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Abstract: In this paper, we propose a new nonlinear conjugate gradient methéatde-scale unconstrain optimization which pos-
sesses the following properties:(i)the sufficient descent conditighd, > %Hgk |I* holds without any line searches;(ii)With exact line
search, this method reduces to a nonlinear version of the Liu-Storgygate gradient scheme.(iiilUnder some assumption, global
convergence of this method is proved with a new nonmonotone line sBegtiminary numerical results show that this method is very
efficient.
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1. Introduction PR — HLHQ (5)
_ llgr—1ll
Consider T
min f(x) (1) PRP _ Ik Y1 6
2€R b lgr—1l2 ©)

where f : R — R is a smooth nonlinear function

and its gradieny is avaiable.Nonlinear conjugate gradient oD llgx |12
method is well suited for solving large scale problems,its B = o7 iy (7
iterative formula is given by k=17
Tht1 = T + opdy 2) LS _ g yr—1 ®)
79]3_1dk—1
— 0k, fork=1; )
di, = 3
¢ {—gk t ey, fork>2, @ py __loel” ©
di; Yk—1
k—1Yk

whereg, = V f(zr), di is the search directiony, is a
step-size obtained by a one-dimensional line search and
B is a scalar.There are many formulas have been pro- T, 2
posed to compute the scaldyr for « is not the exact one- HEZ = M - 29{%4%
dimensional minimizer in practice arydis not a quadratic 1Yk (dy—19r-1)
function.Among them,four well-known formulas fagt; .
are called the Hestense-Stiefel (HS)([1]), Flether-Reeve éSpectively where;_, = g, — gx—1 and||.| means the
(FR) ([2]), Polak-Ribi. e olyak (PRP)([3]), Conjugate-est Euclidean norm.

(10)

(CD)([4]), Liu-Storey(LS) ([5]), Dai-Yuan(DY)([6]) and In the already-existing convergence analysis and im-
Hager-Zhang (HZ)([7]) formulas are given by plementations of the conjugate gradient method,the erténd
- strong Wofle line search,namely
HS _ Tk Ykl (4) .
A} yk—1 fzk + ardr) — f(xr) < daggy di (11)
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orgtdi, < g(xk + andy)  dy < —02gt dy, (12)  with exact line search, we can get thgdtd,_; = 0,50 the

the extended nonmonotone line search,namely (1.12) andY methoq reduce to LS method._the stepaﬁesat!s_fies
the following new nonmonotone line search conditions

f(zr + agdy) — max  f(rp—;) < daggidip  (13) de.gy, di.
0<j<m(k) > f(zr 4 ardy) — )\0<12an f(xkfj)
wherem(k) = min{m(k — 1) + 1, My}, m(0) = 1,0 < - ) _(j‘m(‘)) (18)
d<o01<1,0<0y <landM;e N. —(1- O<j121£(k)ka—a
In addition,the sufficient descent condition ,namely, o
~gFdi > gl (14) ogidi < glow +ardi)' dic < —oagldi (19)

has often been used in the literature to analyze the globattherem(k) = min{m(k — 1) + 1, Mo}, m(0) = 1,0 <
convergence of conjugate gradient methods with inexact < 01 < 1,0 <02 <1,0 <A < landMy € N.The
line searches,whereis a positive constant. new nonmonotone line search can be viewed as some kind

The convergence behaviors of (1.4),(1.5),(1.6)and (1.7pf convex combination of the extended strong Wofle line
with some line search conditions have been studied bysearch and the extended nonmonotone line search, when
many authors for many years.Al-Baali [8] proved the global* = 0 the new nonmonotone line search reduce to the
convergence of FR method with the strong Wolfe line searcgxtended strong Wofle line search, and wher- 1 the
Liu et al. [9] and Dai and Yuan [10] extended this result "€W nonmonotone line search reduce to the extended non-
to o = 1. Although, in practical computation, the PRP monotone line search. - _
method is generally believed to be the most efficient con- ~ This paper is organized as follows.We will present a
jugate gradient method. However, Powell[11] constructednew algorithm (Algorithm 2.3), and the sufficient descent
a counter example and showed that the PRP method caproperty (1.14) of Algorithm 2.2 is also given in the next
circle infinitely without approaching the solution, which Section.In section 3 the global convergence results of the N
imp|ies that this method is not g|0ba||y convergent for gen- method are established.At last the preliminary numerical
eral functions.But the PRR#, "7+ = maax{0, 3P #P})  results are reported.
method with the Wolfe line search is globally convergent
when the sufficient descent condition (1.11) is given,the
HS method is very familiar with the PRP method.The DY 2. New Algorithm
method with the Wolfe and the strong Wolfe line search is
globally convergent without the descent condition,but theT
descent property of the DY method depends on line searcg
or convexity of the objective function.

hroughout our paper, we assume that# 0 for all &, for
therwise a stationary point has been found.Furthermore,

in order to establish the global convergence result for the
In[12], the authors propose a nonmonotone Newton 9 9

method, and analyze its convergence. Lucidi and Rom new algorithm, we give the following basic assumption on
15] present a nonmonotone algorithm of FR method in he objective function.
[15] present a nonmonotone algo 0 etho Assumption 2.1(i)The level set? = {z € R" : f(z) <

t1935.G. H. IL'U’ L% L. Jing, L.tX. Han,and ? Ha':j.[“t] m-t (x1)}is bounded, where; is the starting point.(iij (x)
roduce a class ot honmonaotone conjugate gradient metiyg strongly convex and Lipschitz continuous &n

ods, this class of nonmonotone conjugate gradient meth- . ) . ..
ods is proved to be globally convergent when it is applied If f satisfies Assumption 2.1(i) and (ii), we can get that

to solve unconstrained optimization problems with con- lg(2)
vex objective functions.In our paper we presented a hew g
g:lass of nonmonotone conjugate grac_hent methods Wh'cr\}vhereﬁ is a positive constant.
is globally convergent when it is applied to solve uncon-

. T . L If f satisfies Assumption 2.1(ii), we can get that in
Egﬁlsned optimization problems with general objectivecfun some neighborhoad of 12, f is differentiable and its gra-

Motivated by the observation of the above ideas, wegt'gmgL'iLo'g‘:‘]%h'tz>C;Snl}::nhut%lf{’fgfgqnely’ t/hgr;\e/emsts con-
design our new conjugate gradient method as follows: H W, x

| <7, forallz € 2 Q)

Tpp1 = ) + apdy (15) lg(z) — g(a")| < Lz — 2’| )
_ )} — 9k, fork =1, and
dk o { —Jk + ﬁkdkfla fO’I" k Z 27 (16)
where plle —a'|* < (g(x) — g(2")" (x — a") ®3)
. 9 Now we give the following theorem, which illustrates
By = I Ye—1 29T dy_1 ||yk—1ll 17) that the formula (1.10) possesses the sufficient descent con

—gi_ydrx—a (=g dp_1)* dition without any line searches.
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Theorem 2.2 Consider any method (1.2) and (1.3), where and from (1.19) we can get that
Br = BY .Then for allk > 1
dk = dk (gk+1 —gx) > (1= 01)(—dik) (10)
—grdi > ZHng2 4) -

kTR =g Thus, from (2.9) and (2.10) we obtain
Proof.Sincedy = —go,we have—gl'dy = |/go||?,which 1— oy —gTdy,
satisfies (2.4).Multiplying (1.3) by! we have skl > (11)

— g die = ||gll* — Brgl di—1 (5)
wheng;, = BY we can get that

9i Yk—1

gl di = |lge|? — g d 1 (=5

lye—1ll? )
(= g,?,,ldkfl)Q

2
= (lgell*(=g}_1di-1)" — gl dr—198 yr—1(
T 2 2 T 2
+2(g5, dr—1) " Nlyr—1l") /(= gj—1dr—1)

we apply the inequality

*29]@ dr—1
- ggfldk—l)

(6)

1
ulv < S(llull® +[[vll*)
to the second term in (2.6) with

1
uw=ge(— gi_1dr—1),v = 2(g} de—1)yr—1

2
Therefore , we can get that (2.4) is true forfakk V.

L |ldell
lete; = 1‘% and from (2.11), we obtain (2.7).Therefore,
our proof is complete.

Lemma 2.5 Suppose that assumption 2.1 holdgjs given
by (1.18) and (1.19), ang;, = 3}. Then there exists a

positive constand/ = %such that
(12)

Proof.By the convexity assumption, we have

— gr) > po|de|]? (13)

and from the Lipschitz continuity (2.8), we can get that

Yk di = df (grs

Now we can present a new descent conjugate gradient

method as follows:

Algorithm 2.3

stepl:Givenz; € R, e > 0,0 < 6 < 01 < 1,0 <
o9 < 1,0 < A< l,MO € N, setd; = 791,]{3 =1, if
llg1]| < e, then stop.

step2:Find av; > 0 by (1.18) and (1.19).
step3:Letry 1 = xp + apdi andggr1 = g(xp41) If
|gk+1]l < e, then stop.

step4:Comput@, = 35 by the formula (1.17) and gener-

atedy1 by (1.16).
step5:Set k:i=k+1, go to step2.
Lemma 2.4 Suppose that Assumption 2.1 holds andis

obtained by the new Nonmonotone line search (1.18) and

(1.19).Then there exists > 0, such that

c1(—gf di)

A ()

skl =

Wheresk = Tpy1 — Tk

Proof.From Assumption 2.1 we can get thais Lipschitz
continuous in some neighborhogd of 2, namely, there
exists a constart > 0, such that for any:, 2’ € A/

lg(x)

that is||yx|| < L|sk||, so we have

— g < Lljz — 2’| (8)

Yi i < Ll|sgll]|d]| %)

lyel| = lgres = gull = lg(zesn) —g@e)ll g 4
< Ll|zktr — @il = Lo|dic ||
Utilizing (2.13) and (2.14), we can get
2 L2 2 d 2 L2 2 d 2 L2
el _ Lofldil® _ Loflsl® L2 _ g
Yi Sk oYy, di poi ||| [

which completes the proof.
Lemma 2.6 Assume that the following inequality holds
for all &

0 <my < lgxl| < m2 (16)
anday, is given by (1.18) and (1.19), then
(1)there exist a positive constant- 1such that
1Bel < b 17)

(2))there exist a positive constaxitwhen||yx—1|| < A
we have|§;| < e for anye > 0.
Proof.Wheng, = 35 , from (2.4) and (2.16) we can get

Bu] < | =2 + 2T ds el

di—1)
< gg,yk 1
- ‘-!]Zﬂ,ldk71|
2

2loo(— T di_ yr—1ll 18
+ | 2( gk_l k 1)(ng71dk71)2‘ ( )
< 2m,§ 802m§
= —gf_idr —g¥_1di—1
< (16+6402)m3
— 7mf
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2 .
leth = 16819202 | ophviously we havé > 1 because of
1

me > my > 0. klirrolc Sik+1)-1 =10
_ 7m? -
let A = (gr330,ym, € Whenllyx—1]] < A, we can get we complete the proof.

Lemma 2.8 Suppose that; is given by (1.18) and (1.19),

9h Yk—1 _ T lyx—1I andﬂk = ﬁ]]gv Then{l(k>} is increasing.
19| < |—g:T,_1dk71 29 d’“‘l(fg,?,ldk_l)2| Proof.Assume that
<( ITngclll |
et (19) Ik +1) < (k) (26)
+|20(—g;{_1dk—1) (79‘7‘}!1&&1!1)2 |)Hyk71‘|
(8+3202)ma kot then we have
< Tﬂyk—lH <e
This completes the proof. E+1>10k)>Uk+1) >k+1—-m(k+1) (27)

Lemma 2.7Suppose that Assumption 2.1 (i) holds and o )
is obtained by the new Nonmonotone line search (1.18)Y the definition of (k + 1) and (2.23), we can obtain
and (1.19), denoté, = dayg{ dy, then{f(x,)} is nonin-

creasing and f(@iwr1)) = flTi) (28)
A &)1 =0 (20)  put from the Lemma 2.7we have
where f(@is1)) < flmm) (29)
I(k) = max{i|0 < k—i < m(k), f(z;) = 0<r£ax(k) f(zx—;) }-hence, by the definition dfk + 1)and (2.29), we have
sj=m
(21)
Proof.From (1.18) and (2.21) we can get that Wk +1) 2 (k) (30)
) which is contradictory to (2.29).Hence
F@p) < Af(yg) + (1= A) 0<j<m(k) Fl@y_j) + &, I(k) < I(k + 1), namely{I(k)}is increasing.

< f(xl(k)) + §k (22)
because, < 0, we can obtain

f(@ri1) < fl@iw))

Theorem 3.1 Suppose that Assumption 2.1 holds ands
from (2.21) andn(k) < m(k — 1) + 1, for all k.we can  gpiained by the new Nonmonotone line search (1.18) and
get that (1.19), Consider any iteration method of the form (1.15)

and (1.16), wher@, = 3. Then

3. Convergence analysis

flryy) < ma

f(@g—j)

N OSjSM(kx—l)H klim inf ||gr|| =0 1)
< maX{0< max f@r—1-5), f(xx)}  (23)
o= Proof.If (2.1) is not true, then there exists a constant
= max{ f(zk-1)), f(xr)} such thatd < ~ < ||gx|| < 7 for all k.From (1.16) and
= f(zyh—1)), b =1,2... Lemma 2.6 we have
therefore{ f(z,)} is nonincreasing . Becausg: + 1) —
1k + 1 —m(k +1) — 1k — Mo,we have i+ 1)—111 < Ngie+n=1ll + 1B+ =1l digrr1)—2]|
<+ blldiy1y—2ll < -
F@ags1)—1) < f(@i—m0)) (24) b1 i)
from the above ineaquation and (2.22) we can obtain <% Z B
j=0
F@ig+1)) < F@iae+1))-1) + Q-1 O DR =2 gy ]
< f(@ir—mo)) + ik r1)—1 1(kt1)—1(k)—2
hence, we have <7 Z v
j=0
A EFDEI=2 gy i (2

0 < =&@+1)—1 < f(@ig—my)) — f( ) (29)
)t = P ) ey becausé(k+1)—I(k) < k+1—[k—m(k)] < Mo+2,we
by (2.25) when the Assumption 2.1 (i) holds, we have can get
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Mo
i1y —1ll <7DV + 6By iy |
=0
= q1 + @2|Bi)+1|ldi || (3
where
Mo
q1 = ﬁzbjan = bjuo~
=0

from Lemma 2.5 and (1.19) we have

1 1
0 < [lyrll < (Myg sk)? < (M(1 = 02)(—angg di))?
From Lemma 2.6 we note that = q#,there exists an

innegative integek, whenk > ko we have

1Biiy| < €
thus we can get

1
lldikry—1ll < @1 + b—2|\dz(k)||

g1yl 4 1Brcey iy =11
+
b2
5 + 0lldy iy -1l |y 1]
—bQ( ) <gq3+ —(b)
for all k > ko , wheregs = ¢; + 1.Thus, we have a
recursive equation which leads to

<q

<q+

l|di(ky—1l]
b

gz + Hdl(k—bl)—lH

b
g, Ndig—1)-ll <
b b2 -
. k—ko+1
Y+ || di(ro)—1ll

digery—1l] < g3+

< gq3+

< asy— T lldigro)-1ll (4)

Applyingi(k) > k —m(k) > k — My and Lemma 2.8 we
canassumethati) — 1 <j <Il(t+1)—1,i > ko+2,
forall j > I(ko + 2) — 1, thus we have

lld; 1] < [lg;ill + |B;llldj-1l|
<7 +b(llgj-1ll + 185-1llldj—2l[) ©)
J—1(%)
<..<7 Z bt + b O (dy )y ||
t=0

Therefore, from

G—1@) +1<[IG+1)—1]—1() +1

<
<i+1—[i—m(i)] < My+1
and (3.5), we have

J=l@)
Il <7 D b+ oMot [dygsy | (6)

t=0

From (3.4) and (3.6), we have

J—1(7)
Ndill <7 ) bF+ b0+ g
t=0

51 T lldiko)-1lll ()

foralli—1 > k¢.By using Lemma 2.4 and Lemma 2.5 we
have

Pllsi(es1)-1l (—ng(kH)_ldl(kH)—l)

—¢ =
k1)1 ldig 1)1

<_917(1k+1)71dl(k+1)71)2

i (1)1l
4

> oc) —m——————
=7 1||dl(k+1)71”

> pcy

®)

but from (2.20) and (3.8) we can get

lim ; =0
k—oo ||dy(r41)—1]|
which is contradictory to (3.7).Hence the theorem is valid.
4. Numerical experiments

In this section, we will test PRP, HZ and N conjugate
methods with the new nonmonotone line search.In table 4-
1whens =106, =0.01,0; = 05 = 0.1,\ =0, My =
100, for where = 1076,8 = 0.01,01 = 09 = 0.1,\ =
%, My = 100 each method which with capital letters, and
each method which with small letters. The problems that
we test are from [15].

Table 4-1 show the computation results, where the columns
of the tables have the following meanings:

Problem: the name of the test problem;

Dim: the dimension of the problem;

NI: the total number of iterations;

NF: the number of the function evaluations;

NG: the number of the gradient evaluations.

Time:the CPU total time
and the star * denotes that this result is the best one among
these three methods.

@© 2012 NSP
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Tabel 4-1 n* 224 644 231
Problem Dim Method NI NF NG hz 244 689 260
Var. dim. 1000 N* 2 12 3 prp 242 688 255
HZ 2 12 3 Trig. metric 1000 N* 62 104 84

PRP 2 12 3 HZ 76 142 123

n 2 12 3 PRP 66 128 113

hz 2 12 3 n 62 104 84

prp 2 12 3 hz 76 142 123

5000 N* 3 22 6 prp 66 128 113
HzZ 3 22 6 5000 N* 59 108 83

PRP 3 22 6 HZ 67 126 111

n 3 22 6 PRP 63 109 104

hz 3 22 6 n 59 108 83

prp 3 22 6 hz 67 126 111

10000 N* 2 12 2 prp 63 109 104
HzZ 2 12 2 10000 N* 65 116 101

PRP 2 12 2 HZ 81 168 142

n 2 12 2 PRP 77 141 123

hz 2 12 2 n 65 116 101

prp 2 12 2 hz 81 168 142

peratyl 1000 N* 8 50 30 prp 77 141 123
HZ 1003 3290 1825 Ext. Rosenbrock 1000 N 3249 10001 3418

PRP 29 104 72 HZ 3248 10000 3421

n 8 50 30 PRP 3273 10001 3403

hz 45 102 58 n 486 1301 518

prp 29 104 72 hz* 477 1299 526

5000 N* 12 54 33 prp 409 1301 521
Hz 579 1882 1036 5000 N 3249 10001 3418

PRP 94 332 208 HZ 3248 10000 3421

n 12 104 72 PRP 3273 10001 3403

hz 88 338 107 n 486 1301 521

prp 56 221 64 hz*x 477 1299 526

10000 N* 16 38 17 prp 490 1301 518
HZ 255 797 430 10000 N 3249 10001 3418

PRP 50 185 105 HZ 3248 10000 3421

n 16 38 17 PRP 3249 10001 3403

hz 85 197 130 n 486 1301 521

prp 50 185 105 hz* 477 1299 526

penayn 20 N 3332 10002 3350 prp 490 1301 518
HZ 3332 10002 3356 Ext. Powell sing. 1000 N 3333 10002 3320

PRP 3332 10002 3354 HZ 3333 10002 3340

n* 321 867 342 PRP 3333 10002 3338

hz 321 868 346 n* 1211 3421 1402

prp 321 868 346 hz 1211 3421 1430

50 N 3304 10001 3365 prp 1211 3421 1422
Hz 3303 10000 3365 5000 N 3333 10002 3320

PRP 3303 10001 3396 HZ 3333 10002 3340

n 146 344 221 PRP 3333 10002 3338

hz* 128 322 201
prp 128 344 221
N

100 578 1768 631
HZ 594 1817 650
PRP 592 1761 634
®© 2012 NSP
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n* 1211 3421 1402

hz 1211 3421 1430 If EM jo) method does not work for examplg, but
prp 1211 3421 1422 PRP method can work, we replace theE M (jo) by a

10000 N 3333 10002 3320 positive constant; which define as follows:
HZ 3333 10002 3340

PRP 3333 10002 3338

o 1211 3421 1402 71 = maz{ri(EM(jo)) : (i,jo) €51} 3
hz 1211 3421 1430
prp 1211 3421 1422 where
chebvaad 200 |_’\|IZ 22235 118883} 3341351 S1 = {(%, Jo) : method jo does not work for example i}

PRP 2495 10000 3150 . (4) .
n* 446 1330 476 If PRP method does not work for example but EM (o)
hz 521 1640 544 method can work, we replace thg EM (jo) by a positive
prp 524 1677 532 constant, which define as follows:

500 N* 2 12 1
Hz 2 12 1 7o = min{r;(EM (jo)) : (i,50)€S1} (5)
PRP 2 12 1 )
n 2 12 1 Neither PRP method ndE M (j,) method works, we
hz 2 12 1 definer;, EM (jo) = 1.The geometric mean of these ratios
prp 2 12 1 for EM (j) method over all the test problems isdefined by

2000 N* 2 12 1
Hz 2 12 1 r(EM(j)) = r;(EM(5))/15D (6)
hRp 2 - L (EM(j)) (];[ (EM(5))
n 2 12 1
hz 2 12 1 where S denotes the set of the test problems &fifithe
prp 2 12 1 number of elements if.

Brown & Dennis 4 N* 336 1390 363

According to the above rule, itis clear thgtPRP) =
Hz 340 1406 367 1.The values of-(HZ),r(N),r(hz),r(n) andr(prp) are

PRP 343 1425 373 . .
* 121 367 147 listed in Table 4-2. Tabel 4.2

hz 144 421 211

HzZ PRP N hz n prp
. PP ol 1104 1.0 0912 0877 0.782 0.854
Gulf research =
Hz 3334 10001 3385 f_ro_m tabel 4-2 we can see that the new method is more ef-
PRP 3334 10001 3428 ficient than HZ method and PRP method.
n* 1222 3444 1312
hz 1443 3866 1628 Acknowledgments: This research supported by Natu-
prp 1443 3866 1628 ral Science Fundation of Guangdong Province No. 915100800
Beale 2 N 836 2501 903 2000012.
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