
Appl. Math. Inf. Sci.6, No. 1S, 147S-154S (2012) 147

Applied Mathematics & Information Sciences
An International Journal

c© 2012 NSP
Natural Sciences Publishing Cor.

A new class of Conjugate Gradient Methods with
extended Nonmonotone Line Search
Hailin Liu1 and Xiaoyong Li2

1 School of Computer Science,Guangdong Polytechnic Normal University,Guangzhou, Guangdong 510665, P. R. China
2 Laboratoire Collisions Agrgats Ractivit, Universit Paul Sabatier, 31062Toulouse Cedex 09, France

Received: Apr 17, 2011; Revised Jul 21, 2011; Accepted Aug 4, 2011
Published online: 1 January 2012

Abstract: In this paper, we propose a new nonlinear conjugate gradient method for large-scale unconstrain optimization which pos-
sesses the following properties:(i)the sufficient descent condition−gT

k dk ≥ 7

8
‖gk‖

2 holds without any line searches;(ii)With exact line
search, this method reduces to a nonlinear version of the Liu-Storey conjugate gradient scheme.(iii)Under some assumption, global
convergence of this method is proved with a new nonmonotone line search.Preliminary numerical results show that this method is very
efficient.

Keywords: Conjugate gradient, Sufficient descent, Hybrid method, Unconstrainedoptimization.

1. Introduction

Consider
min
x∈Rn

f(x) (1)

where f : Rn −→ R is a smooth nonlinear function
and its gradientg is avaiable.Nonlinear conjugate gradient
method is well suited for solving large scale problems,its
iterative formula is given by

xk+1 = xk + αkdk (2)

dk =

{

−gk, for k = 1;
−gk + βkdk−1, for k ≥ 2,

(3)

wheregk = ∇f(xk), dk is the search direction,αk is a
step-size obtained by a one-dimensional line search and
βk is a scalar.There are many formulas have been pro-
posed to compute the scalarβk for αk is not the exact one-
dimensional minimizer in practice andf is not a quadratic
function.Among them,four well-known formulas forβk

are called the Hestense-Stiefel (HS)([1]), Flether-Reeves
(FR) ([2]), Polak-Ribi. e olyak (PRP)([3]), Conjugate-Descent
(CD)([4]), Liu-Storey(LS) ([5]), Dai-Yuan(DY)([6]) and
Hager-Zhang (HZ)([7]) formulas are given by

βHS
k =

gT
k yk−1

dT
k−1yk−1

(4)

βFR
k =

‖gk‖
2

‖gk−1‖2
(5)

βPRP
k =

gT
k yk−1

‖gk−1‖2
(6)

βCD
k =

‖gk‖2

−gT
k−1dk−1

(7)

βLS
k =

gT
k yk−1

−gT
k−1dk−1

(8)

βDY
k =

‖gk‖2

dT
k−1yk−1

(9)

βHZ
k =

gT
k yk−1

dT
k−1yk−1

− 2gT
k dk−1

||yk−1||
2

(dT
k−1yk−1)

2 (10)

respectively ,whereyk−1 = gk − gk−1 and‖.‖ means the
Euclidean norm.

In the already-existing convergence analysis and im-
plementations of the conjugate gradient method,the extended
strong Wofle line search,namely

f(xk + αkdk) − f(xk) ≤ δαkgT
k dk (11)
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σ1g
T
k dk ≤ g(xk + αkdk)

T
dk ≤ −σ2g

T
k dk (12)

the extended nonmonotone line search,namely (1.12) and

f(xk + αkdk) − max
0≤j≤m(k)

f(xk−j) ≤ δαkgT
k dk (13)

wherem(k) = min{m(k − 1) + 1,M0},m(0) = 1, 0 <
δ ≤ σ1 < 1, 0 < σ2 < 1 andM0 ∈ N .

In addition,the sufficient descent condition ,namely,

−gT
k dk ≥ c‖gk‖

2 (14)

has often been used in the literature to analyze the global
convergence of conjugate gradient methods with inexact
line searches,wherec is a positive constant.

The convergence behaviors of (1.4),(1.5),(1.6)and (1.7)
with some line search conditions have been studied by
many authors for many years.Al-Baali [8] proved the global
convergence of FR method with the strong Wolfe line search.
Liu et al. [9] and Dai and Yuan [10] extended this result
to σ = 1

2 . Although, in practical computation, the PRP
method is generally believed to be the most efficient con-
jugate gradient method. However, Powell[11] constructed
a counter example and showed that the PRP method can
circle infinitely without approaching the solution, which
implies that this method is not globally convergent for gen-
eral functions.But the PRP+(βk

PRP+ = max{0, βPRP
k })

method with the Wolfe line search is globally convergent
when the sufficient descent condition (1.11) is given,the
HS method is very familiar with the PRP method.The DY
method with the Wolfe and the strong Wolfe line search is
globally convergent without the descent condition,but the
descent property of the DY method depends on line search
or convexity of the objective function.

In[12], the authors propose a nonmonotone Newton
method, and analyze its convergence. Lucidi and Roma
[15] present a nonmonotone algorithm of FR method in
1995.G. H. Liu, L. L. Jing, L. X. Han,and D. Han [14] in-
troduce a class of nonmonotone conjugate gradient meth-
ods, this class of nonmonotone conjugate gradient meth-
ods is proved to be globally convergent when it is applied
to solve unconstrained optimization problems with con-
vex objective functions.In our paper we presented a new
class of nonmonotone conjugate gradient methods which
is globally convergent when it is applied to solve uncon-
strained optimization problems with general objective func-
tions.

Motivated by the observation of the above ideas, we
design our new conjugate gradient method as follows:

xk+1 = xk + αkdk (15)

dk =

{

−gk, for k = 1;
−gk + βkdk−1, for k ≥ 2,

(16)

where

βN
k =

gT
k yk−1

−gT
k−1dk−1

− 2gT
k dk−1

||yk−1||
2

(−gT
k−1dk−1)

2 (17)

with exact line search, we can get thatgT
k dk−1 = 0,so the

N method reduce to LS method.the stepsizeαk satisfies
the following new nonmonotone line search conditions

δαkgT
k dk

≥ f(xk + αkdk) − λ max
0≤j≤m(k)

f(xk−j)

−(1 − λ) min
0≤j≤m(k)

f(xk−j) (18)

σ1g
T
k dk ≤ g(xk + αkdk)

T
dk ≤ −σ2g

T
k dk (19)

wherem(k) = min{m(k − 1) + 1,M0},m(0) = 1, 0 <
δ ≤ σ1 < 1, 0 < σ2 < 1, 0 ≤ λ ≤ 1 andM0 ∈ N .The
new nonmonotone line search can be viewed as some kind
of convex combination of the extended strong Wofle line
search and the extended nonmonotone line search, when
λ = 0 the new nonmonotone line search reduce to the
extended strong Wofle line search, and whenλ = 1 the
new nonmonotone line search reduce to the extended non-
monotone line search.

This paper is organized as follows.We will present a
new algorithm (Algorithm 2.3), and the sufficient descent
property (1.14) of Algorithm 2.2 is also given in the next
section.In section 3 the global convergence results of the N
method are established.At last the preliminary numerical
results are reported.

2. New Algorithm

Throughout our paper, we assume thatgk 6= 0 for all k, for
otherwise a stationary point has been found.Furthermore,
in order to establish the global convergence result for the
new algorithm, we give the following basic assumption on
the objective function.
Assumption 2.1(i)The level setΩ = {x ∈ Rn : f(x) ≤
f(x1)}is bounded, wherex1 is the starting point.(ii)f(x)
is strongly convex and Lipschitz continuous onΩ.

If f satisfies Assumption 2.1(i) and (ii), we can get that

‖g(x)‖ ≤ γ̄, for all x ∈ Ω (1)

whereγ̄ is a positive constant.
If f satisfies Assumption 2.1(ii), we can get that in

some neighborhoodN of Ω, f is differentiable and its gra-
dient g is Lipschitz continuous, namely, there exists con-
stantsL > 0andµ > 0such that for anyx, x′ ∈ N

‖g(x) − g(x′)‖ ≤ L‖x − x′‖ (2)

and

µ‖x − x′‖2 ≤ (g(x) − g(x′))T (x − x′) (3)

Now we give the following theorem, which illustrates
that the formula (1.10) possesses the sufficient descent con-
dition without any line searches.
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Theorem 2.2 Consider any method (1.2) and (1.3), where
βk = βN

k .Then for allk ≥ 1

−gT
k dk ≥

7

8
‖gk‖

2 (4)

Proof.Sinced0 = −g0,we have−gT
0 d0 = ‖g0‖

2,which
satisfies (2.4).Multiplying (1.3) bygT

k we have

−gT
k dk = ‖gk‖

2 − βkgT
k dk−1 (5)

whenβk = βN
k we can get that

−gT
k dk = ‖gk‖

2 − gT
k dk−1(

gT

k
yk−1

−gT

k−1dk−1

−2gT
k dk−1

||yk−1||
2

(−gT

k−1dk−1)
2 )

= (‖gk‖2(−gT
k−1dk−1)

2
− gT

k dk−1g
T
k yk−1( − gT

k−1dk−1)

+2(gT
k dk−1)

2||yk−1||
2
)/(−gT

k−1dk−1)
2

(6)
we apply the inequality

uT v ≤
1

2
(||u||2 + ||v||2)

to the second term in (2.6) with

u =
1

2
gk( − gT

k−1dk−1), v = 2(gT
k dk−1)yk−1

Therefore , we can get that (2.4) is true for allk ∈ N .
Now we can present a new descent conjugate gradient

method as follows:
Algorithm 2.3
step1:Givenx1 ∈ Rn, ε ≥ 0, 0 < δ ≤ σ1 < 1, 0 <
σ2 < 1, 0 ≤ λ ≤ 1,M0 ∈ N , setd1 = −g1, k := 1, if
‖g1‖ ≤ ε, then stop.
step2:Find aαk ≥ 0 by (1.18) and (1.19).
step3:Letxk+1 = xk + αkdk and gk+1 = g(xk+1) If
‖gk+1‖ ≤ ε, then stop.
step4:Computeβk = βN

k by the formula (1.17) and gener-
atedk+1 by (1.16).
step5:Set k:=k+1, go to step2.
Lemma 2.4 Suppose that Assumption 2.1 holds andαk is
obtained by the new Nonmonotone line search (1.18) and
(1.19).Then there existsc1 > 0, such that

‖sk‖ ≥
c1(−gT

k dk)

‖dk‖
(7)

wheresk = xk+1 − xk.
Proof.From Assumption 2.1 we can get thatg is Lipschitz
continuous in some neighborhoodN of Ω, namely, there
exists a constantL > 0, such that for anyx, x′ ∈ N

‖g(x) − g(x′)‖ ≤ L‖x − x′‖ (8)

that is‖yk‖ ≤ L‖sk‖, so we have

yT
k dk ≤ L‖sk‖‖dk‖ (9)

and from (1.19) we can get that

yT
k dk = dT

k (gk+1 − gk) ≥ (1 − σ1)(−gT
k dk) (10)

Thus, from (2.9) and (2.10) we obtain

‖sk‖ ≥
1 − σ1

L

−gT
k dk

‖dk‖
(11)

let c1 = 1−σ1

L and from (2.11), we obtain (2.7).Therefore,
our proof is complete.
Lemma 2.5 Suppose that assumption 2.1 holds,αk is given
by (1.18) and (1.19), andβk = βN

k . Then there exists a

positive constantM = L2

µ such that

‖yk‖
2

yT
k sk

≤ M (12)

Proof.By the convexity assumption, we have

yT
k dk = dT

k (gk+1 − gk) ≥ µαk‖dk‖
2 (13)

and from the Lipschitz continuity (2.8), we can get that

||yk|| = ||gk+1 − gk|| = ‖g(xk+1) − g(xk)‖
≤ L||xk+1 − xk|| = Lαk‖dk‖

(14)

Utilizing (2.13) and (2.14), we can get

‖yk‖
2

yT
k sk

≤
L2α2

k‖dk‖
2

αkyT
k dk

≤
L2α2

k‖dk‖
2

µα2
k‖dk‖2

=
L2

µ
= M (15)

which completes the proof.
Lemma 2.6 Assume that the following inequality holds
for all k

0 < m1 ≤ ||gk|| ≤ m2 (16)

andαk is given by (1.18) and (1.19), then
(1)there exist a positive constantb > 1such that

|βk| ≤ b (17)

(2))there exist a positive constantλ, when||yk−1|| ≤ λ
we have|βk| ≤ ε for anyε > 0.
Proof.Whenβk = βN

k , from (2.4) and (2.16) we can get

|βk| ≤ | gT

k
yk−1

−gT

k−1dk−1
| + |2gT

k dk−1
||yk−1||

2

(−gT

k−1dk−1)
2 |

≤ | gT

k
yk−1

−gT

k−1dk−1
|

+2|σ2(−gT
k−1dk−1)

||yk−1||
2

(−gT

k−1dk−1)
2 |

≤ 2m2
2

−gT

k−1dk−1
+

8σ2m2
2

−gT

k−1dk−1

≤ (16+64σ2)m
2
2

7m2
1

(18)
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let b =
(16+64σ2)m

2
2

7m2
1

, obviously we haveb > 1 because of
m2 ≥ m1 > 0.
let λ =

7m2
1

(8+32σ2)m2
ε, when||yk−1|| ≤ λ, we can get

|βk| ≤ | gT

k
yk−1

−gT

k−1dk−1
− 2gT

k dk−1
||yk−1||

2

(−gT

k−1dk−1)
2 |

≤ (| ||gk||

−gT

k−1dk−1
|

+|2σ(−gT
k−1dk−1)

||yk−1||

(−gT

k−1dk−1)
2 |)||yk−1||

≤ (8+32σ2)m2

7m2
1

||yk−1|| ≤ ε

(19)

This completes the proof.
Lemma 2.7Suppose that Assumption 2.1 (i) holds andαk

is obtained by the new Nonmonotone line search (1.18)
and (1.19), denoteξk = δαkgT

k dk, then{f(xk)} is nonin-
creasing and

lim
k→∞

ξl(k+1)−1 = 0 (20)

where

l(k) = max{i|0 ≤ k−i ≤ m(k), f(xi) = max
0≤j≤m(k)

f(xk−j)}.

(21)
Proof.From (1.18) and (2.21) we can get that

f(xk+1) ≤ λf(xl(k)) + (1 − λ) min
0≤j≤m(k)

f(xk−j) + ξk

≤ f(xl(k)) + ξk (22)

becauseξk < 0, we can obtain

f(xk+1) ≤ f(xl(k))

from (2.21) andm(k) ≤ m(k − 1) + 1, for all k.we can
get that

f(xl(k)) ≤ max
0≤j≤m(k−1)+1

f(xk−j)

≤ max{ max
0≤j≤m(k−1)

f(xk−1−j), f(xk)} (23)

= max{f(xl(k−1)), f(xk)}

= f(xl(k−1)), k = 1, 2...

therefore{f(xk)} is nonincreasing . Becausel(k + 1) −
1k + 1 − m(k + 1) − 1k − M0,we have

f(xl(l(k+1))−1) ≤ f(xl(k−M0)) (24)

from the above ineaquation and (2.22) we can obtain

f(xl(k+1)) ≤ f(xl(l(k+1))−1) + ξl(k+1)−1

≤ f(xl(k−M0)) + ξl(k+1)−1

hence, we have

0 ≤ −ξl(k+1)−1 ≤ f(xl(k−M0)) − f(xl(k+1)) (25)

by (2.25) when the Assumption 2.1 (i) holds, we have

lim
k→∞

ξl(k+1)−1 = 0

we complete the proof.
Lemma 2.8 Suppose thatαk is given by (1.18) and (1.19),
andβk = βN

k . Then{l(k)} is increasing.
Proof.Assume that

l(k + 1) < l(k) (26)

then we have

k + 1 ≥ l(k) > l(k + 1) ≥ k + 1 − m(k + 1) (27)

by the definition ofl(k + 1) and (2.23), we can obtain

f(xl(k+1)) ≥ f(xl(k)) (28)

but from the Lemma 2.7we have

f(xl(k+1)) ≤ f(xl(k)) (29)

hence, by the definition ofl(k + 1)and (2.29), we have

l(k + 1) ≥ l(k) (30)

which is contradictory to (2.29).Hence
l(k) ≤ l(k + 1), namely{l(k)}is increasing.

3. Convergence analysis

Theorem 3.1 Suppose that Assumption 2.1 holds andαk is
obtained by the new Nonmonotone line search (1.18) and
(1.19), Consider any iteration method of the form (1.15)
and (1.16), whereβk = βN

k . Then

lim
k→∞

inf ||gk|| = 0 (1)

Proof.If (2.1) is not true, then there exists a constantγ
such that0 < γ ≤ ||gk|| ≤ γ for all k.From (1.16) and
Lemma 2.6 we have

||dl(k+1)−1|| ≤ ||gl(k+1)−1|| + |βl(k+1)−1|||dl(k+1)−2||

≤ γ + b||dl(k+1)−2|| ≤ ...

≤ γ

l(k+1)−l(k)−3
∑

j=0

bj

+bl(k+1)−l(k)−2||dl(k)+1||

≤ γ

l(k+1)−l(k)−2
∑

j=0

bj

+bl(k+1)−l(k)−2|βl(k)+1|||dl(k)|| (2)

becausel(k+1)−l(k) ≤ k+1−[k−m(k)] < M0+2,we
can get
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||dl(k+1)−1|| ≤ γ

M0
∑

j=0

bj + bM0 |βl(k)+1|||dl(k)||

= q1 + q2|βl(k)+1|||dl(k)|| (3)

where

q1 = γ

M0
∑

j=0

bj , q2 = bM0 .

from Lemma 2.5 and (1.19) we have

0 ≤ ||yk|| ≤ (MyT
k sk)

1
2 ≤ (M(1 − σ2)(−αkgT

k dk))
1
2

From Lemma 2.6 we note thatε = 1
q2b2 ,there exists an

innegative integerk0 whenk ≥ k0 we have

|βl(k)| < ε

thus we can get

||dl(k+1)−1|| ≤ q1 +
1

b2
||dl(k)||

≤ q1 +
||gl(k)|| + |βl(k)|||dl(k)−1||

b2

≤ q1 +
γ + b||dl(k)−1||

b2
≤ q3 +

||dl(k)−1||

b

for all k ≥ k0 , whereq3 = q1 + γ
b .Thus, we have a

recursive equation which leads to

||dl(k+1)−1|| ≤ q3 +
||dl(k)−1||

b

≤ q3 +
q3 +

||dl(k−1)−1||

b

b

= q3 +
q3

b
+

||dl(k−1)−1||

b2
≤ ...

≤ q3

k−k0
∑

j=0

(
1

b
)j +

1

b

k−k0+1

||dl(k0)−1||

≤ q3

∞
∑

j=0

(
1

b
)j + ||dl(k0)−1||

≤ q3
b

b − 1
+ ||dl(k0)−1|| (4)

Applying l(k) ≥ k −m(k) ≥ k −M0 and Lemma 2.8 we
can assume thatl(i) − 1 ≤ j ≤ l(i + 1) − 1, i ≥ k0 + 2 ,
for all j ≥ l(k0 + 2) − 1, thus we have

||dj || ≤ ||gj || + |βj |||dj−1||

≤ γ + b(||gj−1|| + |βj−1|||dj−2||) (5)

≤ ... ≤ γ

j−l(i)
∑

t=0

bt + bj−l(i)+1||dl(i)−1||

Therefore, from

j − l(i) + 1 ≤ [l(i + 1) − 1] − l(i) + 1

≤ i + 1 − [i − m(i)] ≤ M0 + 1

and (3.5), we have

||dj || ≤ γ

j−l(i)
∑

t=0

bt + bM0+1||dl(i)−1|| (6)

From (3.4) and (3.6), we have

||dj || ≤ γ

j−l(i)
∑

t=0

bt + bM0+1[q3
b

b − 1
+ ||dl(k0)−1||] (7)

for all i−1 ≥ k0.By using Lemma 2.4 and Lemma 2.5 we
have

−ξl(k+1)−1 =
ρ||sl(k+1)−1||(−gT

l(k+1)−1dl(k+1)−1)

||dl(k+1)−1||

≥ ρc1

(−gT
l(k+1)−1dl(k+1)−1)

2

||dl(k+1)−1||
(8)

≥ ρc1
γ4

||dl(k+1)−1||

but from (2.20) and (3.8) we can get

lim
k→∞

1

||dl(k+1)−1||
= 0

which is contradictory to (3.7).Hence the theorem is valid.
4.Numerical experiments

In this section, we will test PRP, HZ and N conjugate
methods with the new nonmonotone line search.In table 4-
1 whenε = 10−6, δ = 0.01, σ1 = σ2 = 0.1, λ = 0,M0 =
100, for whenε = 10−6, δ = 0.01, σ1 = σ2 = 0.1, λ =
1
2 ,M0 = 100 each method which with capital letters, and
each method which with small letters. The problems that
we test are from [15].

Table 4-1 show the computation results, where the columns
of the tables have the following meanings:

Problem: the name of the test problem;
Dim: the dimension of the problem;
NI: the total number of iterations;
NF: the number of the function evaluations;
NG: the number of the gradient evaluations.
Time:the CPU total time

and the star * denotes that this result is the best one among
these three methods.
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Tabel 4-1
Problem Dim Method NI NF NG
Var. dim. 1000 N* 2 12 3

HZ 2 12 3
PRP 2 12 3

n 2 12 3
hz 2 12 3
prp 2 12 3

5000 N* 3 22 6
HZ 3 22 6
PRP 3 22 6
n 3 22 6
hz 3 22 6
prp 3 22 6

10000 N* 2 12 2
HZ 2 12 2
PRP 2 12 2
n 2 12 2
hz 2 12 2
prp 2 12 2

Penalty I 1000 N* 8 50 30
HZ 1003 3290 1825
PRP 29 104 72
n 8 50 30
hz 45 102 58
prp 29 104 72

5000 N* 12 54 33
HZ 579 1882 1036
PRP 94 332 208
n 12 104 72
hz 88 338 107
prp 56 221 64

10000 N* 16 38 17
HZ 255 797 430
PRP 50 185 105
n 16 38 17
hz 85 197 130
prp 50 185 105

Penalty II 20 N 3332 10002 3350
HZ 3332 10002 3356
PRP 3332 10002 3354
n* 321 867 342
hz 321 868 346
prp 321 868 346

50 N 3304 10001 3365
HZ 3303 10000 3365
PRP 3303 10001 3396
n 146 344 221
hz* 128 322 201
prp 128 344 221

100 N 578 1768 631
HZ 594 1817 650
PRP 592 1761 634

n* 224 644 231
hz 244 689 260
prp 242 688 255

Trig. metric 1000 N* 62 104 84
HZ 76 142 123
PRP 66 128 113
n 62 104 84
hz 76 142 123
prp 66 128 113

5000 N* 59 108 83
HZ 67 126 111
PRP 63 109 104
n 59 108 83
hz 67 126 111
prp 63 109 104

10000 N* 65 116 101
HZ 81 168 142
PRP 77 141 123
n 65 116 101
hz 81 168 142
prp 77 141 123

Ext. Rosenbrock 1000 N 3249 10001 3418
HZ 3248 10000 3421
PRP 3273 10001 3403
n 486 1301 518
hz* 477 1299 526
prp 409 1301 521

5000 N 3249 10001 3418
HZ 3248 10000 3421
PRP 3273 10001 3403
n 486 1301 521
hz* 477 1299 526
prp 490 1301 518

10000 N 3249 10001 3418
HZ 3248 10000 3421
PRP 3249 10001 3403
n 486 1301 521
hz* 477 1299 526
prp 490 1301 518

Ext. Powell sing. 1000 N 3333 10002 3320
HZ 3333 10002 3340
PRP 3333 10002 3338
n* 1211 3421 1402
hz 1211 3421 1430
prp 1211 3421 1422

5000 N 3333 10002 3320
HZ 3333 10002 3340
PRP 3333 10002 3338
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n* 1211 3421 1402
hz 1211 3421 1430
prp 1211 3421 1422

10000 N 3333 10002 3320
HZ 3333 10002 3340
PRP 3333 10002 3338
n* 1211 3421 1402
hz 1211 3421 1430
prp 1211 3421 1422

Chebyquad 200 N 2498 10001 3104
HZ 2492 10003 3412
PRP 2495 10000 3150
n* 446 1330 476
hz 521 1640 544
prp 524 1677 532

500 N* 2 12 1
HZ 2 12 1
PRP 2 12 1
n 2 12 1
hz 2 12 1
prp 2 12 1

2000 N* 2 12 1
HZ 2 12 1
PRP 2 12 1
n 2 12 1
hz 2 12 1
prp 2 12 1

Brown & Dennis 4 N* 336 1390 363
HZ 340 1406 367
PRP 343 1425 373
n* 121 367 142
hz 144 421 211
prp 156 331 191

Gulf research 3 N 3335 10001 3384
HZ 3334 10001 3385
PRP 3334 10001 3428
n* 1222 3444 1312
hz 1443 3866 1628
prp 1443 3866 1628

Beale 2 N 836 2501 903
HZ 836 2501 903
PRP 842 2518 907
n* 323 1003 421
hz 334 1008 432
prp 386 1120 449

In order to rank the iterative numerical methods, one
can compute the total number of function and gradient
evaluations by the formula

Ntotal = NF + 5 ∗ NG (1)

Similarly, we compare PRP+ method, MPRP method
with PRP method as follows:for each problemi, compute
the total numbers of function evaluations and gradient eval-
uations required by the evaluated methods and PRP method
by formula (4.1), and denote them byNtotal,i(EM) and
Ntotal,i(PRP ); then calculate the ratio

ri(EM(j)) =
Ntotal,i(EM(j))

Ntotal,i(PRP )
(2)

If EM(j0) method does not work for examplei0, but
PRP method can work, we replace theri0EM(j0) by a
positive constantτ1 which define as follows:

τ1 = max{ri(EM(j0)) : (i, j0)∈̄S1} (3)

where

S1 = {(i, j0) : method j0 does not work for example i}
(4)

If PRP method does not work for examplei0, butEM(j0)
method can work, we replace theri0EM(j0) by a positive
constantτ2 which define as follows:

τ2 = min{ri(EM(j0)) : (i, j0)∈̄S1} (5)

Neither PRP method norEM(j0) method works, we
defineri0EM(j0) = 1.The geometric mean of these ratios
for EM(j) method over all the test problems isdefined by

r(EM(j)) = (
∏

i∈s

ri(EM(j))(1/|S|) (6)

whereS denotes the set of the test problems and|S| the
number of elements inS.

According to the above rule, it is clear thatr(PRP ) =
1.The values ofr(HZ), r(N), r(hz), r(n) andr(prp) are
listed in Table 4-2.

Tabel 4-2
HZ PRP N hz n prp
1.194 1.0 0.912 0.877 0.782 0.854

from tabel 4-2 we can see that the new method is more ef-
ficient than HZ method and PRP method.
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