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Abstract: In this paper, the iteration perturbation method is appliedto solve nonlinear oscillations. Two examples are given to illustrate
the effectiveness and convenience of this iteration procedure. Comparison with the numerical solutions is also presented, revealing that
this iteration leads to accurate solutions.
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1 Introduction

The most common and most widely studied methods for
determining analytical approximate solutions of a
nonlinear oscillatory system are the perturbation methods.
These methods involve the expansion of a solution to an
oscillation equation in a series in a small parameter.
Several researchers have studied different nonlinear
problems by means of iteration procedures [1,2,3,4,5,6,
7,8].

The purpose of this paper is to apply the iteration
procedure to determine analytical approximate solutions
to the nonlinear oscillation equation. With this procedure,
the analytical approximate period and the corresponding
periodic solutions, valid for small as well as large
amplitudes of oscillation, can be obtained. The nonlinear
Duffing and Van der Pol oscillations will be taken as
examples to illustrate the applicability and accuracy of the
iteration procedure.

2 The iteration procedure

Consider a nonlinear conservative oscillator described as

ẍ+ f (x) = 0, x(0) = A, ẋ(0) = 0, (1)

where f (x) in a nonlinear function and has the property

f (−x)) =− f (x). (2)

Eq.(1) can be rewritten as

ẍ+ω2x= ω2x− f (x), (3)

where the constantω is a priori unknown frequency of the
periodic solutionx(t) being sough. The original Mickens
procedure is given as [1] .

ẍk+ω2xk = g(ω ,xk−1), k= 1,2, ... (4)

where the input of starting function is

x0(t) = Acosωt. (5)

This iteration scheme was used to solve many nonlinear
oscillating equations [9,10,11].

Lim et al. [3] proposed a modified iteration scheme

ẍk+1+ω2xk+1 = g(ω ,xk−1)
+gx(ω ,xk−1)(xk− xk−1), k= 0,1,2, ...

(6)

with the imputes of starting functions as

x−1(t) = x0(t) = Acosωt (7)

wheregx(ω ,x) = ∂g(ω ,x)/∂x. The modified procedure
was also applied to solve many nonlinear oscillators [12,
13,14,15]

Chen and Liu [5] proposed a new iteration scheme,
consideringω asωk:

ẍk+ω2
k−1xk = g(ωk−1,xk−1), k= 1,2, ... (8)
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where the right hand side of Eq(8) can be expanded in the
Fourier series

g(ωk−1,xk−1) =
ϕ(k)

∑
i=1

ak−1,i(ωk−1)
cos(iωk−1t), (9)

where the coefficientak−1, j are functions ofωk−1 andϕ(k)
is a positive integer. The(k− 1) th-order approximation
ωk−1 is obtain by eliminating the so-called secular terms,
i.e., letting

ak−1,i(ωk−1) = 0, k= 1,2, ... (10)

Eq (10) is always a linear algebraic equation inω2
k−1

J. H. He [7] proposed a new iteration scheme
considering the following nonlinear oscillator

ẍ+ x+ ε f (x, ẋ) = 0, x(0) = A, ẋ(0) = 0. (11)

We rewrite Eq(11) in the following form

ẍ+ x+ εxg(x, ẋ) = 0 (12)

whereg(x, ẋ) = f (x, ẋ)/x
J H He has constructed an iteration formula for the

above equation

ẍk+1+ xk+1+ εxk+1g(xk, ẋk), (13)

Marinca and Herisanu [8] proposed a new iteration
method by combining Mickens and He’s iteration
methods, considering the following nonlinear oscillator

ẍ+ω2x= f (x, ẋ, ẍ) = 0, x(0) = A, ẋ(0) = 0 (14)

We rewrite Eq.(14) in the following form

ẍ+Ω2x= x

(

Ω2−ω2−
f (x, ẋ, ẍ)

x

)

:= xg(x, ẋ, ẍ). (15)

whereΩ is a priori unknown frequency of the periodic
solutionx(t) being sought.

The proposed iteration scheme is

ẍn+1+Ω2xn+1 = xn−1 [g(xn−1, ẋn−1, ẍn−1)
+gx(xn−1, ẋn−1, ẍn−1)(xn− xn−1)
+ gẋ(xn−1, ẋn−1, ẍn−1)(ẋn− ẋn−1)
+ gẍ(xn−1, ẋn−1, ẍn−1)(ẍn− ẍn−1)] , n= 0,1,2, ...

(16)

where the imputes of starting functions are [3]

x−1(t) = x0(t) = AcosΩ t. (17)

It is further required that for eachn, the solution to Eq.
(16), is to satisfy initial conditions

xn(0) = A, ẋn(0) = 0, n= 1,2,3, ... . (18)

Note that, for givenxn−1(t) andxn(t) Eq.(16) is a second
order inhomogeneous differential equation forxn−1(t). Its

right side can be expanded into the following Fourier
series:

xn−1 [g(xn−1, ẋn−1, ẍn−1)+gx(xn−1, ẋn−1, ẍn−1)(xn− xn−1)
+gẋ(xn−1, ẋn−1, ẍn−1)(ẋn− ẋn−1) +gẍ(xn−1, ẋn−1, ẍn−1)
x(ẍn− ẍn−1)] = a1(A,Ω ,ω)cosΩ t +b1(A,Ω ,ω)sinΩ t
+∑N

n=2an(A,Ω ,ω)cosnΩ t +∑N
n=2bn(A,Ω ,ω)sinnΩ t,

(19)
where the coefficientsan(A,Ω ,ω) and bn(A,Ω ,ω) are
known functions ofA andω , and the integerN depends
upon the functiong(x, ẋ, ẍ) on the right hand side of Eq.
(15). In view of Eq.(19), the solution to Eq.(16) is taken
to be

xn+1 = AcosΩ t −
N
∑

n=2

an(A,Ω ,ω)

(n2−1)Ω2 (cosnΩ t − cosΩ t)

−
N
∑

n=2

bn(A,Ω ,ω)

(n2−1)Ω2 (sinnΩ t − sinΩ t),

(20)
whereA is, tentatively, an arbitrary constant. In Eq.

(20), the particular solution is chosen such that it contains
no secular terms needs

a1(A,Ω ,ω) = 0, b1(A,Ω ,ω) = 0. (21)

Eq.(21) allows the determination of the frequencyΩ as a
function of A andω . this procedure can be performed to
any desired iteration stepn.

3 Applications

In order to illustrate the remarkable accuracy of this
iteration, we compare the approximate results with
numerical integration results for the following two
examples.

3.1 Duffing oscillator with high nonlinearity

Consider the following nonlinear Duffing equation with
high nonlinearity, which models many structural systems,
it is regarded as one of the most important differential
equations because it appears in various physical and
engineering problems such that, nonlinear optics and
plasma physics [16,17].

ẍ+ x+αx3+βx5+ γx7 = 0, x(0) = A, ẋ(0) = 0, (22)

wherex is displacement and,α, β and γ are arbitrary
constants.

We rewrite Eq.(12) in the form

ẍ1+ω2x1 = x0

(

ω2−1−αx2
0−βx4

0− γx6
0

)

, (23)

where g(x, ẋ, ẍ) =
(

ω2−1−αx2
0−βx4

0− γx6
0

)

and the
inputs of the starting function are
x−1(t) = x0(t) = Acosωt.
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The first iteration is given by the equation

ẍ1+ω2x1 =−
(

64A+48αA3+40β A5+35γA7−64Aω2

64

)

cosωt

−
(

16αA3+20β A5+21γA7

64

)

cos3ωt

−
(

4β A5+7γA7

64

)

cos5ωt−
(

γA7

64

)

cos7ωt.

(24)
No secular terms inx1 requires that

ω = ω1 =

√

1+
3
4

αA2+
5
8

βA4+
35
64

γA6. (25)

This equation is identical to Eq.(10) in Ref [16] and Eq.
(25) in Ref [17]. Solving Eq.(24) with initial conditions
(18), x1 is obtained as

x1 = Acosωt +
(

16αA3+20β A5+21γA7

512ω2

)

(cos3ωt − cosωt)

+
(

4β A5+7γA7

1536ω2

)

(cos5ωt− cosωt)

+
(

γA7

3072ω2

)

(cos7ωt− cosωt) ,

(26)
for n= 1 into Eq.(16) with the initial functions(18) and
x1 given by Eq.(26) we obtain the following differential
equation forx2

ẍ2+ω2x2 =−
(

A+ 3αA3

4 + 5β A5

8 + 35γA7

64 − α2A5

32ω2 −
21αβ A7

256ω2

− 7β 2A9

128ω2 −
183αγA9

2048ω2 − 185β γA11

1536ω2 − 1095γ2A13

16384ω2 −Aω2
)

cosωt

−
(

αA3

4 + 5β A5

16 + 21γA7

64 + α2A5

64ω2 +
7αβ A7

256ω2 + 7β 2A9

768ω2 +
125αγA9

6144ω2

+ 15β γA11

2048ω2 − 99γ2A13

32768ω2

)

cos3ωt −
(

β A5

16 + 7γA7

64 + α2A5

64ω2

+ 35αβ A7

768ω2 + 25β 2A9

768ω2 + 299αγA9

6144ω2 + 425β γA11

6144ω2 + 599γ2A13

16384ω2

)

cos5ωt

−
(

γA7

64 + 7αβ A7

768ω2 + 19β 2A9

1536ω2 +
53αγA9

3072ω2 +
455β γA11

12288ω2 + 845γ2A13

32768ω2

)

xcos7ωt −
(

β 2A9

1536ω2 +
19αγA9

6144ω2 +
27β γA11

4096ω2 + 225γ2A13

32768ω2

)

cos9ωt

−
(

β γA11

3072ω2 +
5γ2A13

8192ω2

)

cos11ωt− γ2A13

32768ω2 cos13ωt.

(27)
The absence of secular term gives the following equation
for ω2

ω4−
(

64+48αA2+40β A4+35γA6

64

)

ω2+
(

786432α2A4+2064384αβ A6

25165824
+1376256β 2A8+2248704αγA8+3031040β γA10+1681920γ2A12

25165824

)

= 0.

(28)
Solving Eq.(28) for ω yields

ω = ω2 =

√

64+48αA4+40βA4+35γA6

128
+

√
∆1+∆2

64
√

6
,

(29)
where

∆1 = 6144+9216αA2+2688α2A4

+7680βA4+3744αβA6;

∆2 = 1056β 2A8+6720γA6+2844αγA8

+1240β γA10+195γ2A12.

Fig. 1: Comparison of the approximate periodic solution with the
numerical solution. Numerical; ..... ;x1(t) - - - - [16]; x2(t) —

Solving Eq.(27) with the initial condition(18), we obtain

x2 = Acosωt +
(

αA3

32ω2 +
5β A5

128ω2 +
21γA7

512ω2 +
α2A5

512ω4 +
7αβ A7

2048ω4

+ 7β 2A9

6144ω4 +
125αγA9

49152ω4 +
15β γA11

16384ω4 −
99γ2A13

262144ω4

)

(cos3ωt − cosωt)

+
(

β A5

384ω2 +
7γA7

1536ω2 +
α2A5

1536ω4 +
35αβ A7

18432ω4 +
25β 2A9

18432ω4

+ 299αγA9

147456ω4 +
425β γA11

147456ω4 +
599γ2A13

393216ω4

)

(cos5ωt − cosωt)

+
(

γA7

3072ω2 +
7αβ A7

36864ω4 +
19β 2A9

73728ω4 +
53αγA9

147456ω4 +
455β γA11

589824ω4

+ 845γ2A13

1572864ω4

)

(cos7ωt− cosωt)+
(

β 2A9

122880ω4

+ 19αγA9

491520ω4 +
27β γA11

327680ω4 +
225γ2A13

2621440ω4

)

(cos9ωt − cosωt)

+
(

β γA11

368640ω4 +
5γ2A13

983040ω4

)

(cos11ωt− cosωt)

+ γ2A13

5505024ω4 (cos13ωt− cosωt) .
(30)

Fig. 1 shows a comparison between the present
solution obtained from formulae(29) and (30) and the
numerical integration results obtained by using the
Runge-Kutta method. From the results presented here and
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the results of Ref. [16], it is shown that the present results
are in a good agreement with those presented in Ref. [16].

3.2 Autonomous modified Van der Pol oscillator

One of the classical equations of non-linear dynamics
was formulated by Dutch physicist Van der Pol.
Originally it was a model for an electrical circuit with a
triode valve, and was later extensively studied as a host of
a rich class of dynamical behavior, including relaxation
oscillations, quasi periodicity, elementary bifurcations,
and chaos [18,19]. A modified Van der Pol oscillator has
been proposed to describe a self-excited body sliding on a
periodic potential. This autonomous modified Van der Pol
oscillator is described by the following equation [20].

ẍ+x+ε
(

x2−1
)

ẋ+Psinx= 0, x(0)=A, ẋ(0)= 0. (31)

In this case we have

g(x, ẋ, ẍ) =

(

ω2−1−
ε(x2

0−1)ẋ0−Psinx0
x0

)

and

x−1(t) = x0(t) = Acosωt. The first iteration can be
written in the form

ẍ1+ω2x1 = x0

(

ω2−1−
ε
(

x2
0−1

)

ẋ0−Psinx0

x0

)

.

(32)
The term sinx0 = sin(Acosωt) can be expanded in the
power series

sin(Acosωt) = Acosωt − A3cos3 ωt
3!

+A5cos5 ωt
5! − A7cos7 ωt

7! + A9 cos9 ωt
9! + ...

(33)

We rewrite powers cosωt in Eq.(33) in terms of the cosine
of multiples ofωt with the aid of the identity [21].

cos2n+1ωt =
1
4n

n

∑
k=0

(

2n+1
n− k

)

cos(2k+1)ωt, (34)

where

(

n
p

)

=
n!

p!(n− p)!
;

(

n
0

)

= 1; k! = 1.2.3.....k;kεN .

By using Eq.(34), Eq.(33) may be expressed in the form

sin(Acosωt) = Acosωt − A3

24 (cos3ωt+3cosωt)

+ A5

1920(cos5ωt +5cos3ωt+10cosωt)

− A7

322560(cos7ωt+7cos5ωt+21cos3ωt+35cosωt)

+ A9

92897280(cos9ωt +9cos7ωt +36cos5ωt
+84cos3ωt +126cosωt) .

(35)

Fig. 2: Comparison of the approximate periodic solution (—)
with the numerical solution (- - -).

Substituting Eq.(35) into Eq. (32), this can be rewritten
as:

ẍ1+ω2x1 =
(

−A− p+ A3p
8 − A5p

192 +
A7p
9216−

A9p
737280+Aω2

)

×cosωt −
(

εAω − 1
4εA3ω

)

sinωt + 1
4εA3ω sin3ωt+

(

A3p
24 − A5p

384 +
A7p

15360−
A9p

1105920

)

cos3ωt −
(

A5p
1920−

A7p
46080

+ A9p
2580480

)

cos5ωt +
(

A7p
322560−

A9p
10321920

)

cos7ωt

− A9p
92897280cos9ωt.

(36)
No secular terms inx1 requires that

A= 2, ω1 =

√

1+ p−
A2p
8

+
A4p
192

−
A6p
9216

+
A8p

737280
.

(37)
Solving Eq. (36) with initial conditions (18), x1 is
obtained as

x1 = Acosωt + ε
4ω (3sinωt − sin3ωt)

+ 557p
17280ω2 (cosωt − cos3ωt)

− 71p
120960ω2 (cosωt − cos5ωt)

+ 7p
967680ω2 (cosωt − cos7ωt)

− p
14515200ω2 (cosωt − cos9ωt) .

(38)

Fig. 2 shows a comparison between the analytical
solution obtained from formulae(37) and (38) and the
numerical integration results obtained by using the
Runge-Kutta method. It is seen that the solution obtained
by the iteration procedure is very close to that obtained by
the numerical method. One concludes that adopting
present technique to analyze the solutions of the modified
Van der pol equation, a satisfactory results are obtained
for small values of parameterε.
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4 Conclusion

In this paper, the iteration perturbation method has been
successfully used to study the nonlinear oscillators. The
examples of nonlinear oscillations has illustrated that the
iteration procedure can give excellent approximate
results. The first approximate frequencyω1 given in
equation(25) is identical to equation(10) in Ref [16].
The examples of nonlinear oscillations has illustrated that
the present method can give excellent approximate
results. The second approximate frequencyω2 obtained
by the second iteration gives very accurate solutions.
Also, the second approximate periodic solutionx2 is in
good agreement with the numerical integration results
obtained by using a fourth order Runge-Kutta method.
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