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1 Introduction and Definitions

Throughout our present investigation, we use the
following standard notations:

N := {1,2,3, · · ·}, N0 := {0,1,2,3, · · ·}= N∪{0}

and
Z
− := {−1,−2,−3, · · ·}= Z

−
0 \{0}.

Also, as usual,Z denotes the set of integers,R denotes the
set of real numbers,R+ denotes the set ofpositivenumbers
andC denotes the set of complex numbers.

One of the fundamentally important higher
transcendental functions ofAnalytic Number Theoryis
the familiar general Hurwitz-Lerch Zeta function
Φ(z,s,a) defined by (see, for example, [5, p. 27. Eq. 1.11
(1)]; see also [26], [29, p. 121et seq.] and [30, p. 194et
seq.])

Φ(z,s,a) :=
∞

∑
n=0

zn

(n+a)s (1.1)

(

a∈ C\Z−
0 ; s∈ C when |z|< 1; ℜ(s)> 1 when |z|= 1

)

.

It contains, as itsspecial cases, not only the Riemann
Zeta function ζ (s), the Hurwitz (or generalized) Zeta

functionζ (s,a) and the Lerch Zeta functionℓs(ξ ) defined
by (see, for details, [5, Chapter I] and [29, Chapter 2])

ζ (s) :=
∞

∑
n=1

1
ns = Φ(1,s,1) = ζ (s,1)

(

ℜ(s)> 1
)

,

(1.2)

ζ (s,a) :=
∞

∑
n=0

1
(n+a)s = Φ(1,s,a)

(

ℜ(s)> 1; a∈ C\Z−
0

)

(1.3)

and

ℓs(ξ ) :=
∞

∑
n=0

e2nπ iξ

(n+1)s = Φ
(

e2π iξ ,s,1
)

(

ℜ(s)> 1; ξ ∈ R
)

,

(1.4)

respectively, but also such other important functions of
Analytic Number Theoryas the Polylogarithmic function
(or de Jonquìere’s function) Lis(z):

Lis(z) :=
∞

∑
n=1

zn

ns = zΦ(z,s,1) (1.5)
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(

s∈ C when |z|< 1; ℜ(s)> 1 when |z|= 1
)

and the Lipschitz-Lerch Zeta functionφ(ξ ,a,s) (see [29,
p. 122, Equation 2.5 (11)]):

φ(ξ ,s,a) :=
∞

∑
n=0

e2nπ iξ

(n+a)s = Φ
(

e2π iξ ,s,a
)

(1.6)

(

a∈ C\Z−
0 ; ℜ(s)> 0 when ξ ∈ R\Z; ℜ(s)> 1 when ξ ∈ Z

)

,

which was first studied by Rudolf Lipschitz (1832-1903)
and Matýǎs Lerch (1860-1922) in connection with
Dirichlet’s famous theorem on primes in arithmetic
progressions (see also [27, Section 5]). Indeed, just as its
aforementioned special casesζ (s) and ζ (s,a), the
Hurwitz-Lerch Zeta functionΦ(z,s,a) defined by (1.7)
can be continuedmeromorphicallyto the whole complex
s-plane, except for a simple pole ats= 1 with its residue
1. It is also known that [5, p. 27, Equation 1.11 (3)]

Φ(z,s,a) =
1

Γ (s)

ˆ ∞

0

ts−1 e−at

1−ze−t dt

=
1

Γ (s)

ˆ ∞

0

ts−1 e−(a−1)t

et −z
dt (1.7)

(

ℜ(a)> 0; ℜ(s)> 0 when |z|≦ 1 (z 6= 1); ℜ(s)> 1 when z= 1
)

.

Recently, Srivastavaet al. [36] introduced and
systematically studied various properties and results
involving a natural multiparameter extension and
generalization of the Hurwitz-Lerch zeta function
Φ(z,s,a) defined by (1.7) (see also [27] and [32]). In
order to recall their definition (which was motivated
essentially by the earlier works of Goyal and Laddha [10],
Lin and Srivastava [15], Garg et al. [8], and other
authors), each of the following notations will be
employed:

∇∗ :=

(

p

∏
j=1

ρ−ρ j
j

)

·
(

q

∏
j=1

σσ j
j

)

(1.8)

and

∆ :=
q

∑
j=1

σ j −
p

∑
j=1

ρ j , Ξ := s+
q

∑
j=1

µ j −
p

∑
j=1

λ j +
p−q

2
.

(1.9)
The extended Hurwitz-Lerch zeta function

Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq
(z,s,a)

is then defined by [36, p. 503, Equation (6.2)] (see also
[27] and [32])

Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq
(z,s,a)

:=
∞

∑
n=0

p
∏
j=1

(λ j)nρ j

n! ·
q
∏
j=1

(µ j)nσ j

zn

(n+a)s (1.10)

(

p,q∈ N0; λ j ∈ C ( j = 1, · · · , p); a,µ j ∈ C\Z−
0 ( j = 1, · · · ,q);

ρ j ,σk ∈ R
+ ( j = 1, · · · , p; k= 1, · · · ,q);

∆ >−1 when s,z∈ C;

∆ =−1 and s∈ C when |z|< ∇∗;

∆ =−1 and ℜ(Ξ)>
1
2

when |z|= ∇∗
)

,

where(λ )ν (λ ,ν ∈ C) denotes the Pochhammer symbol
(or theshiftedfactorial) which is defined, in terms of the
familiar Gamma function, by

(λ )ν := Γ (λ+ν)
Γ (λ ) =







1 (ν = 0; λ ∈ C\{0})

λ (λ +1) · · ·(λ +n−1) (ν = n∈ N; λ ∈ C),

it being understoodconventionally that (0)0 := 1 and
assumedtacitly that the aboveΓ -quotient exists. In terms
of the extended Hurwitz-Lerch zeta function defined by
(1.10), the following unification and generalization of
several known integral representations stemming from
(1.7) was given by Srivastavaet al. [36] (see also [28,
Theorem 6] for a more general sum-integral
representation formula):

Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq
(z,s,a) =

1
Γ (s)

ˆ ∞

0
ts−1 e−at

· pΨ ∗
q





(λ1,ρ1), · · · ,(λp,ρp);

(µ1,σ1), · · · ,(µq,σq);
ze−t



 dt (1.11)

(

min{ℜ(a),ℜ(s)}> 0
)

,

provided that the integral exists. Here, and in what
follows, pΨ ∗

q or pΨq (p,q ∈ N0) denotes the
Fox-Wright function, which is a generalization of the
familiar generalized hypergeometric function
pFq (p,q∈ N0), with p numerator parametersa1, · · · ,ap
and q denominator parametersb1, · · · ,bq such that

a j ∈ C ( j = 1, · · · , p) and b j ∈ C\Z−
0 ( j = 1, · · · ,q),

defined by (see, for details, [5, p. 183], [33, p. 21et seq.]
and [35, p. 50et seq.]; see also [14, p. 56], [21, p. 30] and
[31, p. 19])

pΨ ∗
q





(a1,A1) , · · · ,(ap,Ap) ;

(b1,B1) , · · · ,(bq,Bq) ;
z





:=
∞

∑
n=0

(a1)A1n · · ·(ap)Apn

(b1)B1n · · ·(bq)Bqn

zn

n!

=
Γ (b1) · · ·Γ (bq)

Γ (a1) · · ·Γ (ap)
pΨq





(a1,A1) , · · · ,(ap,Ap) ;

(b1,B1) , · · · ,(bq,Bq) ;
z



 (1.12)

(

A j > 0 ( j = 1, · · · , p) ; B j > 0

( j = 1, · · · ,q) ; 1+
q

∑
j=1

B j −
p

∑
j=1

A j ≧ 0

)

,
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where the equality in the convergence condition holds true
for suitably bounded values of|z| given by

|z|< ∇ :=

(

p

∏
j=1

A
−A j
j

)

·
(

q

∏
j=1

B
B j
j

)

. (1.13)

Definition 1. By suitably modifying this last integral
representation formula (1.11), we now introduce and
investigate the various properties of a significantly more
general class of Hurwitz-Lerch zeta type functions
defined by

Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq
(z,s,a;b,λ )

:=
1

Γ (s)

ˆ ∞

0
ts−1 exp

(

−at− b

tλ

)

· pΨ ∗
q





(λ1,ρ1), · · · ,(λp,ρp);

(µ1,σ1), · · · ,(µq,σq);
ze−t



 dt, (1.14)

(

min{ℜ(a),ℜ(s)}> 0; ℜ(b)≧ 0; λ ≧ 0
)

,

so that, obviously, we have the following relationship:

Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq
(z,s,a;0,λ )

= Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq
(z,s,a)

= eb Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq
(z,s,a;b,0). (1.15)

In its special case when

p−1= q= 0 (λ1 = µ ; ρ1 = 1),

the above definition (1.14) would reduce immediately to
the following form:

Θ λ
µ (z,s,a;b) :=

1
Γ (s)

ˆ ∞

0
ts−1 exp

(

−at− b

tλ

)

·
(

1−ze−t)−µ
dt (1.16)

(

min{ℜ(a),ℜ(s)}> 0; ℜ(b)≧ 0; λ ≧ 0; µ ∈ C
)

,

where we have assumedfurther that

ℜ(s)> 0 when b= 0 and |z|≦ 1 (z 6= 1)

or

ℜ(s−µ)> 0 when b= 0 and z= 1,

provided, of course, that the integral in (1.16) exists. The
function Θ λ

µ (z,s,a;b) was introduced and studied by
Raina and Chhajed [23, p. 90, Equation (1.6)] and (more
recently) by Srivastavaet al. [34].

Two interestingfurther special cases of the function
Θ λ

µ (z,s,a;b) are worthy of note here. First of all, forb= 0,
we find from the definition (1.16) that

Θ λ
µ (z,s,a;0) = Φ∗

µ(z,s,a)

=
1

Γ (s)

ˆ ∞

0

ts−1 e−at

(1−ze−t)µ dt (1.17)

(

ℜ(a)> 0; ℜ(s)> 0 when |z|≦ 1 (z 6= 1); ℜ(s−µ)> 0 when z= 1
)

,

where the functionΦ∗
µ(z,s,a) defined by

Φ∗
µ (z,s,a) :=

∞

∑
n=0

(µ)n

(a+n)s
zn

n!
(1.18)

was studied by Goyal and Laddha [10, p. 100, Equation
(1.5)]. As a matter of fact, in terms of the
Riemann-Liouville fractional derivative operatorDµ

z
defined by (see, for example, [6, p. 181], [14, p. 70 et
seq.] and [24])

D
µ
z { f (z)} :=



















1
Γ (−µ)

ˆ z

0
(z− t)−µ−1 f (t)dt

(

ℜ(µ)< 0
)

dm

dzm

{

D
µ−m
z { f (z)}

}

(

m−1≦ ℜ(µ)< m (m∈ N)
)

,

it is easily seen from the series definitions in (1.1) and
(1.18) that

Φ∗
µ (z,s,a) =

1
Γ (µ)

D
µ−1
z

{

zµ−1 Φ (z,s,a)
}

(1.19)

(

ℜ(µ)> 0
)

,

which (as already remarked by Lin and Srivastava [15, p.
730]) exhibits the interesting (and useful) fact that the
function Φ∗

µ(z,s,a) is essentially a Riemann-Liouville
fractional derivative of the classical Hurwitz-Lerch
function Φ (z,s,a) (see also the closely-related
investigations by Garget al. [9] and Linet al. [16]).

The other interesting special case of the function
Θ λ

µ (z,s,a;b) arises when we setλ = µ = 1 andz= 1 in
the definition (1.16). We thus find that

Θ1
1 (1,s,a;b)

= ζb (s,a)

:=
1

Γ (s)

ˆ ∞

0

ts−1exp
(

−at− b
t

)

1−e−t dt, (1.20)

where ζb (s,a) is the extended Hurwitz zeta function
defined in [4, p. 308]. In fact, just as it is already pointed
out in [18], the series representation (see [23, p. 91,
Equation (2.1)]) given for the functionΘ λ

µ (z,s,a;b) in
(1.16) is incorrect. Obviousfurther specializations in
(1.17) and (1.20) would immediately relate these
functions with the Riemann zeta functionζ (s) and the
Hurwitz (or generalized) zeta functionζ (s,a) defined by
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(1.2) and (1.3), respectively.

Remark 1. In a series of recent papers, Bayadet al. (see
[2], [3] and [7]) introduced and studied the so-called
generalized Hurwitz-Lerch zeta functionζ (s,µ ;a,z) of
order µ , which they defined by (cf. [3, p. 608, Equation
(6)])

ζ (s,µ ;a,z) :=
Γ (µ)
Γ (s)

ˆ ∞

0

ts−1 e−at

(1−ze−t)µ dt (1.21)

(

ℜ(a)> 0; ℜ(s)> 0 when |z|≦ 1 (z 6= 1);

ℜ(s−µ)> 0 when z= 1
)

or, equivalently, by (cf. [3, p. 608, Equation (7)])

ζ (s,µ ;a,z) :=
∞

∑
n=0

Γ (µ +n)
n!

zn

(a+n)s . (1.22)

By comparing the definitions (1.18) and (1.22), it is easily
observed that

ζ (s,µ ;a,z) = Γ (µ) ·Φ∗
µ (z,s,a) , (1.23)

that is, that

Φ∗
µ (z,s,a) =

1
Γ (µ)

ζ (s,µ ;a,z).

Clearly, therefore, Equation (1.23) exhibits the fact that
the generalized Hurwitz-Lerch zeta functionζ (s,µ ;a,z)
of orderµ , which was considered recently by Bayadet al.
(see [2], [3] and [7]), is merely a constant multiple of the
widely- and extensidely-investigated extended
Hurwitz-Lerch zeta functionΦ∗

µ(z,s,a) defined by (1.18).
In our present systematic investigation of the

λ -generalized Hurwitz-Lerch zeta function

Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq
(z,s,a;b,λ )

defined by (1.14), we make use also of the widely-studied
H-function of Charles Fox (1897–1997), which is defined
by (see, for details, [21, p. 2, Definition 1.1]; see also [13,
p. 1et seq.], [31, p. 10et seq.] and [35, p. 49et seq.])

Hm,n
p,q (z) = Hm,n

p,q



z

∣

∣

∣

∣

∣

∣

(ap,Ap)

(bq,Bq)





= Hm,n
p,q



z

∣

∣

∣

∣

∣

∣

(a1,A1), · · · ,(ap,Ap)

(b1,B1), · · · ,(bq,Bq)





=
1

2π i

ˆ

L

Ξ(s)z−sds, (1.24)

where

Ξ(s) =

m

∏
j=1

Γ (b j +B js)
n

∏
j=1

Γ (1−a j −A js)

q

∏
j=m+1

Γ (1−b j −B js)
p

∏
j=n+1

Γ (a j +A js)

.

(1.25)
Here

z∈ C\{0} with |arg(z)|< π,

an empty product is interpreted as 1,m, n, p and q are
integers such that 1≦ m ≦ q and 0 ≦ n ≦ p,
A j > 0 ( j = 1, · · · , p) and B j > 0 ( j = 1, · · · ,q) ,
α j ∈ C ( j = 1, · · · , p) and β j ∈ C ( j = 1, · · · ,q) ,
and L is a suitable Mellin-Barnes type contour
separating the poles of the gamma functions

{

Γ (b j +B js)
}m

j=1

from the poles of the gamma functions
{

Γ (1−a j −A js)
}n

j=1 .

The relatively more familiarG-function Gm,n
p,q(z) of

Cornelis Simon Meijer (1904–1974) is a special case of
Fox’s H-function defined by (1.24), and we have the
following relationship (see, for details, [22, p. 415]; see
also [5] and [20]):

Gm,n
p,q(z) = Gm,n

p,q



z

∣

∣

∣

∣

∣

∣

(a j)
p
j=1

(b j)
q
j=1



 := Hm,n
p,q



z

∣

∣

∣

∣

∣

∣

(a1,1), · · · ,(ap,1)

(b1,1), · · · ,(bq,1)



 ,

(1.26)
where, for convenience,

Gm,n
p,q



z

∣

∣

∣

∣

∣

∣

(a j)
p
j=1

(b j)
q
j=1



 := Gm,n
p,q



z

∣

∣

∣

∣

∣

∣

a1, · · · ,ap

b1, · · · ,bq



 . (1.27)

2 Explicit Series and Mellin-Barnes Type
Contour Integral Representations

Our first set of results are contained in Theorem 1
below.

Theorem 1. The following explicit series and
Mellin-Barnes type contour integral representation
formulas hold true for the extended Hurwitz-Lerch zeta
function

Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq
(z,s,a;b,λ )

defined by(1.14) :

c© 2014 NSP
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Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq
(z,s,a;b,λ )

=
1

λΓ (s)

∞

∑
n=0

p
∏
j=1

(λ j)nρ j

(a+n)s ·
q
∏
j=1

(µ j)nσ j

·H2,0
0,2



(a+n)b
1
λ

∣

∣

∣

∣

∣

∣ (s,1),
(

0, 1
λ
)





zn

n!
(2.1)

(λ > 0)

and

Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq
(z,s,a;b,λ ) =

q
∏
j=1

Γ (µ j)

2π iλΓ (s)
p

∏
j=1

Γ (λ j)

·
ˆ i∞

−i∞

Γ (s)Γ
p

∏
j=1

Γ (λ j − sρ j)

(a− s)s ·
q
∏
j=1

Γ (µ j − sσ j)

·H2,0
0,2



(a− s)b
1
λ

∣

∣

∣

∣

∣

∣ (s,1),
(

0, 1
λ
)



 (−z)−s ds (2.2)

(λ > 0),

provided that each member of the assertions(2.1) and
(2.2)exists.

Proof. By making use of the series expansion of the
Fox-Wright function

pΨ ∗
q





(λ1,ρ1), · · · ,(λp,ρp);

(µ1,σ1), · · · ,(µq,σq);
ze−t





occurring in the integrand of (1.14) and evaluating the
resulting integral, in terms of Fox’sH-function defined by
(1.24), by means of the followingcorrectedversion of a
known integral formula [21, p. 10, Equation (1.53)]:

ˆ ∞

0
ta−1 exp

(

−bt− c
tρ

)

dt

=
1

ρba H2,0
0,2






bc

1
ρ

∣

∣

∣

∣

∣

∣

∣

(a,1),
(

0, 1
ρ

)






(2.3)

(

min{ℜ(a),ℜ(b),ℜ(c)}> 0; ρ > 0
)

,

we obtain the series representation (2.1).
Our demonstration of the Mellin-Barnes type contour

integral representation (2.2) is much akin to that of the

series representation (2.1). We, therefore, omit the details
involved.

In our derivation of each of the representation
formulas (2.1) and (2.2), it is assumed that the required
inversions of the order of summation and integration are
justified by absolute and uniform convergence of the
series and integrals involved. The final results (2.1) and
(2.2) would thus hold true whenever each member of the
assertions (2.1) and (2.2) of Theorem 1 exists.

Remark 2. For the functionΘ λ
µ (z,s,a;b) defined by

(1.16), the following special cases of Theorem 1 were
derived in [18]:

Θ λ
µ (z,s,a;b) =

1
λΓ (s)

∞

∑
n=0

(µ)n

(a+n)s

·H2,0
0,2



(a+n)b
1
λ

∣

∣

∣

∣

∣

∣ (s,1),
(

0, 1
λ
)





zn

n!
(2.4)

(λ > 0)

and

Θ λ
µ (z,s,a;b) =

1
2π iλΓ (s)Γ (µ)

ˆ i∞

−i∞

Γ (s)Γ (µ − s)

(a− s)s

·H2,0
0,2



(a− s)b
1
λ

∣

∣

∣

∣

∣

∣ (s,1),
(

0, 1
λ
)



 (−z)−s ds (2.5)

(λ > 0),

it being assumed that each member of the assertions (2.4)
and (2.5) exists (see, for details, [18]).

We now turn toward some series representations and
other related results for the extended Hurwitz-Lerch zeta
function

Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq
(z,s,a;b,λ )

defined by (1.14). We first give a pair of new series
representations involving the the familiar Laguerre

polynomialsL(α)
n (x) of order (index)α and degreen in x,

defined by

L(α)
n (x) :=

n

∑
k=0

(

n+α
n−k

)

(−x)k

k!

=

(

n+α
n

)

1F1





−n;

α +1;



 (2.6)

in terms of the Kummer’s confluent hypergeometric
function 1F1, which are generated by (see, for example,
[35, p. 84, Equations 1.11(14)])

(1− t)−α−1 exp

(

− xt
1− t

)

=
∞

∑
n=0

L(α)
n (x) tn (2.7)
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(|t|< 1; α ∈ C) .

Indeed, upon setting

t → 1− tλ and x= b

in (2.7), we get

exp

(

− b

tλ

)

= tλ (α+1) e−b
∞

∑
n=0

L(α)
n (b)

(

1− tλ
)n

. (2.8)

We now make use of (2.8) and the series expansions
of
(

1− tλ )n
and pΨ ∗

q





(λ1,ρ1), · · · ,(λp,ρp);

(µ1,σ1), · · · ,(µq,σq);
ze−t





occurring in the integrand of (1.14). If we evaluate the
resulting Eulerian integral, we are led easily to the series
representations given by Theorem 2 below.

Theorem 2.Each of the following series representations
holds true for the generalized Hurwitz-Lerch zeta function

Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq
(z,s,a;b,λ )

defined by(1.14) :

Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq
(z,s,a;b,λ )

=
e−b

Γ (s)

∞

∑
n,ℓ=0

n

∑
k=0

(−1)k
(

n
k

)

p
∏
j=1

(λ j)ℓρ j

ℓ! ·
q
∏
j=1

(µ j)ℓσ j

·Γ
(

s+λ (α +k+1)
)

L(α)
n (b)

zℓ

(a+ ℓ)s+λ (α+k+1)
(2.9)

(

ℜ(a)> 0; ℜ(s+λα)>−λ
)

and

Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq
(z,s,a;b,λ )

=
e−b

Γ (s)

∞

∑
n=0

n

∑
k=0

(−1)k
(

n
k

)

Γ
(

s+λ (α +k+1)
)

L(α)
n (b)

·Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq

(

z,s+λ (α + j +1),a
)

(2.10)

(

ℜ(a)> 0; ℜ(s+λα)>−λ
)

,

provided that each member of the assertions(2.9) and
(2.10) exists,

Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq
(z,s,a)

being given by(1.10).

Proof. As already outlined above, our demonstration of
the first assertion (2.9) of Theorem 2 is based essentially
upon the representation (2.8) and the following
well-known Eulerian integral:

ˆ ∞

0
tρ−1 e−σt dt =

Γ (ρ)
σρ (2.11)

(

min{ℜ(ρ),ℜ(σ)}> 0
)

.

The second assertion (2.13) follows from the first assertion
(2.9) when we interpret theℓ-series in (2.10) by means of
the definition (1.10).

Just as in our demonstration of Theorem 1, it istacitly
assumed that the required inversions of the order of
summation and integration are justified by absolute and
uniform convergence of the series and integrals involved.
The final results (2.9) and (2.10) would thus hold true
whenever each member of the assertions (2.9) and (2.10)
of Theorem 2 exists.

Remark 3. By suitably specializing Theorem 2, we
obtain the following known series representations for the
generalized Hurwitz-Lerch zeta functionΘ λ

µ (z,s,a;b)
defined by (1.16):

Θ λ
µ (z,s,a;b) =

e−b

Γ (s)

∞

∑
n,ℓ=0

n

∑
k=0

(−1)k
(

n
k

)(

µ + ℓ−1
ℓ

)

·Γ
(

s+λ (α +k+1)
)

L(α)
n (b)

zℓ

(a+ ℓ)s+λ (α+k+1)
(2.12)

(

ℜ(a)> 0; ℜ(s+λα)>−λ
)

and

Θ λ
µ (z,s,a;b)

=
e−b

Γ (s)

∞

∑
n=0

n

∑
k=0

(−1)k
(

n
j

)

Γ
(

s+λ (α +k+1)
)

·L(α)
n (b) Φ∗

µ
(

z,s+λ (α +k+1),a
)

(2.13)

(

ℜ(a)> 0; ℜ(s+λα)>−λ
)

,

provided that each member of the assertions (2.12) and
(2.13) exists, Φ∗

µ (z,s,a) being given by (1.18) (see, for
details, [34]).

Remark 4.For the extended Hurwitz zeta functionζb(s,a)
defined by (1.20), it is easily deduced from the assertion
(2.13) of Theorem 2 whenλ = µ = 1 andz= 1 that

ζb (s,a) =
e−b

Γ (s)

∞

∑
n=0

n

∑
j=0

(−1) j
(

n
j

)

Γ (s+α + j +1)

·L(α)
n (b) ζ (s+α + j +1,a) (2.14)

(

ℜ(a)> 0; ℜ(s+α)>−1
)

,
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provided that each member of (2.14) exists, ζ (s,a) being
the Hurwitz (or generalized) zeta function given by (1.3).
The obviousfurtherspecial case of (2.14) whena= 1 and
α = 0 would yield thecorrectedversion of a known result
(see [4, p. 298, Equation (7.78)]).

Lastly, we choose give several pairs of summation
formulas involving the the generalized Hurwitz-Lerch
zeta function

Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq
(z,s,a;b,λ )

defined by (1.14). First of all, it is easily seen from the first
assertion (2.1) of Theorem 1 that

Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq
(z,s,a;b,λ )

+Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq
(−z,s,a;b,λ )

=
2

λΓ (s)

∞

∑
n=0

p
∏
j=1

(λ j)2nρ j

(a+2n)s ·
q
∏
j=1

(µ j)2nσ j

·H2,0
0,2



(a+2n)b
1
λ

∣

∣

∣

∣

∣

∣ (s,1),
(

0, 1
λ
)





z2n

(2n)!
(2.15)

(λ > 0)

and

Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq
(z,s,a;b,λ )

−Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq
(−z,s,a;b,λ )

=
2

λΓ (s)

∞

∑
n=0

p
∏
j=1

(λ j)(2n+1)ρ j

(a+2n+1)s ·
q
∏
j=1

(µ j)(2n+1)σ j

·H2,0
0,2



(a+2n+1)b
1
λ

∣

∣

∣

∣

∣

∣ (s,1),
(

0, 1
λ
)





· z2n+1

(2n+1)!
(λ > 0). (2.16)

Alternative expressions for the first members of the
summation formulas (2.15) and (2.16) are given by
Theorem 3 below.

Theorem 3. Each of the following summation formulas
holds true for the the generalized Hurwitz-Lerch zeta
function

Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq
(z,s,a;b,λ )

defined by(1.14) :

2s−1
[

Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq
(z,s,a;b,λ )

+ Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq
(−z,s,a;b,λ )

]

= Φ (2ρ1,··· ,2ρp,1,2σ1,··· ,2σq)

λ1,··· ,λp; 1
2 ,µ1,··· ,µq

(

z2

4
,s,

a
2

;2λ b,λ
)

(2.17)

and

2s−1
[

Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq
(z,s,a;b,λ )

− Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq
(−z,s,a;b,λ )

]

=
(λ1)ρ1 · · ·(λp)ρp

(µ1)σ1 · · ·(µq)σq

zΦ (2ρ1,··· ,2ρp,1,2σ1,··· ,2σq)

λ1+ρ1,··· ,λp+ρp; 3
2 ,µ1+σ1,··· ,µq+σq

(

z2

4
,s,

a+1
2

;2λ b,λ
)

, (2.18)

provided that each member of the assertions(2.17) and
(2.18) exists.

Proof. In view of the definition (1.14), we get

Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq
(z,s,a;b,λ )

+Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq
(z,s,a;b,λ )

=
1

Γ (s)

ˆ ∞

0
ts−1 exp

(

−at− b

tλ

)

·



pΨ ∗
q





(λ1,ρ1), · · · ,(λp,ρp);

(µ1,σ1), · · · ,(µq,σq);
ze−t





+pΨ ∗
q





(λ1,ρ1), · · · ,(λp,ρp);

(µ1,σ1), · · · ,(µq,σq);
−ze−t







dt,

(2.19)

which readily simplifies to the following form:

Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq
(z,s,a;b,λ )

+Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq
(z,s,a;b,λ )

=
2

Γ (s)

ˆ ∞

0
ts−1 exp

(

−at− b

tλ

)

· pΨ ∗
q+1





(λ1,ρ1), · · · ,(λp,ρp);

(

1
2,1
)

,(µ1,σ1), · · · ,(µq,σq);

z2

4
e−2t



 dt.

(2.20)

Upon setting

t → t
2

and
dt
2
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in (2.20), if we interpret the resulting integral by means of
the definition (1.14), we arrive at the first assertion (2.17)
of Theorem 3. In a similar manner, we can prove the
second assertion (2.18) of Theorem 3.

Alternatively, we can derive the assertions (2.17) and
(2.18) of Theorem 3 by applying the series representation
in (2.1) in order to interpret the second members of (2.15)
and (2.16), respectively.

Remark 5. For the particular caseΘ λ
µ (z,s,a;b) defined

by (1.16), the following interesting analogues of the
assertions (2.17) and (2.18) were derived earlier by
Srivastavaet al. [34]:

2s−1
[

Θ λ
µ (−z,s,a;b)+Θ λ

µ (z,s,a;b)
]

=
∞

∑
n=0

(−µ)2n

(2n)!
Θ λ

µ

(

z2,s,
a
2
+n;2λ b

)

z2n (2.21)

and

2s−1
[

Θ λ
µ (−z,s,a;b)−Θ λ

µ (z,s,a;b)
]

=
∞

∑
n=0

(−µ)2n+1

(2n+1)!
Θ λ

µ

(

z2,s,
a+1

2
+n;2λ b

)

z2n+1,

(2.22)

provided, of course, that each member of the assertions
(2.21) and (2.22) exists. In fact, by puttingµ = 1 in (2.21)
and (2.22), and upon settingz → −z and a → 2a,
Srivastavaet al. [34] showed also that

2s−1
[

Θ λ
1 (z,s,2a;b)+Θ λ

1 (−z,s,2a;b)
]

=Θ λ
1

(

z2,s,a;2λ b
)

(2.23)

and

2s−1
[

Θ λ
1 (z,s,2a;b)−Θ λ

1 (−z,s,2a;b)
]

= zΘ λ
1

(

z2,s,a+
1
2

;2λ b

)

. (2.24)

In its further special case whenz= λ = 1, the summation
formula (2.23) can be shown to correspond to known
results (see, for example, [4, Theorem 7.9]; see also [4,
pp. 308–309]).

3 Derivative Properties and Associated
Partial Differential Equations

In this section, we aim at showing that the generalized
Hurwitz-Lerch zeta function

Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq
(z,s,a;b,λ )

defined by (1.14) satisfies a partial differential equation
when the parameterλ is given by

λ =
1
m

(m∈ N) .

We first derive the following lemma which will be useful
in the demonstration of our main result of this section
(Theorem 4 below).

Lemma (Derivative Property).The following derivative
formulas hold true:

(µ1)σ1 · · ·(µq)σq

(λ1)ρ1 · · ·(λp)ρp

d
dz

{

Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq
(z,s,a;b,λ )

}

= Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1+ρ1,··· ,λp+ρp;µ1+σ1,··· ,µq+σq
(z,s,a+1;b,λ )

(λ > 0) (3.1)

and

(µ1)σ1 · · ·(µq)σq

(λ1)ρ1 · · ·(λp)ρp

d
dz

{

Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq

(

z,s,a;b
1
m ,

1
m

)}

= Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1+ρ1,··· ,λp+ρp;µ1+σ1,··· ,µq+σq
(

z,s,a+1;b
1
m ,

1
m

)

(m∈ N) (3.2)

Proof. Our proofs of the derivative formulas (3.1) and
(3.2) are simple and direct. For example, by applying the
series representation (2.1), it is easily observed that

(µ1)σ1 · · ·(µq)σq

(λ1)ρ1 · · ·(λp)ρp

d
dz

{

Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq
(z,s,a;b,λ )

}

=
(µ1)σ1 · · ·(µq)σq

λΓ (s)(λ1)ρ1 · · ·(λp)ρp

∞

∑
n=1

p
∏
j=1

(λ j)nρ j

(a+n)s ·
q
∏
j=1

(µ j)nσ j

·H2,0
0,2



(a+n)b
1
λ

∣

∣

∣

∣

∣

∣ (s,1),
(

0, 1
λ
)





zn−1

(n−1)!

=
(µ1)σ1 · · ·(µq)σq

λΓ (s)(λ1)ρ1 · · ·(λp)ρp

·
∞

∑
n=0

p
∏
j=1

(λ j)(n+1)ρ j

(a+n+1)s ·
q
∏
j=1

(µ j)(n+1)σ j

·H2,0
0,2



(a+n+1)b
1
λ

∣

∣

∣

∣

∣

∣ (s,1),
(

0, 1
λ
)





zn

n!
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= Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1+ρ1,··· ,λp+ρp;µ1+σ1,··· ,µq+σq

(z,s,a+1;b,λ ) (λ > 0),

which yields precisely the first assertion (3.1) of the
Lemma. The second assertion (3.2) follows immediately
from (3.1) upon setting

λ =
1
m

(m∈ N) and b→ b
1
m (m∈ N).

Our main result in this section is contained in the
following theorem.

Theorem 4. Let m ∈ N. Then the generalized
Hurwitz-Lerch zeta function

Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq

(

z,s,a;b,
1
m

)

satisfies the following partial differential equation:
[

(−1)m+1mmDb− (a+1)bmθz

]

{

Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq

(

z,s,a;b,
1
m

)}

= 0, (3.3)

where the differential operatorsDb, θz and θb are given
by

Db := θb (θb−s)

(

θb−
1
m

)

· · ·
(

θb−
m−1

m

)

, (3.4)

θz := z
∂
∂z

and θb := b
∂
∂b

, (3.5)

respectively.

Proof. First of all, let us rewrite theH-function occurring
in the Mellin-Barnes type contour integral representation
(2.2) as follows:

H2,0
0,2



(a− s)b
1
λ

∣

∣

∣

∣

∣

∣ (s,1),
(

0, 1
λ
)





=
1

2π i

ˆ

L

Γ (s+w)Γ
(w

λ

)[

(a− s)b
1
λ

]−w
dw, (3.6)

whereL is a suitable Mellin-Barnes type contour integral
in the complexw-plane. We now set

1
λ

= m (m∈ N) and b→ b
1
m (m∈ N)

in the above equation (3.6) and then apply the following
well-known (Gauss-Legendre) multiplication formula
(see, for example, [1, p. 256, Entry (6.1.18)]):

Γ (mz) = (2π)
1−m

2 mmz− 1
2

m

∏
j=1

Γ
(

z+
j −1
m

)

(3.7)

(

z 6= 0,− 1
m
,− 2

m
, · · · ; m∈ N

)

.

We thus find that

H2,0
0,2



(a− s)b

∣

∣

∣

∣

∣

∣ (s,1),(0,m)





=
1

2π i

ˆ

L

Γ (s+w)Γ (mw) [(a− s)b]−w dw

=
(2π)

1−m
2

2π i
√

m

ˆ

L

Γ (s+w)

·
m

∏
j=1

Γ
(

w+
j −1
m

)

[

(a− s)bm−m]−w
dw

=
(2π)

1−m
2

√
m

Gm+1,0
0,m+1



(a− s)bm−m

∣

∣

∣

∣

∣

∣ s,0, 1
m,

2
m, · · · , m−1

m



 , (3.8)

where

Gm+1,0
0,m+1

(

(a− s)bm−m
)

is a very specialized case of Meijer’sG-function Gm,n
p,q(z)

defined by (1.26).
We know that the functionW defined by

W := Gm,n
p,q



z

∣

∣

∣

∣

∣

∣

a1, · · · ,ap

b1, · · · ,bq



 (3.9)

satisfies the following differential equation of order
max(p,q) (see, for example, [5, p. 210, Equation 5.4(1)]):

[

(−1)p−m−n z(ϑz−a1+1) · · ·(ϑz−ap+1)− (ϑz−b1) · · ·(ϑz−bq)
]

W = 0,

where

ϑz = z
d
dz

.

Clearly, therefore, the function given by (3.8) satisfies the
following differential equation:
[

(−1)m+1 (a−s)m−mb−θb (θb−s)

(

θb−
1
m

)

· · ·
(

θb−
m−1

m

)]

·







Gm+1,0
0,m+1



(a−s)bm−m

∣

∣

∣

∣

∣

∣ s,0, 1
m , 2

m , · · · , m−1
m











= 0, (3.10)

where, as already stated in (3.5),

θb = b
∂

∂b
.

Now, if we write [see also Equation (3.4)]

Db := θb (θb−s)
(

θb− 1
m

)

· · ·
(

θb− m−1
m

)

(

θb := b ∂
∂b

)

,
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then the equation (3.10) becomes

Db







Gm+1,0
0,m+1



(a− s)bm−m

∣

∣

∣

∣

∣

∣ s,0, 1
m,

2
m, · · · , m−1

m











= (−1)m+1 m−m(a− s)bGm+1,0
0,m+1



(a− s)bm−m

∣

∣

∣

∣

∣

∣ s,0, 1
m,

2
m, · · · , m−1

m



 . (3.11)

By applying the differential operatorDb to the
function

Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq

(

−z,s,a;b
1
m ,

1
m

)

given by (2.2) with

z→−z, λ =
1
m

(m∈ N)

and
b→ b

1
m (m∈ N),

we find by making use of (3.11) that

Db

{

Φ(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq

(

−z,s,a;b
1
m ,

1
m

)}

=

√
m(2π)

1−m
2

q
∏
j=1

Γ
(

µ j
)

2π iΓ (s)
p
∏
j=1

Γ
(

λ j
)

ˆ i∞

−i∞

Γ (s)Γ
p
∏
j=1

Γ
(

λ j − sρ j
)

(a− s)s
q
∏
j=1

Γ
(

µ j − sσ j
)

·Db







Gm+1,0
0,m+1



(a− s)bm−m

∣

∣

∣

∣

∣

∣ s,0, 1
m, 2

m, · · · , m−1
m











z−s ds

=

(−1)m+1 m
1
2−m (2π)

1−m
2 b

q
∏
j=1

Γ
(

µ j
)

2π iΓ (s)
p
∏
j=1

Γ
(

λ j
)

·
ˆ i∞

−i∞

Γ (s)
p
∏
j=1

Γ
(

λ j − sρ j
)

(a− s)s
q
∏
j=1

Γ
(

µ j − sσ j
)

· (a− s)

·Gm+1,0
0,m+1



(a− s)bm−m

∣

∣

∣

∣

∣

∣ s,0, 1
m, 2

m, · · · , m−1
m



z−s ds

=: (−1)m+1 m−m b(aI1−I2) , (3.12)

where the first integralI1 is actually the generalized
Hurwitz-Lerch zeta function given by

I1 = Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq

(

−z,s,a;b
1
m ,

1
m

)

. (3.13)

The evaluation of the second integralI2 given by

I2 :=

√
m (2π)

1−m
2

q
∏
j=1

Γ (µ j)

2π iΓ (s)
p

∏
j=1

Γ (λ j)

·
ˆ i∞

−i∞

Γ (s+1)
p

∏
j=1

Γ (λ j − sρ j)

(a− s)s
q
∏
j=1

Γ (µ j − sσ j)

·Gm+1,0
0,m+1



(a− s)bm−m

∣

∣

∣

∣

∣

∣ s,0, 1
m,

2
m, · · · , m−1

m



z−s ds

(3.14)

is more complicated. Since the residues ofΓ (s+1) at the
poless=−k (k∈ N) are computed by

Res
s=−k

{Γ (s+1)}= lim
s→−k

(s+k)Γ (s+1)

=
(−1)k−1

(k−1)!
, (3.15)

the Residue Theorem implies that

I2 =

√
m(2π)

1−m
2

q
∏
j=1

Γ
(

µ j
)

Γ (s)
p
∏
j=1

Γ
(

λ j
)

·
∞

∑
k=1

p
∏
j=1

Γ
(

λ j +kρ j
)

(a+k)s
q
∏
j=1

Γ
(

µ j +kσ j
)

zk Res
s=−k

{Γ (s+1)}

·Gm+1,0
0,m+1



(a+k)bm−m

∣

∣

∣

∣

∣

∣ s,0, 1
m, 2

m, · · · , m−1
m





=

√
m(2π)

1−m
2

q
∏
j=1

Γ
(

µ j
)

Γ (s)
p
∏
j=1

Γ
(

λ j
)

·
∞

∑
k=1

p
∏
j=1

Γ
(

λ j +kρ j
)

(a+k)s
q
∏
j=1

Γ
(

µ j +kσ j
)

(−1)k−1 zk

(k−1)!

·Gm+1,0
0,m+1



(a+k)bm−m

∣

∣

∣

∣

∣

∣ s,0, 1
m, 2

m, · · · , m−1
m





=

z
√

m(2π)
1−m

2
q
∏
j=1

Γ
(

µ j
)

Γ (s)
p
∏
j=1

Γ
(

λ j
)

·
∞

∑
k=0

p
∏
j=1

Γ
(

λ j +(k+1)ρ j
)

(a+1+k)s
q
∏
j=1

Γ
(

µ j +(k+1)ρ j
)

(−z)k

k!

·Gm+1,0
0,m+1



(a+1+k)bm−m

∣

∣

∣

∣

∣

∣ s,0, 1
m, 2

m, · · · , m−1
m





=
m zλ1 · · ·λp

µ1 · · ·µq Γ (s)
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·
∞

∑
k=0

p
∏
j=1

Γ
(

λ j +1
)

kλ j

(a+1+k)s
q
∏
j=1

Γ
(

µ j +1
)

kµ j

(−z)k

k!

·H2,0
0,2



(a+1+k)b

∣

∣

∣

∣

∣

∣ (s,1),(0,m)





=
zλ1 · · ·λp

µ1 · · ·µq

·Φ(ρ1,··· ,ρp,σ1,··· ,σq)
λ1+1,··· ,λp+1;µ1+1,··· ,µq+1

(

−z,s,a;b
1
m ,

1
m

)

(3.16)

Thus, by applying the derivative formula (3.2) in (3.16),
we get

I2 =−z
d
dz

{

Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq

(

−z,s,a;b
1
m ,

1
m

)}

.

(3.17)
Now, upon substituting from (3.13) and (3.17) into

(3.12), we obtain

Db

{

Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq

(

−z,s,a;b
1
m ,

1
m

)}

= (−1)m+1 m−m abΦ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq

(

−z,s,a;b
1
m ,

1
m

)

+(−1)m+1 m−m bz
∂
∂z

{

Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq

(

−z,s,a;b
1
m ,

1
m

)}

, (3.18)

which, after a straightforward simplification, assumes the
following form:
[

(−1)m+1 mm Db−ab−bθz

]

{

Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq

(

−z,s,a;b
1
m ,

1
m

)}

= 0 (3.19)

(

θz := z
∂
∂z

)

.

Finally, by setting

b→ bm (m∈ N) and z→−z

in the last equation (3.19), we readily arrive at the desired
result (3.3) asserted by Theorem 4.

Remark 6. An interesting special case of Theorem 4
occurs when we setm= 1. We are thus led immediately
to the following results.

Theorem 5.The generalized Hurwitz-Lerch zeta function

Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq
(z,s,a;b,1)

satisfies the following partial differential equation:
[

b
∂
∂b

(

b
∂

∂b
−s

)(

b
∂

∂b
−1

)

− (a+1)bz
∂
∂z

]

{

Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq
(z,s,a;b,1)

}

= 0. (3.20)

Furthermore, the generalized Hurwitz-Lerch zeta function

Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq
(z,s,a;b,1) ,

when considered as an analytic function of the variable b,

satisfies the following relationship:

[

b
∂

∂b

(

b
∂
∂b

−s

)(

b
∂

∂b
−1

)]

{

Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq
(z,s,a;b,1)

}

=
(a+1)bλ1 · · ·λp

µ1 · · ·µq

·Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq
(z,s,a+1;b,1) . (3.21)

4 Applications Involving the Hurwitz
Measure and Probability Distributions

Let χA (n) be the characteristic function of the subset
A of the setN of positive integers (or, in the language of
probability theory, the indicator function of the eventA⊆
N). Then it is well known that the following arithmetic
density of number theory:

dens(A) = lim
k→∞

1
k

k

∑
n=1

χA (n) (4.1)

does not define a measure on the setN of positive integers.
In order to remedy this deficiency, Golomb [11] defined a
probability on the sample spaceN and showed that, if the
subsetA of N has an arithmetic density, then

lim
s→1

Qs(A) = dens(A) , (4.2)

thereby allowing number-theoretic facts regarding
densities of sets of positive integers to be proven by
probabilistic means and then showing that such properties
are preserved in the limit. Subsequently, in an interesting
sequel to Golomb’s investigation [11], Lippert [17] gave
an analogous definition of the probabilitiesPs when the
setN is replaced by the set of all real numbers greater
than 1. Thus, for a Borel setA⊆ (1,∞), Lippert’s Hurwitz
measure of the setA is defined by (see, for details, [17, p.
279, Definition 1]

Ps(A) =
s

ζ (s)

ˆ ∞

1
χA (a)ζ (s+1,x)dx (4.3)

or, equivalently, by

Ps(A) =
ˆ

x∈(1,∞)
χA (x)dµ̃ (x,s) , (4.4)
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where, in terms of the Hurwitz (or generalized) zeta
functionζ (s,a) defined by (1.3), we have

µ̃ (x,s) :=−ζ (s,x)
ζ (s)

(4.5)

and

dµ̃(x,s) =−dζ (s,x)
ζ (s)

= s
ζ (s+1,x)

ζ (s)
dx.

More recently, Srivastavaet al. [34] introduced and
investigated a new continuous analogue of Lippert’s
Hurwitz measure in (4.3) by using a special case of the
generalized Hurwitz-Lerch zeta functionΘ λ

µ (z,s,a;b)
defined by (1.16), that is,

Θ λ
1 (1,s,a;b) =

1
Γ (s)

ˆ ∞

0

ts−1

1−e−t exp

(

−at− b

tλ

)

dt

= Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq
(1,s,a;b,λ )

∣

∣

∣

p−1=q=0 (λ1=µ=1; ρ1=1)

(4.6)

Definition 2. A Borel set [named afteŕEmile Borel (1871–
1956)] is any set in a topological space that can be formed
from open sets (or, equivalently, from closed sets) through
the operations of countable union, countable intersection
and relative complement. Thus, for a Borel setA⊆ (1,∞) ,
the generalized Hurwitz measure of the setA is defined by

Ps(A) =
s

Θ λ
1 (1,s,1;b)

·
ˆ ∞

1
χA (a)Θ λ

1 (1,s+1,a;b)da (4.7)

or, equivalently, by

Ps(A) =
ˆ

a∈(1,∞)
χA (a)dµ̃ (a,s;b,λ ) , (4.8)

where

µ̃ (a,s;b,λ ) :=−Θ λ
1 (1,s,a;b)

Θ λ
1 (1,s,1;b)

(4.9)

and

dµ̃ (a,s;b,λ )

=−dΘ λ
1 (1,s,a;b)

Θ λ
1 (1,s,1;b)

=
s

Θ λ
1 (1,s,1;b)

Θ λ
1 (1,s+1,a;b) da, (4.10)

since it is easily seen from the definition (1.16) that

d
da

{

Θ λ
µ (z,s,a;b)

}

=−sΘ λ
µ (z,s+1,a;b) . (4.11)

In view of the following relationship:

Ps
(

(1,∞)
)

=

ˆ ∞

1
dµ̃ (a,s;b,λ )

= lim
a→∞

µ̃ (a,s;b,λ )− µ̃ (1,s;b,λ ) = 1,

the generalized Hurwitz measurePs(A) in (4.7) or (4.8)
also defines a probability measure on(1,∞).

Remark 7. For λ = 1 and by lettingb→ 0, we have

lim
b→0

H2,0
0,2



ab

∣

∣

∣

∣

∣

∣ (s,1),(0,1)



= Γ (s) , (4.12)

which implies that

lim
b→0

µ̃ (a,s;b,1) =− lim
b→0

Θ1
1 (1,s,a,b)

Θ1
1 (1,s,1,b)

=−ζ (s,x)
ζ (s)

=: µ̃ (x,s) . (4.13)

Thus, clearly,µ̃ (x,s) can be continuously approximated
by µ̃ (a,s;b,1).

Theorem 6. The measureµ̃ (a,s;b,λ ) satisfies the
following difference equation:

µ̃ (a+1,s;b,λ )− µ̃ (a,s;b,λ )

=

H2,0
0,2



ab
1
λ

∣

∣

∣

∣

∣

∣ (s,1),
(

0, 1
λ
)





λasΓ (s)Θ λ
1 (1,s,1;b)

(4.14)

(s> 1; a> 0; b> 0; λ > 0) .

Proof. From the series representation (2.4) of

Θ λ
µ (z,s,a+1;b) (with µ = 1 and z= 1),

we have

Θ λ
1 (1,s,a+1;b)

=
1

λΓ (s)

∞

∑
n=0

1
(a+n+1)s

·H2,0
0,2



(a+n+1)b
1
λ

∣

∣

∣

∣

∣

∣ (s,1),
(

0, 1
λ
)





=
1

λΓ (s)

∞

∑
n=1

1
(a+n)s

·H2,0
0,2



(a+n)b
1
λ

∣

∣

∣

∣

∣

∣ (s,1),
(

0, 1
λ
)





=Θ λ
1 (1,s,a;b)− 1

λasΓ (s)
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·H2,0
0,2



ab
1
λ

∣

∣

∣

∣

∣

∣ (s,1),
(

0, 1
λ
)



 . (4.15)

The difference equation (4.14) now follows on combining
(4.9) and (4.15).

Remark 8. For λ = 1 and by lettingb→ 0, the difference
equation (4.14) reduces to the following form:

µ̃ (a+1,s)− µ̃ (a,s) =
1

asζ (s)
, (4.16)

whereµ̃ (x,s) is given by (4.5).
For open events, the generalized Hurwitz measure

Ps(A) in (4.7) or (4.8) can be evaluated by using (4.8) and
the above Proposition. The results are being stated as
Theorem 7 below.

Theorem 7.If A = (a,a+1) , then

Ps(A) = Ps
(

(a,a+1)
)

=

H2,0
0,2



ab
1
λ

∣

∣

∣

∣

∣

∣ (s,1),
(

0, 1
λ
)





λasΓ (s)Θ λ
1 (1,s,1;b)

. (4.17)

More generally, the generalized Hurwitz measure of an
open set A⊆ (1,∞) is given by

Ps(A) = ∑
i∈I

Ps
(

(ai ,bi)
)

= ∑
i∈I

(

Θ λ
1 (1,s,ai ;b)−Θ λ

1 (1,s,bi ;b)

Θ λ
1 (1,s,1;b)

)

, (4.18)

where

A=
⋃

i∈I

(ai ,bi)
(

ai ,bi ∈ [1,∞); i ∈ I
)

.

The following theorem shows that the generalized
Hurwitz measurePs(A)in (4.7) or (4.8) basically inherits
all properties of Lippert’s Hurwitz measure given by (4.3)
or (4.4).

Theorem 8. Corresponding to the generalized Hurwitz
measure given by(4.18), let

A(ε) =
⋃

i∈N
(i, i + ε) (ε ∈ [0,1]). (4.19)

Then
lim
s→1

Ps(A(ε)) = ε . (4.20)

Proof. From (4.18), we have

Ps(A) =
∞

∑
i=1

(

Θ λ
1 (1,s, i;b)−Θ λ

1 (1,s, i + ε;b)

Θ λ
1 (1,s,1;b)

)

. (4.21)

By expanding the functionΘ λ
1 (1,s, i + ε ,b) by means of

Taylor’s series and using the derivative formula (4.11), we
get

Ps(A) =
1

Θ λ
1 (1,s,1;b)

·
(

εs
∞

∑
i=1

Θ λ
1 (1,s+1, i;b)

− ε2

2
s(s+1)

∞

∑
i=1

Θ λ
1 (1,s+2, i;b)+ · · ·

)

. (4.22)

We now consider each sum in (4.22) separately. We
thus find that

∞

∑
i=1

Θ λ
1 (1,s+m, i;b) =

1
λΓ (s+m)

·
∞

∑
i=1

∞

∑
n=0

H2,0
0,2



(i +n)b
1
λ

∣

∣

∣

∣

∣

∣ (s+m,1),
(

0, 1
λ
)





(i +n)s+m

=
1

λΓ (s+m)

·
∞

∑
j=0

∞

∑
n=0

H2,0
0,2



( j +n+1)b
1
λ

∣

∣

∣

∣

∣

∣ (s+m,1),
(

0, 1
λ
)





( j +n+1)s+m .

(4.23)

Since the number of non-negative integer solutions of the
Diophantine equationj +n= N is

(

N+1
1

)

= N+1,

the double summation in (4.23) can be replaced by a single
summation, that is,

∞

∑
i=1

Θ λ
1 (1,s+m, i;b)

=
1

λΓ (s+m)

∞

∑
N=0

H2,0
0,2



(N+1)b
1
λ

∣

∣

∣

∣

∣

∣ (s+m,1),
(

0, 1
λ
)





(N+1)s+m−1

=Θ λ
1 (1,s+m−1,1;b) . (4.24)

We thus obtain

lim
s→1

Ps(A)

= lim
s→1

(

εs
Θ λ

1 (1,s,1;b)

Θ λ
1 (1,s,1;b)

− ε2

2
s(s+1)

Θ λ
1 (1,s+1,1;b)

Θ λ
1 (1,s,1;b)

+ · · ·
)

= ε − ε2

2
s(s+1) lim

s→1

Θ λ
1 (1,s+1,1;b)

Θ λ
1 (1,s,1;b)

+ · · · . (4.25)

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1498 H. M. Srivastava: A New Family of theλ -Generalized Hurwitz-Lerch Zeta ...

We note that, whens→ 1, the series forΘ λ
1 (1,s,1;b) is

divergent and the series forΘ λ
1 (1,s+1,1;b) is

convergent. Therefore, all other terms vanish in (4.25)
except the leading term. Consequently, we get

lim
s→1

Ps(A) = ε , (4.26)

which completes the proof of Theorem 8.

It does not seem to be difficult to extend the
above-detailed investigation of the generalized Hurwitz
measure, which was presented earlier by Srivastavaet al.
[34], to analogously cover wider and more general
situations involving the Hurwitz-Lerch zeta function

Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq
(z,s,a;b,λ )

defined by (1.14). Nevertheless, we choose to turn instead
toward an investigation of the following general
probability distribution involving this generalized
Hurwitz-Lerch zeta function.

Definition 3. A random variable ξ is said to be
generalized Hurwitz distributed if its probability density
function is given by

fξ (a) :=























sΦ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq
(z,s+1,a;b,λ )

Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq
(z,s,1;b,λ )

(a≧ 1)

0 (otherwise),
(4.27)

where it istacitly assumed that the argumentsz,s,b,λ and
µ . and the parameters

λ j ,ρ j ( j = 1, · · · , p) and µ j ,σ j ( j = 1, · · · ,q),

are fixed and suitably constrained so that the probability
density functionfξ (a) remains nonnegative.

Theorem 9. Suppose thatξ is a continuous random
variableξ with its probability density function defined by
(4.27). Then the moment generating function M(z) of the
random variableξ is given by

M (z) := Es

[

ezξ
]

=
∞

∑
n=0

Es[ξ n]
zn

n!
(4.28)

with the momentEs[ξ n] of order n given by

Es[ξ n] =
n

∑
k=0

n!
(n−k)!

Γ (s−k)
Γ (s)

·
Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq
(z,s−k,1;b,λ )

Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq
(z,s,1;b,λ )

. (4.29)

Proof. The assertion in (4.28) can be derived easily by
using the exponential series forezξ . On the other hand,
since

d
da

{

Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq
(z,s,a;b,λ )

}

=−sΦ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq
(z,s+1,a;b,λ ) , (4.30)

which follows readily from the definition (1.14), if we
make use of integration by parts, we find from the
definition of the momentEs[ξ n] that

Es[ξ n] =

ˆ ∞

1
an fξ (a)da

=
s

Φ(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq

(z,s,1;b,λ )

·
ˆ ∞

1
an Φ(ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq
(z,s+1,a;b,λ )da

=− 1

Φ(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq

(z,s,1;b,λ )

·
ˆ ∞

1
an d

da

{

Φ(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq

(z,s,a;b,λ )
}

da

= −
an Φ(ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq
(z,s,a;b,λ )

Φ(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq

(z,s,1;b,λ )

∣

∣

∣

∣

∣

∣

∞

a=1

+
n

Φ(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq

(z,s,1;b,λ )

·
ˆ ∞

1
an−1 Φ(ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq
(z,s,a;b,λ )da

= 1− lim
a→∞







an Φ(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq

(z,s,a;b,λ )

Φ(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq

(z,s,1;b,λ )







+
n

Φ(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq

(z,s,1;b,λ )

·
ˆ ∞

1
an−1 Φ(ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq
(z,s,a;b,λ )da

= 1+
n

Φ(ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq
(z,s,1;b,λ )

·
ˆ ∞

1
an−1 Φ(ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq
(z,s,a;b,λ )da

(n∈ N), (4.31)

where, in addition to the derivative property (4.30), we
have used the following limit formula:

lim
a→∞

{

an Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq
(z,s,a;b,λ )

}

= lim
a→∞

{

an

Γ (s)

ˆ ∞

0
ts−1 exp

(

−at− b

tλ

)}

dt

=
1

Γ (s)

ˆ ∞

0
ts−1 exp

(

− b

tλ

)

lim
a→∞

{

an e−at}

· pΨ ∗
q





(λ1,ρ1), · · · ,(λp,ρp);

(µ1,σ1), · · · ,(µq,σq);
ze−t



 dt
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= 0 (n∈ N). (4.32)

Consequently, we have the following reduction formula
for Es[ξ n]:

Es[ξ n] = 1+
Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq
(z,s−1,1;b,λ )

Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq
(z,s,1;b,λ )

· n
s−1

Es−1
[

ξ n−1] (n∈ N). (4.33)

By iterating the recurrence (4.31), we arrive at the
desired result (4.29) asserted by Theorem 6.

Remark 9. A special case of Theorem 6 when

p−1= q= 0, λ1 = µ = 1 and ρ1 = 1

was considered by Srivastavaet al. [34]. Moreover, in an
earlier investigation, Guptaet al. [12] considered some
particularly simple forms of the Hurwitz-Lerch zeta
distributions and their applications in reliability theory.
On the other hand, in a very recent investigation, Saxena
et al. [25] made use of some specialized cases of the
extended Hurwitz-Lerch zeta function

Φ (ρ1,··· ,ρp,σ1,··· ,σq)

λ1,··· ,λp;µ1,··· ,µq
(z,s,a)

of Srivastavaet al. [36, p. 503, Equation (6.2)] (see also
[27] and [32]), which is defined here by (1.10), in
statistical inference.
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