordingeneration of ants to acquire knowledge about the
to the specific characteristics of the problem and of thestructure of the best solutions. To prevent premature
DM. This can be done by an interaction between the DMconvergence, the colony includes a strategic oblivion
and a Decision Analyst (DA), utilizing, if necessary, mechanism, known as evaporation, which reduces the
indirect elicitation methods to support this tagskL[62,  pheromone trail over specified periods of time. In order to
63]. The DM should assess the parameters included in:  improve the intensification, NO-ACO includes a variable
—the calculation ofos (e.g. criterion weights and neighbourhood search for the best solutions. This local
thresholds), and search runs once per iteration. This mten_smer _schem_e is
complemented by a diversifier mechanism, in which
portfolios that have remained non-strictly-outranked for
This is not an easy task since DMs usually havemore thany generations are removed from the solution
difficulties in specifying outranking parameters and set. This allows the selective pressure to be relaxed. This
require an intense support by a DA. To facilitate this behaviour is desirable when the algorithm has only found
process, the pair DM-DA can use the Preferenceout local optima. The optimization process ends when a
Disaggregation Analysis (PDA) paradigm (e.d1]), predetermined termination criterion (such as a maximum
which has received increasing interest from the MCDA number of iterations, or a subsequent recurrence of the
community. PDA infers the model's parameters from best solution) is reached. The following sections describe
holistic judgments provided by the DM. Those judgmentsthe elements of the NO-ACO algorithm in further detail.
may be obtained from decisions made for a limited set of
fictitious portfolios, or decisions taken for a subset of the
portfolios under consideration for which the DM can 4.1 Pheromone representation
easily make a judgment. In the framework of outranking
methods, PDA has been recently approache@2G3]. Pheromone is usually represented by the Greek letter
Fernandez et al. inl0] solved problems of allocating and is modelled in NO-ACO as a two dimensional array
public funds via their outranking model. However, that of size N x N, whereN is the total number of applicant
work does not consider interactions among projectsproject proposals. The pheromone between two projects
which is an important concern in most practical andj is represented as ;, and indicates how good it is
applications. that both projects receive financial support. Pheromone
In light of this feedback, we propose here a portfolio values are in rangé, 1], initializing at the upper limit to
optimization metaheuristic approach based on theprevent premature convergence. The pheromone matrix
preferential model proposed it]. So, our metaheuristic acts as a reinforcement learning structure reflecting the
inherits all the advantages of this model, but we haveknowledge gained by the ants that formed high-quality
incorporated the capacity to solve portfolios with portfolios.

—the system of preferences, (5 ande).

© 2014 NSP
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The pheromone representation of NO-ACO allows
identifying pairs, trios, quartets or larger project
subgroups present in the best portfolios. Most likely,
some synergies (mainly those that decrease costs and/or
increase objectives) occur in the best portfolios. These
favourable project interactions are detected through the
pheromone matrix and this knowledge is transmitted to
ants of the next generation for building better solutions.

Equation (2) is the total sum of pheromone between
1 and each project in portfolia; the denominator is
the cardinality ofc. The global knowledge favours the
selection of projects that were part of the best
portfolios in previous generations. At the first
iteration this knowledge has no effect on portfolio
formation process.

Both knowledge factors are linearly combined into a
single evaluation function, which corresponds to Equation
) (13):

4.2 Selection rule 2,1) = w4+ (1—w) - 7(@9), (13)
Each ant builds its portfolio by selecting the projects onewhere w is a parameter weighing global and local
by one, taking into account two factors: knowledge. Each ant in the colony has a different value
for w, which is generated at random in the rarjggiv’]
with W < 1. W determines the possible greatest value of

for each ant. The functiod? forms the basis of the
selection rule.

If = is apartially-constructed portfolipone or more
projects may be included in. From among all the project
proposals, only those that are not part ofand the

—Local knowledge (heuristi9: This considers the
benefits provided by the project to the portfolio and
how many resources the project consumes. Local
knowledge for thejth project is denoted by; and is
calculated by the expression:

p
i_ ka(j) inclusion of which favours the fulfilment of budgetary
c(j) &= constraints should be considered. This set is known as the
= | 2 ) 10 candidate project listand is denoted byX©. Note that
max { — Z fe(D) X© is a subset of{. The choice of whichj ¢ X© will
ex | e(l) & be added is made by using the selection rule:

wherec(j) is a measure proportional to the cost of
project j, p is the number of objectivesX is the
applicant project list, and(j) is the benefit from
project; to thekth objective. Equationl(0) promotes
the inclusion of projects that have a good balancewhere j is the next project to be included) is a
between intended objectives and requested budget. Ilpseudorandom number between zero and enejs a
Equation (0), ¢(j) is defined as parameter that sets the intensification probability in the
algorithm (choosing the project with the greatest value of
, 1 & Cjk 2); anday — « is the probability of triggering a middle
=33 (%)
k=1 ’

arg max;c xo {£2(z,1)} if p <oy,
Liexe{2(x,i)} ifar < p < ay,
licxe otherwise,

J= (14)

(11) state between intensification and diversification

(randomly selecting a project;i with probability
proportional to its assessmefd), this selection scheme is
represented by; in the event thap > «s, diversification
is promoted by means of the functidntaking a project
uniformly at random).

where,q is the number of categories of resourags,

is thekth resource cost requested by projgcandBy,

is the available amount of resource in #tb category.
—Global knowledgdlearning): This takes into account

the experience of previous generations of ants,

expressed in the pheromone matrix. The global

knowledge for project to be included in a portfolia:

is denoted by (x,4) and is defined by the expression: o __ .
(i) y P At the beginning of the first iteration, the pheromone

4.3 Pheromone laying and evaporation

N

(z)7ij
j=1

N )

DL

j=1

7(x, 1) = (12)

whereN is the total number of applicant projects;
is the binary value indicating whether thth project
is included in the portfolioxz, and 7, ; is the
pheromone for projects and j. The numerator in

matrix is initialized tor; ; = 1 for all (i,5) € N x N.
After that, each ant constructs a feasible portfolio. In a
colony with n ants,n new solutions are generated after
each iteration, and there is also a set of sizavith the
best portfolios found from the previous iterations. If all
alternatives are integrated into a $2twhose cardinality
is n + m, we can identify the non-strictly-outranked front
NS(O).

In addition, NS(O) is subdivided into domination
fronts. The fronts are obtained by considering the
minimization of two objectives)/W (O, z) and F (O, x),

© 2014 NSP
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Algorithm 1: NO-ACO's local search algorithm
Data: N.S(O) (non-strictly-outranked frontier)X
(applicant project list)
Result A better approximation ofV.S(O)

according to the best-compromise definition given in
Problem 0). The set composed by these fronts is denoted
by F = {F, Fa, ...y Fiey Fit1, - - -}, WhereF; contains
the non-dominated solutions;, contains the portfolios 1 Initialize: N < |X|, v  [InN], 0 « 0
that are dominated by only one solutiotf; those 2 P« sel ect_projects(v,X)
dominated by two solutions, and so forth. In general, the ; . generate_conbi nati ons( P)
portfolios dominated by: solutions are inFj4,. The set 4 foreache € C do

F will be used in the pheromone intensification in order 5 foreacho € NS(0) do

to increase the selective pressure towards the bestg o — o
compromise. 7 foreachp € P do
Each pair of projectsi, j) for each solutionz € O 8 if p € cthen
intensifies the pheromone trail according to the expression o | Add projectp to portfolio o’
10 else
R {Ti’j + Ar, ; if x € NS(O), (15) 1 | Remove projecp from portfolio o’
T Ty otherwise. ] ,
12 repair (o)
If 2 is a non-strictly-outranked solution, then there is a 3 if o’ € Rr then
k such thatr € F;. The pheromone increase depends on [ O« 0'u{d}
k, and is defined as: -
15 O+ 0UuU0’

=

|F|—k+1 . 6 RecalculateVS(O)
AT = (]_—| (I—my) ifzeFy (16) 17 return NS(O)

wherei and; belong to portfolior.
At the end of each iteration, the entire pheromone
matrix is evaporated by multiplication by a constant

; —If the generated solution is unfeasiblaenr epai r
factor lying between zero and one, denoteg.as

removes projects at random until the portfolio does
not surpass the budget. The probability of removing a
project is inversely proportional to its expected
4.4 Local search benefits. No project chosen by the current
combination can be removed. In the generated

The algorithm intensification is promoted by a greedy  instancest epai r procedure could make feasible the
variable-neighbourhood local search that is only carried  ost of solutions.

out on non-strictly-outranked solutions. This search
explores regions near to the best known solutions by a Each feasible solution is evaluated to verify whether or
simple scheme consisting of randomly selecting notitis a non-strictly-outranked solution (Lin&8-17).
projects, and generating all possible combinations of

them for each solution in the non-strictly-outranked

frontier. Small values for provoke behaviour that is too 4. 5 Algorithmic description of NO-ACO

greedy, whereas large values produce intolerable

computation times. In our experiments we obtained
good balance between these by using= [ln N]. The
algorithmic outline for the local search is illustrated by
Algorithm 1.

As observed in Algorithml, the search starts by
choosingy projects at random (Lin2), and generating all
combinations of them (Lin&). Every combination is set
for each portfolio inV.S(O) (Lines4-11).

In Line 12, procedure epai r has two main goals: 1)
improving clearly-suboptimal portfolios, and 2) bringing
unfeasible portfolios to the feasible region. Thus, it has
two conditions to check:

aAIgorithm 2 presents an algorithmic outline of NO-ACO.
Line 1 indicates the initialization of the control variables,
and Line2-27 show the search process.

Lines4-12 of Algorithm 2 illustrate the process of the
formation of portfolios. Each ant starts from an empty
portfolio, and projects are added by the selection rule, one
at a time. Complete and feasible solutions are stor&dl. in
These are then evaluated according to Probl8mgnd
the non-strictly-outranked solutions are refined by local
search. Pheromone increase is the next step (Lines
14-17).

In Lines 18-23, the non-strictly-outranked set and
—If the generated solution is partially constructélen ~ some algorithm control variables are updated.

repair adds projects to portfolio, according to Subsequently, at Line 24, the procedure
selection rule but respecting the bits assigned by the enove_and_refil| counts the number of iterations
current combination (represented byin Algorithm of each solution in the locaN S frontier. All solutions
1). This is done until no project can be added to thewith more thany iterations are removed from the local
portfolio. set, and replaced by new solutions in the gloBab
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Algorithm 2: Non-Outranked Ant Colony Optimization algorithm
Data: X (applicant project list)B (budget)
Result An approximation ofV.S(O)

1 Initialize: iter < 1, Tep <— 0, NSlocal < @, NSglobal < 0, NSl*ocal < @

2 repeat

3 O+«

4 foreach ant in the colonydo

5 x < make_enpty_portfolio()

6 X© « get _candi date_proj ects(X,x) /1l Section 4.2
7 repeat

8 j+selection Rule(X®,x) /1 Equation (14)
9 zj <1

10 X© < get_candi date_projects(X,x) /1 Section 4.2
1 until X© =0

12 O+ OU{z}

13 O <+ OU N Siocal

14 NSiocat < arg min_ ., {(|S(O0, z)|, W (O, z)|,|F(O,x)|)} /1 Problem (9)
15 NSjocar <1 0cal _sear ch( NSiocar, X) /1 Algorithm1
16 foreachz € NSioca do

17 | lay_pheronone(z,0) /1 Equations (15-16)
18 NS;lobal < NSgiobat U NSiocal

19 NS} opa <=1 0cal _sear ch( NSy,,p01, X) /'l Algorithm1
20 if NSglobal = NS;lobal then

21 ‘ rep <—rep+1

22 else

23 L rep < 0

24 remove_and_refill ( NSicat, NSyioba,7)

25 Evaporate pheromone /'l Section 4.3
26 Update:iter < iter 4+ 1, NSgiobat <= NSgi0pal

27 until rep = repmax V iter = itermax
28 return NSglobal

frontier. These new solutions should not have belonged tassociated with one of three classes (extreme poverty,
N Siocar, therefore they have to be generated by the localower class and lower-middle class) and one of three
search onNS7, ... While this search is providing levels of impact (low, medium and high).
non-strictly-outranked portfolios the replacement wid b The total budget to distribute is 250 million dollars.
possible. The removed solutions can still belong to theThe proposals can be grouped into three types according
global non-strictly-outranked front, but no longer to their nature, and into two geographic regions according
influence the optimization process made by the colony. to the location of their impact. Furthermore, in a desire to
At the end of each iteration, pheromone is evaporatecprovide equitable conditions, the DM imposes the
(Line 25), and the remaining algorithm control variables following restrictions:
are updated (Lin@6). The algorithm finishes when it has
iterated with the same set of solutions as the 1.The budget allocated to support each project type

non-strictly-outranked frontier duringep,,., iterations, should be between 20% and 60% of the total budget.
or if it has reached the maximum number of iterations 2.The financial support allocated to each region must be
itermax (Line 27). at least 30% of the total budget, and no more than 70%.
The DM has also identified 20 relevant interactions
5 Case study: Optimization of social among projects: four of them are cannibalization
assistance portfolios phenomena, six correspond to situations of

mutually-excluding projects, and ten are synergism
Consider a DM facing a portfolio problem, with 100 interactions. There are up to five projects per interaction.
project proposals are aimed at benefitting the most Inorderto make easier the comparative descriptions, in
precarious social classes. The project quality is measurethis section the ternfareto efficiencyand all the related
as the number of beneficiaries for each of nine criteriaterms, such asptimal or efficient portfolig will be used
that have previously been established. Each objective iso refer to non-dominated solutions df)( and the term
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Table 1: Effect of preferences incorporation on the Pareto Ant Colony Optiioizalgorithm

8 Time Size Non-dominated Solutions Obtains
s . of the solutions belonging the best
g | Algorithm solution in to compromise
£ (seconds) )
set 01U O9 NS(Ol @] 02) in O1 U Oy
1 P-ACO 3448.07 2006 928 10
P-ACO-P 536.66 15 15 10 v
2 P-ACO 3470.29 2514 1295 7
P-ACO-P 775.94 19 19 13 v
3 P-ACO 3485.16 2456 280 13
P-ACO-P 1112.49 34 34 17 v
4 P-ACO 3591.27 2587 1392 10 v
P-ACO-P 734.58 38 37 19 v
5 P-ACO 3525.85 2245 1165 10
P-ACO-P 1035.85 21 21 15 v
6 P-ACO 3496.68 2013 161 11
P-ACO-P 855.68 18 18 10 v
7 P-ACO 3549.55 2211 766 13 v
P-ACO-P 161.02 19 19 14 v
8 P-ACO 3464.27 2285 1317 13
P-ACO-P 1646.32 28 28 21 v
9 P-ACO 3707.65 965 762 4 v
P-ACO-P 712.24 25 25 11 v
10 P-ACO 3549.67 2255 1403 15 v
P-ACO-P 651.43 18 18 16 v

Note: O; andO. are the solution sets generated by P-ACO and P-ACO-P respectively.

The best compromise is the best solution to Probi@nog O, U O-.

best compromist best solutions tdd) (the best portfolio  P-ACO and P-ACO-P. Both algorithms were programmed
compatible with the fuzzy outranking relatiohd, 15]). in Java language, using the JDK 1.6 compiler, and

Below, we present a range of experiments to verify NetBeans 6.9.1 as Integrated Development Environment
the validity and advantages of our approach to solving(IDE). The experiments were run on a Mac Pro with an
this case study. They give evidence of the benefits ofintel Quad-Core 2.8 GHz processor and 3 GB of RAM.
incorporating the DM's preferences during the  The P-ACO parameter setting was that suggested in
optimization process, and thus they also prove that ouf16] by Doerner et al. The version that incorporates
approach has good potential for solving real preferences has the same setting values.

resource-allocation problems. Table1 shows the experimental results on ten artificial
instances following the case-study features.

The best compromise has been identified from
solutions sets generated by both optimization methods. In
this sense, that best compromise is related to the known
solution set; therefore, it will be called tHenown best

To the best of our knowledge, the P-ACO algorithhg]] ~ compromise which approximates the true best

is the most relevant ant colony algorithm applied to solveCOmpromiseThis is a non-dominated solution of Problem
project portfolio selection. In order to appraise the dffec (9) on the original objective space. So, the true best
of incorporating the DM's preferences on a COmMpromise must _belong to the true efficient set, and it
multi-objective optimization algorithm, we implemented should not be strictly outranked by any other Pareto
a version of P-ACO that included the preferential modelsolution.

described in SectiorB.2 This adaptation was called As can be seen from Tablel, incorporating
P-ACO with preferences (P-ACO-P). Instead of preferences provides a closer approximation to a
approximating the Pareto frontier defined by the nineprivileged region of the Pareto frontier. The version
maximizing objectives of the problem, it searches for theconsidering preferences provides solutions that
best compromise expressed by Probléhn (n order to  dominated the 54%, on average, of solutions produced by
reflect a credible decision situation, we assign the valueshe original version of the algorithm. Probably, with many
suggested by Fernandez et al. itb] to the preferential objectives, P-ACO is sensitive to the existence of
model parameters. There is no other difference betweedominant resistant solutions. There is also a significant

5.1 Effect of incorporating the DM’s
preferences
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Table 2: Efficiency analysis of NO-ACO
8 Time Size Non-dominated Solutions Obtains
g Algori of the solutions belonging the best
= gorithm . X .
2 (seconds) solution in to <_:omprom|se
set 01 UOs NS(O1UO2) in 01 U O
1 SS-PPS 37946.70 4997 4981 12
NO-ACO 5101.78 16 16 15 v
5 SS-PPS 23223.68 4996 4956 10
NO-ACO 2130.98 18 18 18 v
3 SS-PPS 33265.31 4996 4970 21
NO-ACO 3091.89 29 29 28 v
4 SS-PPS 49865.11 4997 4946 24
NO-ACO 4720.02 43 43 40 v
5 SS-PPS 30218.23 4996 4959 12
NO-ACO 4009.47 32 32 32 v
6 SS-PPS 43253.64 4996 4949 18 v
NO-ACO 2743.55 26 26 22 v
7 SS-PPS 29386.18 4973 4973 14
NO-ACO 4512.12 21 21 21 v
8 SS-PPS 38585.35 4996 4940 27
NO-ACO 3901.76 35 35 35 v
9 SS-PPS 35514.66 4996 4936 9
NO-ACO 1238.33 16 16 12 v
10 SS-PPS 46241.69 4996 4956 16
NO-ACO 1467.29 20 20 20 v

Note: O; andO- are the solution sets generated by SS-PPS and NO-ACO respectively.
The best compromise is the best solution to Probl@gnog O, U O-.

run-time reduction (in the test cases, this reduction wagoints according to the parameter setting suggested in
76% on average). Also, if the model of preferences[18,19].

matches with the DM’s preferences, the best compromise NO-ACO was programmed in Java language, using
among the set of all portfolios generated is alwaysthe JDK 1.6 compiler, and NetBeans 6.9.1 as IDE. The
identified by P-ACO-P. Furthermore, when the DM has tOexperiments were run on a Mac Pro with an Intel
choose one alternative as the final decision, the thousandsyad-Core 2.8 GHz processor and 3 GB of RAM.

of portfolios from P-ACO make it difficult to reach a Again we used the values suggested 15][for the
decision. By incorporating preferences, this drawback ispreferential model parameters. Besides, the NO-ACO

very strongly reduced. parameter setting used to obtain the results in this section
is:ay = 0.65, ag = 0.85, p = 0.9, v = 25, W = 0.60,
repmax = 90 anditery.. = 100000. Moreover, the
colony has one hundred ants. This setting was obtained

For the problem presented in this section, the only way tof“’”? e_xplonng parameter v_alues with the objeptlve_ of
chieving a good algorithmic performance. Taking into

ensure that a solution is the true best compromise is if we

know the whole true Pareto frontier, or at least, the full account the results in a wide range of instances, we
non-strictly-outranked frontier. For instances of largees consider that these parameter values are robust enough to

like those we have addressed, it is not possible to knownantain an efficient .behawc.)r of NO-ACO.
We want to give evidence that our approach

with certainty the Pareto frontier. However, there are . r r |
methods reported in the literature that can approximateicceptably approximates the best compromise. With this
th|S frontier W|th an acceptab|e error. aim, we solved the same ten instances from Sediidn

In order to verify whether the NO-ACO solutions For these, we have approximated: 1) the best compromise
acceptably approximate the true Pareto frontier, we hav®y using NO-ACO, and 2) the Pareto frontier by means of
estimated the Pareto set by means of SS-PPS, as propose&-PPS.
by Carazo et al.18,19]. This is one of the most recent The results are summarized in Tal2eOn analysing
algorithms for portfolio optimization, and experimental the data, we may conclude that our algorithm has efficient
tests prove its high performance, outperforming SPEA2 behaviour. NO-ACO got close to the Pareto frontier better
SS-PPS solved the case-study instances by finding than SS-PPS in the most preferred region (the so-called
representative sample of up to five thousand efficientRol), that is, the non-strictly-outranked frontier. No

5.2 Evaluation of NO-ACO solutions
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Table 3: A sample of the non-strictly-outranked frontier generated by NO-AC@pared to the ranking-based solution
Values of Number of solutions

objective functions that outranks it
in net flow
score

Portfolio

1 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 14 | 15 | 16 | strictly | weakly

o

106 806 504 612 107 811 502 605 983 871 473 610 108 847 499 597

96 766 467 556 98 786 459 562 988 772 457 565 98 756 454 545

98 730 461 562 99 740 475 564 988 796 464 563 95 767 453 541

742 479 545 94 744 459 565 992 785 451 547 96 745 447 535

96 742 462 553 95 751 456 562 999 809 454 562 94 776 452 546

by NO-ACO

98 743 462 550 95 730 473 559 991 765 460 553 95 740 450 541

98 746 466 556 98 769 454 569 990 790 447 565 94 770 454 547

| N|[O|O|RW[IN|F
[
o
s}

92 739 469 557 91 753 445 556 990 784 468 565 90 738 440 549

9 98 733 461 556 95 750 448 567 987 791 454 565 97 777 454 556

©wl|o|lo|o|o|o|o|o|o|O
Ol h~lw|NIN|IN|FR|[O|O
O|N|[O|wW|a|RP|FP|N|F-

ranking—based[ 9% [ 736 [ 471 [ 558 [ 95 [ 762 [ 453 [ 561 [ 944 [ 768 [ 469 [ 565 [ 97 [ 756 [ 436 [ 540 [

NO-ACO solution is dominated by an SS-PPS one, andegions and imposed budgetary constraints for each
our approach could dominate 16—60 solutions suggeste(B0%—70% for each area and 20%—-60% for each region).
by the other method. Additionally, our proposal was able  |n addition, the DM has identified 100 relevant
to identify the best compromise from the entire interactions between projects: 20 are cannibalization
approximated frontier, using only, on average, 10% of thephenomena, 30 correspond to redundant projects and 50
time required to estimate the whole Pareto set. are synergies that generate added value.

There is evidence of the advantages of incorporating  ynlike the 100-projects case, it is not possible in these
the DM's preferences: it decreases the computationajnstances to generate an acceptable approximation of the
effort and increases the algorithm efficiency on thepareto frontier that can be used as reference for
solution region that best matches the DM’s formulatedcomparison purposes. Even the best multi-objective
preferences. algorithms are degraded when they attempt to generate it.

In Table 2, the best compromises are related to theThjs is combined with computation times that would be
outranking model's parameters that were a@driori. In  intolerable or with an abrupt interruption of the
multi-objective optimization, the DM ‘learns’ trade-offs a|gorithms if they fail to converge towards the frontier.
while he/she finds and judges new Pareto solutions; thus |, order to test the quality of the solutions suggested
his/her aprioristic preferences could be modified. OnceDy our proposal, a comparison with a popular acceptable
the best compromise and others non-strictly outrankeq,\,ay of allocating resources can be performed. Among

solutions r?ave been obtained and evaluated by the DMgeyeral heuristics frequently used, we chose one based on
the model’'s parameter setting may be updated, perhapéssigning budgetary ~ resources  according  to

using PDA as proposed ir6g. If the parameter values , qiact-ranking information. Here, a project ranking is
were modified, with an additional NO-ACO run the final 1t by using a cost-benefit ratio; the benefit is modelled
best compromise should be reached. by a weighted sum, whose weights are adjusted to reflect
the DM'’s preferences. The project ranking is built
following the order given by the cost-benefit ratio. Once
5.3 Solving problems with high dimensionality the set of projects has been ranked, the resources may be
allocated by following the priorities implicit in the rank
The test in the previous section was limited to 100 order until no resources are left. This at least ensures the
projects and nine objectives. These dimensions exceeliiclusion of projects that provide more benefit per dollar.
those addressed by most studies in the specialize§ynergism can be tackled if the project interactions are
literature (e.g. $,16,17,18,19,68]). These dimensions Modelled as dummy projects that can also be ranked.
are appropriate for most portfolio problems in the  Table3 concentrates on only nine of the 164 solutions
business sector; however, in public organizations, thdound by NO-ACO as an approximation to the
problem size may be larger. In order to explore thenon-strictly-outranked frontier. Our algorithm convesge
capacity of our algorithm to solve instances with a largeafter 41,625 seconds. The best compromise that was
size, we generated a set of instances with 500 projects anfund (Solution 1) outperforms the ranking-based
16 criteria to optimize. portfolio, even in the Pareto sense.

The interpretation is similar to that described at the  Another ten instances were generated following the
beginning of this section: there is a budget of 250 million same features. When they were solved by NO-ACO, we
dollars to distribute, and the DM wants to keep a balanceobserved the same behaviour: the ranking-based portfolio
so has grouped the projects into two areas and thregvas dominated by the best compromise found by
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NO-ACO. This test gives some evidence of the[2]A Salo, J Keisler, and A Morton. Portfolio Decision

applicability of our approach to large-scale real instance Analysis: Improved methods for resource allocatiohapter
An invitation to Portfolio Decision Analysis, pages 3-27.
Springer, New York-Dordrecht-Heidelberg-London, 2011.

[3] M A Coffin and B W Taylor. Multiple criteria R&D project
selection and scheduling using fuzzy s&emput Oper Res
23(3):207-220, 1996.

We have presented an original proposal to optimize[4]J Klapka, P Pinos, and V Sevcik. Multicriterial projects

interdependent projects portfolios. This proposal is an selection. Handbook of Optimization, Intelligent Systems

adaptation of the well-known ant colony optimization Reference Library38:245-261, 2013.

metaheuristic, but incorporates preferences based on tHg] C Stummer and K Heidenberger. Interactive R&D portfolio

outranking model of Fernandez et &l0[. Our algorithm analysis with project interdependencies and timeprofiles of

(NO-ACO) searches for optimal portfolios in synergetic ~ multiple objectives. IEEE T Eng Manage50(2):175-183,

conditions and can handle interactions impacting both  2003.

objectives and costs. Redundancy is also considereff] J L Ringuest, S B Graves, and Case R H. Mean-gini analysis

during portfolio formation. By incorporating preferences  in R&D portfolio selectionEur J Oper Res154(1):157-169,

the selective pressure toward a privileged zone of the 2004

Pareto frontier is increased. Thus, a zone that matches the] C Carlsson, R Fuller, M Heikkila, and Majlender P. A

DM’s preferences better can be identified. In comparison dynamic and fuzzy modeling approach for multi-objective

with other metaheuristic approach that does not R&D project portfolio selection. Int J Approx Reasan

incorporate preferences, NO-ACO achieves greater 44(2):93-105, 2007. )
closeness to the region of interest with less computational®! X Zhao, Y Yang, G Wu, J Yang, and X Xue. A dynamic and
effort. Our result seems to confirm the hypothesis from fuzzfy lmod?llng a[)]p(r:oach folr ;n#“';]c’bjgci“’g?i‘f ggijgd

[10,15]: the incorporation of DM preferences by solving port0”|o se eth'on. onverg n ecd now(1): " B f’ : K

Problem 0) helps to obtain solutions that dominate others %) YV Hallerbach, H Ning, A Soppe, and J Spronk. A framewor

from leading metaheuristics. for managing a portfol_lo of socially responsible investments.

. 2 . Eur J Oper Res153(2):517-529, 2004.
S!nce It Is .e_nrlch(_ad by prefergnces, our prOposal[10] E Fernandez, E Lopez, G Mazcorro, R Olmedo, and C A
acquires the ablllty_to find good so_lutlo_ns (the ."”0"‘".‘ best Coello Coello. Application of the Non-Outranked Sorting
portfolio) to portfolio problems with higher dimensions

. . o r . Genetic Algorithm to public project portfolio selectionnf
(in project and objective spaces) than those reported in Sci 228:131-149, 2013.

scientific  literature. Compared to the popular [11] Georgia Department of Transportation. project list and
ranking-based method, NO-ACO finds solutions that final investment report. available in http:/ www.dot.ga.gov/
outperform to the ranking-based portfolio, both in Pareto  |ocalgovernment/  fundingprograms/  transreferendum/
dominance and in strict outranking. pages/projectlist.aspx (october 4th, 2012).
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