
Appl. Math. Inf. Sci. 6 No. 1S pp. 185S-194S (2012)  

 

 

 

 

GPU Accelerated Molecular Surface Computing 
 

Byungjoo Kim1
, Ku-Jin Kim2* and Joon-Kyung Seong3 

1Graduate School of Electronics, Kyungpook National University, 702-701 Daegu, Korea  

2School of Computer Science & Engineering Kyungpook National University, 702-701 Daegu, Korea 
3School of Computer Science & Engineering, Soongsil University, Seoul, Korea 
Email Address: 

1
 byungjoo.kim@gmail.com,

 2
 kujinkim@yahoo.com, 

3
seong@ssu.ac.kr 

 

Received: Received May 02, 2011; Revised July 25, 2011; Accepted September 12, 2011 
Published online: 1 January 2012 

 

Abstract: A method is presented for computing the SES (solvent excluded surface) of a protein 
molecule in interactive-time based on GPU (graphics processing unit) acceleration. First, the offset 
surface of the van der Waals spheres is sampled using an offset distance d that corresponds to the 
radius of the solvent probe. The SES is then constructed by extracting the surface at distance d from 
the sample points. For interactive-time computing, two space partitioning schemes are used, a voxel 
map and kd-tree, with data parallel schemes accelerated by GPU. In experiments using an average 
1,848 atoms, a SES with a resolution of 1/27 ×1/27× 1/27 of the original bounding box is obtained in 
66.53ms on average. 
 
Keywords: Molecular surface, solvent-excluded surface, offset, voxel map, GPU acceleration 

 

1 Introduction 

                                                
* Corresponding Author: KuKuKuKu----Jin KimJin KimJin KimJin Kim, kujinkim@yahoo.com 

In the area of biochemistry, molecular surfaces 
are widely used for visualizing the shape of a 
molecule, computing the areas and volumes of 
molecules, molecular docking, and drug design. 
Among the many types of molecular surface, such 
as a van der Waals surface, SAS (solvent accessible 
surface), SES (solvent excluded surface), and MSS 
(molecule skin surface), SESs are most frequently 
used, since being defined by Connolly [5]. 

A protein molecule is generally represented as a 
set of spheres, where each sphere corresponds to an 
atom and the center position and radius of each 
sphere are determined by the center position and 
van der Waals radius of the atom, respectively. The 
SES is then defined as the inner boundary surface of 
the union of touching solvent probes to a given 
molecule M, where M is represented as a set of 3-
dimensional spheres with van der Waals radii. Fig.1 
(a) shows an example of the offset surface of a 
molecule, called the SAS, where the gray spheres 

correspond to the atoms, the dashed curve 
represents the solvent probe, and the offset surface 
is represented by the thick solid curve that 
corresponds to the center trajectory of the probe 
sphere. Fig.1 (b) shows an example of an SES, 
which is the boundary of the union of all possible 
solvent probes that touch the molecule M without 
colliding with the atoms, as represented by the thick 
curve. Thus, the SES essentially consists of a set of 
points whose minimum distance from the SAS is 
the radius of the solvent probe.  

This paper presents an interactive-time 
algorithm for computing the SES of a protein 
molecule that is both easy to implement and robust 
in numerical errors. The molecule is represented as 
a sphere set M. Given a probe solvent that is 
considered as a sphere with radius d, points are 
sampled from the offset surface of M with offset 
distance d. A kd-tree is then created from the 
sample points, resulting in the construction of a 

Applied Mathematics & Information Sciences                    
                                                                            An International Journal  

       @ 2012 NSP 
       Natural Sciences Publishing Cor. 



  
Byungjoo Kim, Ku-Jin Kim, and Joon-Kyung Seong 

 

 

186

distance field. Defined as a spatial field of 
minimum distances for a given set of primitives [7], 
the computation of distance fields around complex 
objects has already been developed using graphics 
hardware [14, 18, 19]. Based on the distance field, 
the SES is then approximated in a piecewise linear 
form by applying the marching cube method [11, 
22]. 

To obtain interactive-time computing, two kinds 
of space-partitioning structure, a voxel map and kd-
tree, are effectively applied using a data parallel 
algorithm. Containing information on the offset 
spheres that cover each voxel, the voxel map allows 
the offset surface of the sphere set to be computed 
efficiently. Meanwhile, the kd-tree enables the 
efficient construction of a distance field from the 
offset surface. Plus, GPU acceleration helps with 
constructing the voxel map, sampling the offset 
surface, and constructing the distance field when 
applying the marching cube algorithm. 

The remainder of this paper is organized as 
follows. Section 2 discusses related work, then the 
proposed algorithm for molecular surface 
generation is explained in Section 3. Experimental 
results are presented in Section 4, and some final 
conclusions are given in Section 5. 

 

 
 

(a)                                           (b) 
 

Fig.1 Examples of molecular surfaces: offset surface (or 
SAS) (left) and SES (right) 

 
2 Related Work 

Various researchers have already attempted to 
compute the molecular surfaces of protein structures. 
Connolly [4, 5] categorized the molecular surface 
into three types of patch: convex, toroidal, and 
concave, which are generated when the solvent 
probe touches only one atom, two atoms, and three 
atoms, respectively. Nicolls et al. [12, 13] 
developed the GRASP system that generates the 
molecular surface by dividing the space into grids. 
Sanner et al. [17] computed molecular surfaces 
based on the alpha shape of the molecule, and this 

method has been used to implement the UCSF 
Chimera system [15, 21]. 

Can et al. [2] proposed a method to compute the 
van der Waals surface, SAS, and SES based on the 
propagation of a level set by partitioning the space 
into uniform grids. Using a seed-filling method, 
they first find a grid that contains the molecular 
surface, then use it as a seed to search for neighbor 
grids that also contain the molecular surface. Ryu et 
al. [16] computed the beta shape of a molecule 
based on a Voronoi diagram computed for the atom 
set. This beta shape is used to generate the contact 
and re-entrant surfaces in the SES, and the SES is 
then constructed by connecting them.  

Juba and Varshney [8] computed the area of a 
molecular surface using graphic hardware. They 
represent the atoms as Gaussian radial basis 
functions (RBFs) based on the center of the atoms. 
The molecular surface is then represented as the 
level set of the summation of the Gaussian RBFs. 
They generate a set of random lines, and by 
computing the intersection of the lines with the 
implicit surface, they compute the area of the 
molecular surface. Their algorithm also uses GPU 
in parallel intersecting each line with the implicit 
surface.  

Most recently, there have been several studies 
that focused on the fast visualization of molecular 
surfaces mainly for molecular dynamic applications. 
Lindow et al. [10] proposed an interactive-time 
method to generate the SES and MSS using an 
approximate Voronoi diagram and contour-buildup 
algorithm [20]. They reduce the rendering time by 
parallel computing using multi-core CPUs. Krone et 
al. [9] presented an approach for interactive SES 
visualization for molecular dynamic simulation 
trajectories based on GPU ray casting. Chavent et al. 
[3] presented a GPU accelerated ray-tracing method 
for visualizing molecules that directly uses a 
piecewise-defined algebraic equation of the 
molecular skin surfaces. Yet, despite a high 
performance for visualizing molecules in an image 
space, such methods are limited as regards 
producing a mesh geometry of the molecular 
surface, thereby restricting their use with other 
applications that require the geometric properties of 
molecular surfaces, such as computing their 
area/volume, molecular docking, and drug design. 
 
 
 
 



 
Byungjoo Kim, Ku-Jin Kim, and Joon-Kyung Seong  

 

 

187

3 Algorithm for Interactive-time SES 

Computation 

3.1 Overview 
An overview of the proposed algorithm is given in 
Algorithm 1. The first step involves the 
computation of a set of sample points, P, on the 
offset surface of M with offset distance d. After 
constructing a kd-tree based on the set of points P, a 
marching cube algorithm is applied to extract the 
SES that corresponds to the iso-surface whose 
distance is d from P. The functions used to generate 
the sample points P and extract the SES using the 
marching cube algorithm are implemented as GPU 
kernel functions to achieve an interactive-time 
performance.  

 
Algorithm 1: Interactive-Time SES Computation 
function ComputeSES (M, X, Xd) 
Input:     M;  /* a set of balls corresponding to the molecule */ 
 X;  /* the bounding box of M */ 

X
d;  /* the bounding box of the offset surface of M */ 

Begin 

Step 1.   /* Find points on the offset surface */ 
FP = SamplingOffset(M, Xd)     

Step 2.   /* Construct a kd-tree for the sample points in FP */ 
T

d = ConstructKdTree(FP);  
Step 3.   SES = MarchingCube (Td, X); 

Return SES; 
End 

 
3.2 GPU-Based Extraction of Sampling Points 

from Offset Surface of Molecule 
Let us denote the ball with center point c and 

radius r as B(c, r): B(c, r) = { p | ||c – p|| ≤ r }.  The 
surface of B(c, r) is denoted as S(c, r): S(c, r) = { p | 
||c – p|| = r }. The protein molecule is then 
represented as follows:  

M = { Bi | 0 ≤ i < n }, 
where Bi = B(ci, ri) corresponds to each atom with 
center ci and van der Waals radius ri. When the 
radius of the given solvent probe is d, the offset 
surface of M with offset distance d can be 
considered as a boundary surface of Md: 

Md = { Bd
i | 0 ≤ i < n }, 

where Bd
i = B(ci, ri + d) corresponds to the d-offset 

of Bi. We also define Sd
i as follows:  

S
d
i = S(ci, ri + d). 

When we partition the bounding box of Md, Xd, 
into nx × ny × nz voxels, the bounding box can be 
represented as a set of voxels as follows: 

V = { Vαβγ | 0 ≤ α < nx, 0 ≤  β < ny, 0 ≤ γ < nz}. 
For each ball Bi

d in M, we find every voxel Vαβγ it 
intersects, and then add Bi

d to Vαβγ.balls: 

Vαβγ.balls = { Bi
d  | Bi

d ∩ Vαβγ.box ≠ ∅ }, 
where Vαβγ.box represents the voxel area. By using 
the voxel map V, we can efficiently determine 
whether or not the points embedded in S

d
i are 

contained in the offset surface of M. For a point p ∈ 
S

d
i, if there is a ball B

d
j, i ≠ j, which includes p 

inside, then p is not embedded in the offset surface 
of M . In Fig.2 (a), the offset of each atom (dashed 
curve) is represented as a solid curve. The sample 
points from the offset of each atom are shown as 
dots. After removing the sample points that are 
inside other atoms, we can extract the sample points 
embedded in the offset surface of the molecule 
(Fig.2 (b)). 

The functions used to construct the voxel map 
and determine whether each sample point on a 
sphere, Sd

i  is embedded in the offset surface of M  
are both accelerated using GPU. The algorithm 
details are presented in Algorithm 2. 

 

  

(a) (b) 
 

Fig.2 Sample points on offset surface of atoms 
 

Algorithm 2: Sampling the Points on SAS 
function SamplingOffset (M, Xd) 
Begin 

 

/* CPU code */ 
FP = ∅; 
 

/* GPU kernel call (Input: M and Vαβγ, Output: Vαβγ.balls) */ 
For each Bi

d ∈ Md, 0 ≤ i < n, do in parallel     

Vαβγ.balls = { Bi
d  | Bi

d ∩ Vαβγ.box ≠ ∅ }; 

/* GPU kernel call (Input: M and Vαβγ, Output: Pi
d) */ 

For each Bi
d ∈ Md, 0 ≤ i < n, do in parallel    

Generate Pi
d = { Sample points on Si

d}; 
/* GPU kernel call (Input: Pi

d
  and Vαβγ, Output: FP) */ 

For each q ∈ Pi
d, 0 ≤ i < n, do in parallel  

For each Bj
d  ∈ Vαβγ

.balls, where Vαβγ.balls contains  
Bi

d, i ≠ j , do 
if q ∩ Bj

d ≠ ∅ then 
       Remove q from Pi

d; 
else  

       add q to FP; 



  
Byungjoo Kim, Ku-Jin Kim, and Joon-Kyung Seong 

 

 

188

end 

 
/* CPU code */ 
return FP; 
End. 

 

 

 

3.3 Construction of kd-tree for sample points on 

offset surface 
The bounding box X

d of a point set FP is the 
smallest axially aligned box that contains all the 
points in FP. The initial box is subdivided until the 
number of points contained in a box Xd is less than 
or equal to a threshold m. Each subdivision is 
constructed by a splitting plane which is orthogonal 
to the axis A that corresponds to the longest side of 
the current box. The splitting plane passes through 
the median of the points aligned along axis A. 
Algorithm 3 shows the algorithm used to construct a 
kd-tree on the point set FP. Fig.3 shows an example 
of kd-tree construction for a set of points. 
 
Algorithm 3: Construct a kd-tree for the sample points  
         on the offset surface  
Function ConstructKdTree(FP, Xd) 
Input:  FP; /* A set of points on the offset surface of M */ 
  
Begin 

if FP contains fewer than m points then return; 
new node; 
A := axis corresponding to the largest dimension of  
 X

d, where Xd is the bounding box of FP;  
P := plane that orthogonally cuts axis A at the median  

of the point positions in Xd; 
Subdivide FP into two sets SL and SR by the point  
positions with respect to P; 
node.lChild := ConstructKdTree (SL); 
node.rChild := ConstructKdTree (SR); 
return node; 

End  

 

Fig.3 Example of kd-tree construction 
 
3.4 Extracting SES 

The marching cube algorithm [11] is widely 
used for extracting a polygonal mesh that 
approximates an iso-surface from a 3-dimensional 
scalar field. It uses a divide-and-conquer approach 
to find the cuboids that contain the iso-surface. It 

determines the type of intersection between the 
surface and the cuboids by computing the data 
values given to each vertex of the cuboid, and then 
the final topology of the surface in each cuboid is 
determined.  

Here, a GPU-accelerated marching-cube 
algorithm [22] is used to extract the SES, where the 
whole space is partitioned into uniform size cuboids 
and the data value for each vertex of the cuboids is 
evaluated in parallel. The type of intersection 
between a surface and the cuboids is also evaluated 
in parallel.  

When p is an arbitrary point, the distance from p 
to FP can be computed using function Dist(p, Td) in 
Algorithm 4. Let us partition the bounding box X 
into a set of small boxes X

abc. When we label the 
eight corners of the bounding box Xabc as vi, i = 1, 2, 
… , 8 (see Fig.4), the distances from each vertex vi 
to FP can be computed using Dist (vi, T

d). Let di = 
Dist (vi, T

d), then, we can store a scalar value si = di 
– d for each vertex. We use si   for each vertex as the 
data value assigned to the marching cube algorithm. 
Since vi always contains si = di – d, it effectively 
represents the signed distance as a distance field. 
Finally, for each box Xabc, the SES is constructed as 
a linear approximation of the zero-level iso-surface 
of the distance field.  

Fig.4 shows an example of computing the 
distance field, where each dashed circle represents 
an original atom. The sample points around the 
atoms are used to approximate the offset surface of 
the atoms. Some voxels are shown as rectangles 
with the signs of si = di – d values, where di is 
computed as the distance to the closest sample point 
from each vertex. The marching cube algorithm 
decides that a voxel that has vertices with the same 
sign does not contain the SES. Otherwise, it extracts 
the SES by linearly interpolating the si values at the 
vertices. 
 

Algorithm 4: Distance from a spatial point to sample  
         point-set FP 
function Dist (p, T) 
begin 

if T is a leaf node then 
return Min(Dist(p, qi)) for all qi in T; 

else begin 

Let T1 point to the child of T that contains p, and  
T2 point to the other; 
MinDist = Dist (p, T1); 
if any part in the bounding box of T2 is within a  
distance MinDist from p then 

return Min(MinDist, Dist (p, T2)); 
else 



 
Byungjoo Kim, Ku-Jin Kim, and Joon-Kyung Seong  

 

 

189

return MinDist; 
end 

end 

 

 

 

 

 

 

Fig.4 Computation of distance field for set of sample 
points on offset surface 

 

4. Experimental Results 
The proposed algorithm was implemented using 

Microsoft Visual C++, and its effectiveness 
assessed based on experiments using a PC with an 
Intel i5 2.8GHz CPU, Nvidia GeForce GTX590 
graphic card, and 4Gbytes of memory. Nineteen 
protein molecule examples were tested, which are 
downloaded from the Protein Data Bank (PDB) 
website. The GPU algorithm was implemented 
using CUDA [23]. 

The SES of a protein molecule was computed 
using its default alignments and orientations in the 
PDB file. The radius of the given probe solvent was 
assumed to be 1.4Å, representing the radius of a 
water molecule. The atoms were represented by 
spheres using their van der Waals radii [1]. The 
experimental results for the sample sets of the 19 
test cases are shown in Table.1. The first column, 
PDB ID, shows the identification code in the PDB, 
the second column indicates the number of atoms 
(except hydrogen) in the protein, and the third 
column shows the SES computation time in 
milliseconds.  

Computation time (ms) 

PDB id. 
Number 
of atoms 

Number of 
triangles in 

SES 

Sample 
offset of 

M 

Construct 
kd tree 

Marching 
cube 

Render Total 

110D 120 15,168 3.79 3.82 1.74 16 25.35 

200D 259 21,340 5.01 7.61 2.25 16 30.87 

1QL1 322 16,676 5.01 5.74 2.07 16 28.82 

4PTI 381 23,844 5.79 6.36 3.09 16 31.24 

1BK2 468 32,808 6.16 6.11 4.22 16 32.49 

2QZF 479 31,060 5.89 7.01 3.75 16 32.65 

2QZD 507 27,760 5.78 7.58 3.11 16 32.47 

2OT5 545 30,752 5.45 10.12 3.18 16 34.75 

1HH0 691 18,860 6.42 8.03 2.26 16 32.71 

1HGV 691 16,788 6.44 9.07 2.25 16 33.76 

1HGZ 691 18,664 6.26 9.57 2.24 16 34.07 

2INS 781 35,584 5.93 9.84 4.09 16 35.86 

1QL2 966 24,388 5.24 24.82 2.29 16 48.35 

1IZH 1,521 39,744 6.33 20.35 4.59 16 47.27 

1GT0 2,746 49,808 6.85 62.77 4.01 16 89.63 

1BIJ 4,387 64,424 10.66 64.89 6.14 16 97.69 

1G50 5,886 45,684 12.16 79.01 5.09 16 112.26 

168L 6,449 58,516 12.74 104.59 6.74 16 140.07 

1QGK 7,231 59,984 13.82 106.16 5.86 16 141.84 

average 1,848 33,255 7.14 29.13 3.63 16 55.90 
 

Table.1 SES computation when using 26×26×26 voxels 



  
Byungjoo Kim, Ku-Jin Kim, and Joon-Kyung Seong 

 

 

190

 

 

 

Computation time (ms) 

PDB id. 
Number 
of atoms 

Number of 
triangles in 

SES 

Sample 
offset of 

M 

Construct 
kd tree 

Marching 
cube 

Render Total 

110D 120 62,280 3.79 3.82 5.64 16 29.25 
200D 259 87,524 5.01 7.61 8.72 16 37.34 
1QL1 322 70,096 5.01 5.74 6.52 16 33.27 
4PTI 381 101,748 5.79 6.36 11.03 16 39.18 
1BK2 468 139,564 6.16 6.11 17.44 16 45.71 
2QZF 479 131,476 5.89 7.01 14.63 16 43.53 
2QZD 507 118,060 5.78 7.58 12.23 16 41.59 
2OT5 545 129,728 5.45 10.12 11.24 16 42.81 
1HH0 691 79,380 6.42 8.03 7.58 16 38.03 
1HGV 691 70,800 6.44 9.07 6.84 16 38.35 
1HGZ 691 79,064 6.26 9.57 7.33 16 39.16 
2INS 781 154,036 5.93 9.84 16.87 16 48.64 
1QL2 966 102,524 5.24 24.82 9.31 16 55.37 
1IZH 1,521 176,308 6.33 20.35 17.55 16 60.23 
1GT0 2,746 218,244 6.85 62.77 15.97 16 101.59 
1BIJ 4,387 288,676 10.66 64.89 26.96 16 118.51 
1G50 5,886 207,860 12.16 79.01 20.76 16 127.93 
168L 6,449 265,064 12.74 104.59 28.97 16 162.30 

1QGK 7,231 273,404 13.82 106.16 25.23 16 161.21 

average 1,848 145,044 7.14 29.13 14.25 16  66.53 

Table.2 SES computation when using 27×27×27 voxels 

 
Fig.5 Graph of computation time according to number of atoms 

 
As shown in Table.1, in 19 experiments with up 

to 7,231 spheres, when dividing the bounding box 
of each molecule into 26×26×26 voxels, the SES was 
obtained in 55.9 ms on average.  Table.2 shows the 
case when using 27×27×27 voxels, where the SES 
was obtained in 66.53 ms on average. The graph in 
Fig.5 shows the computation time changes 
according to the number of atoms. The CUDA-
based implementation can be used in an interactive 

manner. Fig.6 shows some examples of the SES 
generated using the proposed method. Fig.6 (a) and 
Fig.6 (b) show the molecule represented as a set of 
spheres and its SES, respectively. 

To our knowledge, there has been no previous 
attempt to compute the SES using graphics 
hardware; thus, the performance of the proposed 
algorithm was compared with the previous work by 
Dias and Gomes [6] that computes the Blinn 



 
Byungjoo Kim, Ku-Jin Kim, and Joon-Kyung Seong  

 

 

191

molecular surface based on CUDA. The Blinn 
molecular surface is computed by representing the 
molecular surface as an implicit function that is the 
summation of local functions that describe the 
electrical field of the atoms. Although the surfaces 
generated by the algorithm in [6] and the proposed 
algorithm are different, a rough comparison is made 
of the performances of these algorithms.  Usually 
the performance of an algorithm implemented with 
CUDA greatly depends on the optimization, so 
rather than implementing their code, the 
experimental results shown in [6] are compared 
with ours under an environment equipped with the 
same graphic card (Nvidia GeForce GTX 280). We 
used 27×27×27 voxels and 1.4Å as the radius of the 
solvent probe in this experiment. Table.3 compares 
the performance of the algorithm suggested in [6] 
and the proposed algorithm. Except for a small 
number of atoms as the input, the proposed 
algorithm showed a better performance in almost all 
cases that was ten times faster on average compared 
to the method in [6]. 
 

5  Conclusion 
This paper presented an interactive-time 

algorithm to compute the SES of a protein molecule 
that is both easy to implement and robust in 
numerical errors. By using data parallel scheme 
provided by graphics hardware, the proposed 
algorithm generates an SES in interactive time. As 
regards user-specified accuracy limits, the proposed 
algorithm computes the SES with a resolution of 
(1/27)3 of the original bounding box in 66.53 
milliseconds on average for an average of 1,848 
atoms. In further studies, the proposed algorithm 
will be improved to allow more sophisticated 
control of the resolution of the SES by adaptive 
construction of the voxel map and distance field, 
along with the development of interactive-time 
algorithms for molecular docking and drug design. 
 

Acknowledgements 
This research was supported by Basic Science Research 
Program through the National Research Foundation of 
Korea (NRF) funded by the Ministry of Education, 
Science and Technology (grant number 2011-0004094). 

 

 

 

 

 

 



  
Byungjoo Kim, Ku-Jin Kim, and Joon-Kyung Seong 

 

 

192

 

 

 
(a)  (b) 

Fig.6 The molecule and its SES for the molecules (PDB id: 2QZD, 1IZH, and 1BIJ  
from top to bottom) with the solvent probe of radius 1.4Å 

Algorithm in [6]  Our algorithm 

CPU: Intel Quad Core Q9550 
2.83 GHz 
RAM: 1Gbytes 
GPU: Nvidia GeForce GTX 280 

CPU: AMD AthlonII X4 
3.0GHz 
RAM: 8Gbytes 
GPU: Nvidia GeForce GTX 280 

PDB id. 

Number 
of 
atoms 

# of 
Voxels 

# of 
triangles T.D 

# of 
Voxels 

# of 
triangles T.O 

Speedup 
(T.D/ 
T.O) 

110D 120 232,960 8,520 30 2,097,152 62,280 58.78 0.51 

200D 259 386,560 17,794 60 2,097,152 87,524 65.72 0.91 

1QL1 322 960,640 23,948 100 2,097,152 70,096 70.26 1.42 

4PTI 381 654,336 27,820 120 2,097,152 101,748 80.69 1.49 

1BK2 468 410,368 28,424 100 2,097,152 139,564 95.82 1.04 

2QZF 479 2,057,984 31,972 250 2,097,152 131,476 84.03 2.98 

2QZD 507 2,268,928 32,952 310 2,097,152 118,060 78.87 3.93 

2OT5 545 707,072 40,564 140 2,097,152 129,728 82.01 1.71 

1HH0 691 999,808 33,586 200 2,097,152 79,380 82.76 2.42 

1HGV 691 1,184,640 34,058 230 2,097,152 70,800 84.38 2.73 

1HGZ 691 985,856 33,026 200 2,097,152 79,064 83.89 2.38 

2INS 781 808,192 44,400 250 2,097,152 154,036 95.72 2.61 

1QL2 966 2,666,752 72,858 750 2,097,152 102,524 100.72 7.45 

1IZH 1521 1,514,240 82,512 780 2,097,152 176,308 120.62 6.47 

1GT0 2746 3,244,160 148,788 2,890 2,097,152 218,244 168.05 17.20 

1BIJ 4387 4,882,944 212,604 6,200 2,097,152 288,676 194.18 31.93 

1G50 5886 7,552,640 258,236 7,400 2,097,152 207,860 212.94 34.75 

168L 6449 6,175,872 307,932 9,300 2,097,152 265,064 256.23 36.30 

1QGK 7231 7,012,736 335,544 10,800 2,097,152 273,404 267.97 40.30 

Average 1,848 2,352,984 93449 2,111 2,097,152 145,044 120.19 10.45 

T.D: computation time (ms) for the algorithm suggested in [6] 
T.O: computation time (ms) for our algorithm 

 

Table.3 Comparison of the algorithm in [6] and our algorithm 
 



Appl. Math. Inf. Sci. 6 No. 1S pp. 185S-194S (2012)  

References 
[1] Bondi, A.: Van der Waals Volumes and Radii. The Journal 

of Physical Chemistry 68 (3) (1964) 441–451. 

[2] Can, T., Chen, C.I., and Wang, Y.F.: Efficient molecular 

surface generation using level-set methods. J. of Molecular 

Graphics and Modeling 25 (4) (2006) 442-454. 

[3] Chavent, M., Levy, B., and Maigret, B.: Metamol: High-

quality visualization of molecular skin surface. Journal of 

Molecular Graphics and Modelling 27 (2) (2008) 209–216. 

[4] Connolly, M.L.: Analytical molecular surface calculation. 

J. Appl. Crystallogr. (1983) 548-558. 

[5] Connolly, M.L.: Solvent-accessible surfaces of proteins 

and nucleic acids. Science 221 (1983) 709-713. 

[6] Dias, S. E. and Gomes, A. J.: Graphics processing unit-

based triangulations of Blinn molecular surfaces. 

Concurrency and Computation: Practice and Experience. 

doi: 10.1002/cpe.1783 (online version) (2011) 

[7] Jones, M. W., Bærentzen, J. A., Sramek, M.: 3D Distance 

Fields: A Survey of Techniques and Applications. IEEE 

Transactions on Visualization and Computer Graphics. 

(2006) 581-599. 

[8] Juba, D. and Varshney, A.: Parallel, stochastic 

measurement of molecular surface area. Journal of 

Molecular Graphics and Modeling 27 (2008) 82-87. 

[9] Krone, M., Bidmon, K., and Ertl, T.: Interactive 

visualization of molecular surface dynamics. IEEE 

Transactions on Visualization and Computer Graphics 15 

(6) (2009) 1391–1398.   

[10] Lindow, N., Baum, D., Prohaska, S., and Hege, H.C.: 

Accelerated visualization of dynamic molecular surfaces. 

Computer Graphics Forum 29 (3) (2010) 943–952. 

[11] Lorensen, W. E. and Cline, H. E.: Marching Cubes: A high 

resolution 3D surface construction algorithm. Computer 

Graphics  21 (4) (1987) 163-169. 

[12] Nicholls, A., Sharp, K., and Honig, B.: Protein folding and 

association: insights from the interfacial and 

thermodynamic properties of hydrocarbons. Proteins 11 

(4) (1991) 281-296. 

[13] Nicholls, A.: GRASP: Graphical Representation and 

Analysis of Surface Properties. Columbia University, New 

York (1992). 

[14] Park, T., Lee, S. –H., Kim, J. -H., and Kim, C. -H.: 

CUDA-based Signed Distance Field Calculation for 

Adaptive Grids. 10th IEEE International Conference on 

Computer and Information Technology (2010). 

[15] Pettersen, E. F., Goddards, T. D., Huang, C. C., Couch, G. 

S., Greenblatt, D. M., Meng, E. C., and Ferrin, T. E.; 

UCSF chimera: a visualization system for exploratory 

research and analysis. J. Comput. Chem. 25 (13) (2004) 

1605-1612. 

[16] Ryu, J., Park, R., and Kim, D. -S.: Molecular surfaces on 

proteins via beta shapes. Computer-Aided Design 39 

(2007) 1042-1057. 

[17] Sanner, M. F., Spehner, J. C., and Olson, A. J.: Reduced 

surface: an efficient way to compute molecular surfaces. 

Biopolymers 38 (3) (1996) 305-320. 

[18] Sud, A., Otaduy, M. A. and Manocha, D.: DiFi: Fast 3D 

Distance Field Computation Using Graphics Hardware. 

Computer Graphics Forum 23(3) (2004) 557-566. 

[19] Sud, A., Govindaraju, N. K., Gayle, R. and Manocha, D.: 

Interactive 3D Distance Field Computation Using Linear 

Factorization. ACM SIGGRAPH Symposium on 

Interactive 3D Graphics and Games (I3D) (2006). 

[20] Totrov, M. and Abagyan, R.: The contour-buildup 

algorithm to calculate the analytical molecular surface. J. 

Struct. Biol. 115 (1996) 1–6. 

[21] Chimera website  http://www.cgl.ucsf.edu/chimera/ 

[22] Marching cube algorithm as a CUDA SDK 

(http://developer.nvidia.com/cuda-toolkit-sdk) 

[23] Nvidia CUDA website (http://developer.nvidia.com) 

 

 
ByungJoo Kim is currently a Ph.D. 
candidate in the Graduate School of 
Electronics at Kyungpook National 
University, Korea. He received his B.S. 
and M.S. degrees in Electronics from 
Kyungpook National University. From 
2006 to 2009, he was a senior research 
engineer at HUONE Co., Ltd. In 2010, 

he was a senior research engineer at LG Electronics Co., 
Ltd. His research interests include computer graphics, 
computer vision, and geometric/surface modeling. 
 

Ku-Jin Kim is an Associate Professor 
in the School of Computer Science & 
Engineering at Kyungpook National 
University, Korea. Her research 
interests include computer graphics, 
computer vision, and geometric/surface 
modeling. Prof. Kim received her BS 

degree from Ewha Womans University in 1990, MS 
degree from KAIST in 1992, and Ph.D. degree from 



  
Byungjoo Kim, Ku-Jin Kim, and Joon-Kyung Seong 

 

 

194

POSTECH in 1998, all in Computer Science. She was a 
PostDoctoral fellow at Purdue University in 1998-2000. 
Prof. Kim also held faculty positions at Ajou University, 
Korea and the University of Missouri, St. Louis, USA. 
 

Joon-Kyung Seong is an Assistant 
Professor in the School of Computer 
Science and Engineering at Soongsil 
University, Korea. His research 
interests include computer graphics, 
geometric modeling, and 
computational brain imaging. Prof. 
Seong received his B.S. and Ph.D. 

degrees from Seoul National University in 2000 and 
2005, respectively. He was a Postdoctoral fellow in the 
School of Computing at the University of Utah from 
2005 to 2008. After that he was a Research Professor in 
the Department of Computer Science at KAIST. 
 
 
 
 
 
 
 
 
 
 
 


