A new class of Conjugate Gradient Methods with extended Nonmonotone Line Search

Hailin Liu ${ }^{1}$ and Xiaoyong Li 2
${ }^{1}$ School of Computer Science,Guangdong Polytechnic Normal University,Guangzhou, Guangdong 510665, P. R. China
${ }^{2}$ Laboratoire Collisions Agrgats Ractivit, Universit Paul Sabatier, 31062 Toulouse Cedex 09, France

Received: Apr 17, 2011; Revised Jul 21, 2011; Accepted Aug 4, 2011
Published online: 1 January 2012

Abstract

In this paper, we propose a new nonlinear conjugate gradient method for large-scale unconstrain optimization which possesses the following properties:(i)the sufficient descent condition $-g_{k}^{T} d_{k} \geq \frac{7}{8}\left\|g_{k}\right\|^{2}$ holds without any line searches;(ii) With exact line search, this method reduces to a nonlinear version of the Liu-Storey conjugate gradient scheme.(iii)Under some assumption, global convergence of this method is proved with a new nonmonotone line search.Preliminary numerical results show that this method is very efficient.

Keywords: Conjugate gradient, Sufficient descent, Hybrid method, Unconstrained optimization.

1. Introduction

Consider

$$
\begin{equation*}
\min _{x \in R^{n}} f(x) \tag{1}
\end{equation*}
$$

where $f: R^{n} \longrightarrow R$ is a smooth nonlinear function and its gradient g is avaiable.Nonlinear conjugate gradient method is well suited for solving large scale problems,its iterative formula is given by

$$
\begin{gather*}
x_{k+1}=x_{k}+\alpha_{k} d_{k} \tag{2}\\
d_{k}=\left\{\begin{array}{l}
-g_{k}, \\
-g_{k}+\beta_{k} d_{k-1}, \\
\text { for } k=1 ;
\end{array} \text { for } k \geq 2,\right. \tag{3}
\end{gather*}
$$

where $g_{k}=\nabla f\left(x_{k}\right), d_{k}$ is the search direction, α_{k} is a step-size obtained by a one-dimensional line search and β_{k} is a scalar.There are many formulas have been proposed to compute the scalar β_{k} for α_{k} is not the exact onedimensional minimizer in practice and f is not a quadratic function.Among them,four well-known formulas for β_{k} are called the Hestense-Stiefel (HS)([1]), Flether-Reeves (FR) ([2]), Polak-Ribi. e olyak (PRP)([3]), Conjugate-Descent (CD)([4]), Liu-Storey(LS) ([5]), Dai-Yuan(DY)([6]) and Hager-Zhang (HZ)([7]) formulas are given by

$$
\begin{equation*}
\beta_{k}^{H S}=\frac{g_{k}^{T} y_{k-1}}{d_{k-1}^{T} y_{k-1}} \tag{4}
\end{equation*}
$$

$$
\begin{gather*}
\beta_{k}^{F R}=\frac{\left\|g_{k}\right\|^{2}}{\left\|g_{k-1}\right\|^{2}} \tag{5}\\
\beta_{k}^{P R P}=\frac{g_{k}^{T} y_{k-1}}{\left\|g_{k-1}\right\|^{2}} \tag{6}\\
\beta_{k}^{C D}=\frac{\left\|g_{k}\right\|^{2}}{-g_{k-1}^{T} d_{k-1}} \tag{7}\\
\beta_{k}^{L S}=\frac{g_{k}^{T} y_{k-1}}{-g_{k-1}^{T} d_{k-1}} \tag{8}\\
\beta_{k}^{D Y}=\frac{\left\|g_{k}\right\|^{2}}{d_{k-1}^{T} y_{k-1}} \tag{9}\\
\beta_{k}^{H Z}=\frac{g_{k}^{T} y_{k-1}}{d_{k-1}^{T} y_{k-1}}-2 g_{k}^{T} d_{k-1} \frac{\left\|y_{k-1}\right\|^{2}}{\left(d_{k-1}^{T} y_{k-1}\right)^{2}} \tag{10}
\end{gather*}
$$

respectively ,where $y_{k-1}=g_{k}-g_{k-1}$ and $\|$.$\| means the$ Euclidean norm.

In the already-existing convergence analysis and implementations of the conjugate gradient method,the extended strong Wofle line search,namely

$$
\begin{equation*}
f\left(x_{k}+\alpha_{k} d_{k}\right)-f\left(x_{k}\right) \leq \delta \alpha_{k} g_{k}^{T} d_{k} \tag{11}
\end{equation*}
$$

[^0]\[

$$
\begin{equation*}
\sigma_{1} g_{k}^{T} d_{k} \leq g\left(x_{k}+\alpha_{k} d_{k}\right)^{T} d_{k} \leq-\sigma_{2} g_{k}^{T} d_{k} \tag{12}
\end{equation*}
$$

\]

the extended nonmonotone line search,namely (1.12) and

$$
\begin{equation*}
f\left(x_{k}+\alpha_{k} d_{k}\right)-\max _{0 \leq j \leq m(k)} f\left(x_{k-j}\right) \leq \delta \alpha_{k} g_{k}^{T} d_{k} \tag{13}
\end{equation*}
$$

where $m(k)=\min \left\{m(k-1)+1, M_{0}\right\}, m(0)=1,0<$ $\delta \leq \sigma_{1}<1,0<\sigma_{2}<1$ and $M_{0} \in N$.

In addition,the sufficient descent condition ,namely,

$$
\begin{equation*}
-g_{k}^{T} d_{k} \geq c\left\|g_{k}\right\|^{2} \tag{14}
\end{equation*}
$$

has often been used in the literature to analyze the global convergence of conjugate gradient methods with inexact line searches, where c is a positive constant.

The convergence behaviors of (1.4),(1.5),(1.6)and (1.7) with some line search conditions have been studied by many authors for many years.Al-Baali [8] proved the global convergence of FR method with the strong Wolfe line search. Liu et al. [9] and Dai and Yuan [10] extended this result to $\sigma=\frac{1}{2}$. Although, in practical computation, the PRP method is generally believed to be the most efficient conjugate gradient method. However, Powell[11] constructed a counter example and showed that the PRP method can circle infinitely without approaching the solution, which implies that this method is not globally convergent for general functions. But the $\operatorname{PRP}+\left(\beta_{k}^{P R P+}=\max \left\{0, \beta_{k}^{P R P}\right\}\right)$ method with the Wolfe line search is globally convergent when the sufficient descent condition (1.11) is given,the HS method is very familiar with the PRP method.The DY method with the Wolfe and the strong Wolfe line search is globally convergent without the descent condition, but the descent property of the DY method depends on line search or convexity of the objective function.

In[12], the authors propose a nonmonotone Newton method, and analyze its convergence. Lucidi and Roma [15] present a nonmonotone algorithm of FR method in 1995.G. H. Liu, L. L. Jing, L. X. Han, and D. Han [14] introduce a class of nonmonotone conjugate gradient methods, this class of nonmonotone conjugate gradient methods is proved to be globally convergent when it is applied to solve unconstrained optimization problems with convex objective functions.In our paper we presented a new class of nonmonotone conjugate gradient methods which is globally convergent when it is applied to solve unconstrained optimization problems with general objective functions.

Motivated by the observation of the above ideas, we design our new conjugate gradient method as follows:

$$
\begin{gather*}
x_{k+1}=x_{k}+\alpha_{k} d_{k} \tag{15}\\
d_{k}=\left\{\begin{array}{l}
-g_{k}, \quad \text { for } k=1 ; \\
-g_{k}+\beta_{k} d_{k-1}, \\
\text { for } k \geq 2,
\end{array}\right. \tag{16}
\end{gather*}
$$

where

$$
\begin{equation*}
\beta_{k}^{N}=\frac{g_{k}^{T} y_{k-1}}{-g_{k-1}^{T} d_{k-1}}-2 g_{k}^{T} d_{k-1} \frac{\left\|y_{k-1}\right\|^{2}}{\left(-g_{k-1}^{T} d_{k-1}\right)^{2}} \tag{17}
\end{equation*}
$$

with exact line search, we can get that $g_{k}^{T} d_{k-1}=0$,so the N method reduce to LS method.the stepsize α_{k} satisfies the following new nonmonotone line search conditions

$$
\begin{align*}
& \delta \alpha_{k} g_{k}^{T} d_{k} \\
& \geq f\left(x_{k}+\alpha_{k} d_{k}\right)-\lambda \max _{0 \leq j \leq m(k)} f\left(x_{k-j}\right) \\
&-(1-\lambda) \min _{0 \leq j \leq m(k)} f\left(x_{k-j}\right) \tag{18}\\
& \sigma_{1} g_{k}^{T} d_{k} \leq g\left(x_{k}+\alpha_{k} d_{k}\right)^{T} d_{k} \leq-\sigma_{2} g_{k}^{T} d_{k} \tag{19}
\end{align*}
$$

where $m(k)=\min \left\{m(k-1)+1, M_{0}\right\}, m(0)=1,0<$ $\delta \leq \sigma_{1}<1,0<\sigma_{2}<1,0 \leq \lambda \leq 1$ and $M_{0} \in N$.The new nonmonotone line search can be viewed as some kind of convex combination of the extended strong Wofle line search and the extended nonmonotone line search, when $\lambda=0$ the new nonmonotone line search reduce to the extended strong Wofle line search, and when $\lambda=1$ the new nonmonotone line search reduce to the extended nonmonotone line search.

This paper is organized as follows.We will present a new algorithm (Algorithm 2.3), and the sufficient descent property (1.14) of Algorithm 2.2 is also given in the next section. In section 3 the global convergence results of the N method are established.At last the preliminary numerical results are reported.

2. New Algorithm

Throughout our paper, we assume that $g_{k} \neq 0$ for all k, for otherwise a stationary point has been found.Furthermore, in order to establish the global convergence result for the new algorithm, we give the following basic assumption on the objective function.
Assumption 2.1(i)The level set $\Omega=\left\{x \in R^{n}: f(x) \leq\right.$ $\left.f\left(x_{1}\right)\right\}$ is bounded, where x_{1} is the starting point.(ii) $f(x)$ is strongly convex and Lipschitz continuous on Ω.

If f satisfies Assumption 2.1(i) and (ii), we can get that

$$
\begin{equation*}
\|g(x)\| \leq \bar{\gamma}, \text { for all } x \in \Omega \tag{1}
\end{equation*}
$$

where $\bar{\gamma}$ is a positive constant.
If f satisfies Assumption 2.1(ii), we can get that in some neighborhood \mathcal{N} of Ω, f is differentiable and its gradient g is Lipschitz continuous, namely, there exists constants $L>0$ and $\mu>0$ such that for any $x, x^{\prime} \in \mathcal{N}$

$$
\begin{equation*}
\left\|g(x)-g\left(x^{\prime}\right)\right\| \leq L\left\|x-x^{\prime}\right\| \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu\left\|x-x^{\prime}\right\|^{2} \leq\left(g(x)-g\left(x^{\prime}\right)\right)^{T}\left(x-x^{\prime}\right) \tag{3}
\end{equation*}
$$

Now we give the following theorem, which illustrates that the formula (1.10) possesses the sufficient descent condition without any line searches.

Theorem 2.2 Consider any method (1.2) and (1.3), where $\beta_{k}=\beta_{k}^{N}$.Then for all $k \geq 1$

$$
\begin{equation*}
-g_{k}^{T} d_{k} \geq \frac{7}{8}\left\|g_{k}\right\|^{2} \tag{4}
\end{equation*}
$$

Proof.Since $d_{0}=-g_{0}$, we have $-g_{0}^{T} d_{0}=\left\|g_{0}\right\|^{2}$, which satisfies (2.4).Multiplying (1.3) by g_{k}^{T} we have

$$
\begin{equation*}
-g_{k}^{T} d_{k}=\left\|g_{k}\right\|^{2}-\beta_{k} g_{k}^{T} d_{k-1} \tag{5}
\end{equation*}
$$

when $\beta_{k}=\beta_{k}^{N}$ we can get that

$$
\begin{align*}
& -g_{k}^{T} d_{k}=\left\|g_{k}\right\|^{2}-g_{k}^{T} d_{k-1}\left(\frac{g_{k}^{T} y_{k-1}}{-g_{k-1}^{T} d_{k-1}}\right. \\
& \left.-2 g_{k}^{T} d_{k-1} \frac{\left\|y_{k-1}\right\|^{2}}{\left(-g_{k-1}^{T} d_{k-1}\right)^{2}}\right) \\
& =\left(\left\|g_{k}\right\|^{2}\left(-g_{k-1}^{T} d_{k-1}\right)^{2}-g_{k}^{T} d_{k-1} g_{k}^{T} y_{k-1}\left(-g_{k-1}^{T} d_{k-1}\right)\right. \\
& \left.+2\left(g_{k}^{T} d_{k-1}\right)^{2}\left\|y_{k-1}\right\|^{2}\right) /\left(-g_{k-1}^{T} d_{k-1}\right)^{2} \tag{6}
\end{align*}
$$

we apply the inequality

$$
u^{T} v \leq \frac{1}{2}\left(\|u\|^{2}+\|v\|^{2}\right)
$$

to the second term in (2.6) with

$$
u=\frac{1}{2} g_{k}\left(-g_{k-1}^{T} d_{k-1}\right), v=2\left(g_{k}^{T} d_{k-1}\right) y_{k-1}
$$

Therefore, we can get that (2.4) is true for all $k \in N$.
Now we can present a new descent conjugate gradient method as follows:

Algorithm 2.3

step1:Given $x_{1} \in R^{n}, \varepsilon \geq 0,0<\delta \leq \sigma_{1}<1,0<$ $\sigma_{2}<1,0 \leq \lambda \leq 1, M_{0} \in N$, set $d_{1}=-g_{1}, k:=1$, if $\left\|g_{1}\right\| \leq \varepsilon$, then stop.
step2:Find a $\alpha_{k} \geq 0$ by (1.18) and (1.19).
step3:Let $x_{k+1}=x_{k}+\alpha_{k} d_{k}$ and $g_{k+1}=g\left(x_{k+1}\right)$ If $\left\|g_{k+1}\right\| \leq \varepsilon$, then stop.
step4:Compute $\beta_{k}=\beta_{k}^{N}$ by the formula (1.17) and generate d_{k+1} by (1.16).
step5:Set $\mathrm{k}:=\mathrm{k}+1$, go to step2.
Lemma 2.4 Suppose that Assumption 2.1 holds and α_{k} is obtained by the new Nonmonotone line search (1.18) and (1.19).Then there exists $c_{1}>0$, such that

$$
\begin{equation*}
\left\|s_{k}\right\| \geq \frac{c_{1}\left(-g_{k}^{T} d_{k}\right)}{\left\|d_{k}\right\|} \tag{7}
\end{equation*}
$$

where $s_{k}=x_{k+1}-x_{k}$.
Proof.From Assumption 2.1 we can get that g is Lipschitz continuous in some neighborhood \mathcal{N} of Ω, namely, there exists a constant $L>0$, such that for any $x, x^{\prime} \in \mathcal{N}$

$$
\begin{equation*}
\left\|g(x)-g\left(x^{\prime}\right)\right\| \leq L\left\|x-x^{\prime}\right\| \tag{8}
\end{equation*}
$$

that is $\left\|y_{k}\right\| \leq L\left\|s_{k}\right\|$, so we have

$$
\begin{equation*}
y_{k}^{T} d_{k} \leq L\left\|s_{k}\right\|\left\|d_{k}\right\| \tag{9}
\end{equation*}
$$

and from (1.19) we can get that

$$
\begin{equation*}
y_{k}^{T} d_{k}=d_{k}^{T}\left(g_{k+1}-g_{k}\right) \geq\left(1-\sigma_{1}\right)\left(-g_{k}^{T} d_{k}\right) \tag{10}
\end{equation*}
$$

Thus, from (2.9) and (2.10) we obtain

$$
\begin{equation*}
\left\|s_{k}\right\| \geq \frac{1-\sigma_{1}}{L} \frac{-g_{k}^{T} d_{k}}{\left\|d_{k}\right\|} \tag{11}
\end{equation*}
$$

let $c_{1}=\frac{1-\sigma_{1}}{L}$ and from (2.11), we obtain (2.7).Therefore, our proof is complete.
Lemma 2.5 Suppose that assumption 2.1 holds, α_{k} is given by (1.18) and (1.19), and $\beta_{k}=\beta_{k}^{N}$. Then there exists a positive constant $M=\frac{L^{2}}{\mu}$ such that

$$
\begin{equation*}
\frac{\left\|y_{k}\right\|^{2}}{y_{k}^{T} s_{k}} \leq M \tag{12}
\end{equation*}
$$

Proof.By the convexity assumption, we have

$$
\begin{equation*}
y_{k}^{T} d_{k}=d_{k}^{T}\left(g_{k+1}-g_{k}\right) \geq \mu \alpha_{k}\left\|d_{k}\right\|^{2} \tag{13}
\end{equation*}
$$

and from the Lipschitz continuity (2.8), we can get that

$$
\begin{align*}
& \left\|y_{k}\right\|=\left\|g_{k+1}-g_{k}\right\|=\left\|g\left(x_{k+1}\right)-g\left(x_{k}\right)\right\| \tag{14}\\
& \leq L\left\|x_{k+1}-x_{k}\right\|=L \alpha_{k}\left\|d_{k}\right\|
\end{align*}
$$

Utilizing (2.13) and (2.14), we can get

$$
\begin{equation*}
\frac{\left\|y_{k}\right\|^{2}}{y_{k}^{T} s_{k}} \leq \frac{L^{2} \alpha_{k}^{2}\left\|d_{k}\right\|^{2}}{\alpha_{k} y_{k}^{T} d_{k}} \leq \frac{L^{2} \alpha_{k}^{2}\left\|d_{k}\right\|^{2}}{\mu \alpha_{k}^{2}\left\|d_{k}\right\|^{2}}=\frac{L^{2}}{\mu}=M \tag{15}
\end{equation*}
$$

which completes the proof.
Lemma 2.6 Assume that the following inequality holds for all k

$$
\begin{equation*}
0<m_{1} \leq\left\|g_{k}\right\| \leq m_{2} \tag{16}
\end{equation*}
$$

and α_{k} is given by (1.18) and (1.19), then
(1)there exist a positive constant $b>1$ such that

$$
\begin{equation*}
\left|\beta_{k}\right| \leq b \tag{17}
\end{equation*}
$$

(2))there exist a positive constant λ, when $\left\|y_{k-1}\right\| \leq \lambda$ we have $\left|\beta_{k}\right| \leq \epsilon$ for any $\epsilon>0$.
Proof. When $\beta_{k}=\beta_{k}^{N}$, from (2.4) and (2.16) we can get

$$
\begin{align*}
& \left|\beta_{k}\right| \leq\left|\frac{g_{k}^{T} y_{k-1}}{-g_{k-1}^{T} d_{k-1}}\right|+\left|2 g_{k}^{T} d_{k-1} \frac{\left\|y_{k-1}\right\|^{2}}{\left(-g_{k-1}^{T} d_{k-1}\right)^{2}}\right| \\
& \leq\left|\frac{g_{k}^{T} y_{k-1}}{-g_{k-1}^{T} d_{k-1}}\right| \\
& +2\left|\sigma_{2}\left(-g_{k-1}^{T} d_{k-1}\right) \frac{\left\|y_{k-1}\right\|^{2}}{\left(-g_{k-1}^{T} d_{k-1}\right)^{2}}\right| \tag{18}\\
& \leq \frac{2 m_{2}^{2}}{-g_{k-1}^{T} d_{k-1}}+\frac{8 \sigma_{2} m_{2}^{2}}{-g_{k-1}^{T} d_{k-1}} \\
& \leq \frac{\left(16+64 \sigma_{2}\right) m_{2}^{2}}{7 m_{1}^{2}}
\end{align*}
$$

let $b=\frac{\left(16+64 \sigma_{2}\right) m_{2}^{2}}{7 m_{1}^{2}}$, obviously we have $b>1$ because of $m_{2} \geq m_{1}>0$.
let $\lambda=\frac{7 m_{1}^{2}}{\left(8+32 \sigma_{2}\right) m_{2}} \epsilon$, when $\left\|y_{k-1}\right\| \leq \lambda$, we can get

$$
\begin{align*}
& \left|\beta_{k}\right| \leq\left|\frac{g_{k}^{T} y_{k-1}}{-g_{k}^{T} d_{k-1}}-2 g_{k}^{T} d_{k-1} \frac{\left\|y_{k-1}\right\|^{2}}{\left(-g_{k-1}^{T} d_{k-1}\right)^{2}}\right| \\
& \leq\left(\left|\frac{\left\|g_{k}\right\|}{-g_{k-1}^{T} d_{k-1}}\right|\right. \tag{19}\\
& \left.+\left|2 \sigma\left(-g_{k-1}^{T} d_{k-1}\right) \frac{\left\|y_{k-1}\right\|}{\left(-g_{k-1}^{T} d_{k-1}\right)^{2}}\right|\right)\left|\mid y_{k-1} \|\right. \tag{26}\\
& \leq \frac{\left(8+32 \sigma_{2}\right) m_{2}}{7 m_{1}^{2}}\left\|y_{k-1}\right\| \leq \epsilon
\end{align*}
$$

This completes the proof.
Lemma 2.7Suppose that Assumption 2.1 (i) holds and α_{k} is obtained by the new Nonmonotone line search (1.18) and (1.19), denote $\xi_{k}=\delta \alpha_{k} g_{k}^{T} d_{k}$, then $\left\{f\left(x_{k}\right)\right\}$ is nonincreasing and

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \xi_{l(k+1)-1}=0 \tag{20}
\end{equation*}
$$

where
$l(k)=\max \left\{i \mid 0 \leq k-i \leq m(k), f\left(x_{i}\right)=\max _{0 \leq j \leq m(k)} f\left(x_{k-j}\right)\right\}$.hence, by the definition of $l(k+1)$ and (2.29), we have
Proof.From (1.18) and (2.21) we can get that

$$
\begin{align*}
f\left(x_{k+1}\right) & \leq \lambda f\left(x_{l(k)}\right)+(1-\lambda) \min _{0 \leq j \leq m(k)} f\left(x_{k-j}\right)+\xi_{k} \tag{30}\\
& \leq f\left(x_{l(k)}\right)+\xi_{k} \tag{22}
\end{align*}
$$

because $\xi_{k}<0$, we can obtain

$$
f\left(x_{k+1}\right) \leq f\left(x_{l(k)}\right)
$$

from (2.21) and $m(k) \leq m(k-1)+1$, for all k.we can get that

$$
\begin{align*}
f\left(x_{l(k)}\right) & \leq \max _{0 \leq j \leq m(k-1)+1} f\left(x_{k-j}\right) \tag{1}\\
& \leq \max \left\{\max _{0 \leq j \leq m(k-1)} f\left(x_{k-1-j}\right), f\left(x_{k}\right)\right\} \tag{23}\\
& =\max \left\{f\left(x_{l(k-1)}\right), f\left(x_{k}\right)\right\} \\
& =f\left(x_{l(k-1)}\right), k=1,2 \ldots
\end{align*}
$$

therefore $\left\{f\left(x_{k}\right)\right\}$ is nonincreasing. Because $l(k+1)-$ $1 k+1-m(k+1)-1 k-M_{0}$, we have

$$
\begin{equation*}
f\left(x_{l(l(k+1))-1}\right) \leq f\left(x_{l\left(k-M_{0}\right)}\right) \tag{24}
\end{equation*}
$$

from the above ineaquation and (2.22) we can obtain

$$
\begin{aligned}
& f\left(x_{l(k+1)}\right) \leq f\left(x_{l(l(k+1))-1}\right)+\xi_{l(k+1)-1} \\
& \leq f\left(x_{l\left(k-M_{0}\right)}\right)+\xi_{l(k+1)-1}
\end{aligned}
$$

hence, we have

$$
\begin{equation*}
0 \leq-\xi_{l(k+1)-1} \leq f\left(x_{l\left(k-M_{0}\right)}\right)-f\left(x_{l(k+1)}\right) \tag{25}
\end{equation*}
$$

by (2.25) when the Assumption 2.1 (i) holds, we have

$$
\lim _{k \rightarrow \infty} \xi_{l(k+1)-1}=0
$$

we complete the proof.
Lemma 2.8 Suppose that α_{k} is given by (1.18) and (1.19), and $\beta_{k}=\beta_{k}^{N}$. Then $\{l(k)\}$ is increasing.
Proof.Assume that

$$
l(k+1)<l(k)
$$

then we have

$$
\begin{equation*}
k+1 \geq l(k)>l(k+1) \geq k+1-m(k+1) \tag{27}
\end{equation*}
$$

by the definition of $l(k+1)$ and (2.23), we can obtain

$$
\begin{equation*}
f\left(x_{l(k+1)}\right) \geq f\left(x_{l(k)}\right) \tag{28}
\end{equation*}
$$

but from the Lemma 2.7we have

$$
\begin{equation*}
f\left(x_{l(k+1)}\right) \leq f\left(x_{l(k)}\right) \tag{29}
\end{equation*}
$$

$$
\begin{equation*}
l(k+1) \geq l(k) \tag{21}
\end{equation*}
$$

which is contradictory to (2.29).Hence
$l(k) \leq l(k+1)$, namely $\{l(k)\}$ is increasing.

3. Convergence analysis

Theorem 3.1 Suppose that Assumption 2.1 holds and α_{k} is obtained by the new Nonmonotone line search (1.18) and (1.19), Consider any iteration method of the form (1.15) and (1.16), where $\beta_{k}=\beta_{k}^{N}$. Then

$$
\lim _{k \rightarrow \infty} \inf \left\|g_{k}\right\|=0
$$

Proof.If (2.1) is not true, then there exists a constant γ such that $0<\gamma \leq\left\|g_{k}\right\| \leq \bar{\gamma}$ for all k.From (1.16) and Lemma 2.6 we have

$$
\begin{align*}
\left\|d_{l(k+1)-1}\right\| \leq & \left\|g_{l(k+1)-1}\right\|+\left|\beta_{l(k+1)-1}\right|\left\|d_{l(k+1)-2}\right\| \\
\leq & \bar{\gamma}+b| | d_{l(k+1)-2} \| \leq \ldots \\
\leq & \bar{\gamma} \sum_{j=0}^{l(k+1)-l(k)-3} b^{j} \\
& \quad+b^{l(k+1)-l(k)-2}\left\|d_{l(k)+1}\right\| \\
\leq & \bar{\gamma} \sum_{j=0}^{l(k+1)-l(k)-2} b^{j} \\
& +b^{l(k+1)-l(k)-2}\left|\beta_{l(k)+1}\right|\left\|d_{l(k)}\right\| \tag{2}
\end{align*}
$$

because $l(k+1)-l(k) \leq k+1-[k-m(k)]<M_{0}+2$,we can get

$$
\begin{align*}
\left\|d_{l(k+1)-1}\right\| & \leq \bar{\gamma} \sum_{j=0}^{M_{0}} b^{j}+b^{M_{0}}\left|\beta_{l(k)+1}\right|| | d_{l(k)} \mid \\
& =q_{1}+q_{2}\left|\beta_{l(k)+1}\right| \| d_{l(k)} \mid \tag{3}
\end{align*}
$$

where

$$
q_{1}=\bar{\gamma} \sum_{j=0}^{M_{0}} b^{j}, q_{2}=b^{M_{0}}
$$

from Lemma 2.5 and (1.19) we have

$$
0 \leq\left\|y_{k}\right\| \leq\left(M y_{k}^{T} s_{k}\right)^{\frac{1}{2}} \leq\left(M\left(1-\sigma_{2}\right)\left(-\alpha_{k} g_{k}^{T} d_{k}\right)\right)^{\frac{1}{2}}
$$

From Lemma 2.6 we note that $\epsilon=\frac{1}{q_{2} b^{2}}$,there exists an innegative integer k_{0} when $k \geq k_{0}$ we have

$$
\left|\beta_{l(k)}\right|<\epsilon
$$

thus we can get

$$
\begin{aligned}
\left\|d_{l(k+1)-1}\right\| & \leq q_{1}+\frac{1}{b^{2}}\left\|d_{l(k)}\right\| \\
& \leq q_{1}+\frac{\left\|g_{l(k)}\right\|+\left|\beta_{l(k)}\right|\left\|d_{l(k)-1}\right\|}{b^{2}} \\
& \leq q_{1}+\frac{\bar{\gamma}+b\left\|d_{l(k)-1}\right\|}{b^{2}} \leq q_{3}+\frac{\left\|d_{l(k)-1}\right\|}{b}
\end{aligned}
$$

for all $k \geq k_{0}$, where $q_{3}=q_{1}+\frac{\bar{\gamma}}{b}$. Thus, we have a recursive equation which leads to

$$
\begin{align*}
\left\|d_{l(k+1)-1}\right\| & \leq q_{3}+\frac{\left\|d_{l(k)-1}\right\|}{b} \\
& \leq q_{3}+\frac{q_{3}+\frac{\left\|d_{l(k-1)-1}\right\|}{b}}{b} \\
& =q_{3}+\frac{q_{3}}{b}+\frac{\left\|d_{l(k-1)-1}\right\|}{b^{2}} \leq \ldots \\
& \leq q_{3} \sum_{j=0}^{k-k_{0}}\left(\frac{1}{b}\right)^{j}+\frac{1^{k-k_{0}+1}}{b}\left\|d_{l\left(k_{0}\right)-1}\right\| \\
& \leq q_{3} \sum_{j=0}^{\infty}\left(\frac{1}{b}\right)^{j}+\left\|d_{l\left(k_{0}\right)-1}\right\| \\
& \leq q_{3} \frac{b}{b-1}+\left\|d_{l\left(k_{0}\right)-1}\right\| \tag{4}
\end{align*}
$$

Applying $l(k) \geq k-m(k) \geq k-M_{0}$ and Lemma 2.8 we can assume that $l(i)-1 \leq j \leq l(i+1)-1, i \geq k_{0}+2$, for all $j \geq l\left(k_{0}+2\right)-1$, thus we have

$$
\begin{align*}
\left\|d_{j}\right\| & \leq\left\|g_{j}\right\|+\mid \beta_{j}\| \| d_{j-1} \| \\
& \leq \bar{\gamma}+b\left(\left\|g_{j-1}\right\|+\left|\beta_{j-1}\right| \| d_{j-2}| |\right) \tag{5}\\
& \leq \ldots \leq \bar{\gamma} \sum_{t=0}^{j-l(i)} b^{t}+b^{j-l(i)+1}\left\|d_{l(i)-1}\right\|
\end{align*}
$$

In order to rank the iterative numerical methods, one can compute the total number of function and gradient evaluations by the formula

$$
\begin{equation*}
N_{t o t a l}=N F+5 * N G \tag{1}
\end{equation*}
$$

Similarly, we compare PRP+ method, MPRP method with PRP method as follows:for each problem i, compute the total numbers of function evaluations and gradient evaluations required by the evaluated methods and PRP method by formula (4.1), and denote them by $N_{\text {total }, i}(E M)$ and $N_{\text {total }, i}(P R P)$; then calculate the ratio

$$
\begin{equation*}
r_{i}(E M(j))=\frac{N_{\text {total }, i}(E M(j))}{N_{\text {total }, i}(P R P)} \tag{2}
\end{equation*}
$$

If $E M\left(j_{0}\right)$ method does not work for example i_{0}, but PRP method can work, we replace the $r_{i_{0}} E M\left(j_{0}\right)$ by a positive constant τ_{1} which define as follows:

$$
\begin{equation*}
\tau_{1}=\max \left\{r_{i}\left(E M\left(j_{0}\right)\right):\left(i, j_{0}\right) \bar{\in} S_{1}\right\} \tag{3}
\end{equation*}
$$

where
$S_{1}=\left\{\left(i, j_{0}\right):\right.$ method j_{0} does not work for example $\left.i\right\}$
If PRP method does not work for example i_{0}, but $E M\left(j_{0}\right)$ method can work, we replace the $r_{i_{0}} E M\left(j_{0}\right)$ by a positive constant τ_{2} which define as follows:

$$
\begin{equation*}
\tau_{2}=\min \left\{r_{i}\left(E M\left(j_{0}\right)\right):\left(i, j_{0}\right) \bar{\in} S_{1}\right\} \tag{5}
\end{equation*}
$$

Neither PRP method nor $E M\left(j_{0}\right)$ method works, we define $r_{i_{0}} E M\left(j_{0}\right)=1$.The geometric mean of these ratios for $E M(j)$ method over all the test problems isdefined by

$$
\begin{equation*}
r(E M(j))=\left(\prod_{i \in s} r_{i}(E M(j))^{(1 /|S|)}\right. \tag{6}
\end{equation*}
$$

where S denotes the set of the test problems and $|S|$ the number of elements in S.

According to the above rule, it is clear that $r(P R P)=$ 1.The values of $r(H Z), r(N), r(h z), r(n)$ and $r(p r p)$ are listed in Table 4-2.

Tabel 4-2

HZ	PRP	N	hz	n	prp
1.194	1.0	0.912	0.877	0.782	0.854

from tabel 4-2 we can see that the new method is more efficient than HZ method and PRP method.

Acknowledgments: This research supported by Natural Science Fundation of Guangdong Province No. 915100800 2000012.

References

[1] M. R. Hestenes and E. L. Stiefel, Methods of conjugate gradients for solving linear systems, J. Research Nat. Bur. Standards, 49 (1952), 409-436.
[2] R. Fletcher and C. Reeves, Function minimization by conjugate gradients, Comput. J., 7 (1964), 149-154.
[3] B. T. Polyak, The conjugate gradient method in extreme problems, USSR Comp. Math. Math. Phys., 9 (1969), 94-112.
[4] R. Fletcher, Practical Methods of Optimization vol. 1: Unconstrained Optimization, John Wiley
[5] Y. Liu and C. Storey, Efficient generalized conjugate gradient algorithms, Part 1: Theory, J. Optim. Theory Appl., 69 (1991), 129-137.
[6]Y. H. Dai and Y. Yuan, A nonlinear conjugate gradient method with a strong global convergence property, SIAM J. Optim., 10 (1999), 177-182.
[7] Hager W W, Zhang H.A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM J Optim. 2005, 16:170-192
[8]Al-Baali M. Descent Property and global convergence of the Fletcher-Reeves method with inexact line searches, SIMA Journal of Numerical Analysis, 5(1) (1985), 121124.
[9]G. Liu, J. Han, H. Yin, Global convergence of the Fletcher . CReeves algorithm with inexact line search, Appl. Math. JCU 10B (1995) $75^{\circ} \mathrm{C} 82$.
[10]H. Dai and Y. Yuan, Convergence of the Fletcher-Reeves method under a generalized Wolfe wearch, J. Comput. Math., 2 (1996), $142^{\circ} \mathrm{C} 148$.
[11]Powell M J D. Nonconvex minimization calculations and the conjugate gradient method, Lecture notes in Mathematics vol. Springer-Veriag(Berlin), 1006 (1984), 122-141.
[12] Grippo L, Lampariello F, Lucidi S. A nonmonotone line search technique for Neton;äs methods. SIAM Journal on Numerical Analysis, 123 (1986), 707-716.
[13] Lucidi S, Roma M. Nonmonoton conjugate gradient methods for optimization, System Modeling and Optimization, Lecture Notes on Control and Information Sciences, Belin, Springer Verlag, 1995.
[14] Liu G H, Jing L L, Han D. A class of nonmonotone conjugate gradient methods for unconstrained optimization, SIAM J Optim, 101 (1999) 127-140.
[15]Jorge J M, Burton S G, Kenneth E H. Testing Unconstrained Optimization Software [J]. ACM Transactions on Mathematical Software 7 (1981) 17-41.

Hailin Liu obtained his M.Sc. degree in Applied Mathematics from the central south university of technology, china, he is a professor of school of computer science at Guangdong Polytechnic Normal University in Guangzhou, china, Liu's current research is divided into two areas:(i) optimization theory and it's application, (ii) computer science and it's application.

Xiaoyong Li is the responding author of this paper, he obtained his M.Sc. degree in Applied Mathematics from the Guangdong Polytechnic Normal University in 2011, he is a software engineer at a Information security corporation in Zhuhai city, his research interest is optimization theory and it's application.

[^0]: * Corresponding author: e-mail: 1klhl@sina.com

