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Abstract: In this paper, a numerical method for solving linear systémtegro-differential equations has been proposed. Thioae

is based on Chebyshev wavelets approximations. lllusérattamples have been discussed to demonstrate the validigpplicability

of the technique and the results have been compared witix#éog golution. It is shown that the numerical results arediodgagreement
with the exact solutions for each problem.
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1 Introduction 2 Chebyshev wavelets preliminaries

Wavelets constitute a family of functions constructed

has motivated a huge amount of research work in recenthe mother wavelet 15,16,17]. When the dilation
years. These equations have been found to describearameter, a and the translation parameter,b,vary
various kind of phenomena such as wind ripple in the continuously we have the following family of continuous
desert, nono-hydrodynamics, dropwise consideration anvavelets as

glass-forming process 1J2,3,4]. Several numerical . %—b

methods have been used, such as the rationalized Haar Pap(X) =la] 2¢(——),abeR,a#0. (1)
functions method 4], Galerkin methods with hybrid a
functions p], the tau method 7, the differential
transform method §], Runge-Kutta methods9], the
spline approximation method1(], the block pulse
functions method11], the spectral methodLP], the finite
difference approximation methodl3], new homotopy Ko
perturbation method1] and etc. Chebyshev wavelets Pin(¥) = [al2g(ax—nb). )
have been used by many authors for solving various

functional. The main idea of using Chebyshev basis isThese functions are a wavelet basis fof{R) and in
that the problem under study reduces to a system of lineagpecial casa = 2, andb = 1 ,the functiongj »(x) are an
or nonlinear algebraic equations. This can be done byorthonormal basis.

truncated series of orthogonal basis functions for theChebyshev waveletghm(x) = @(k,n,m,x) have four
solution of problem and using the operational matrices.argumentsn = 1,2,...,2 1 k is an arbitrary positive
An extension of Chebyshev wavelets method for solvinginteger andm is the order of Chebyshev polynomials of
linear systems of integro-differential equations is thethe first kind. They are defined on the intery@/1], as
novelty of this paper. follows:

we take dilation and translation paramet&t$ ,andnba K
,respectively whera > 1,b > 0,n andk positive integers,
then we have the following family of discrete wavelets
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Wn,m(x) = w(ka na ma X) =

25T(2%—2n+1), 52 < x< 5 @)
0,otherwise
where
1
—.m=0
~ \/7—-[5 ’
Tm(x) = > (4)
£Tm(X),m>0

andm=0,1,..,.M—1andn=1,2,...,2¢ 1 T (x) are
the famous Chebyshev polynomials of the first kind

degreem which are orthogonal with respect to the weight

1

function W(x) = =, on the interval[-1,1] and
—X

satisfy the following recursive formula

To(X) = 1, Ty(x) = X,

The integration of the product of two Chebyshev wavelets
vector functions with respect to the weight functishy(x),
is derived as

[ W we0wT 0ok =1

wherel is an identity matrix.
A function f(x,y) defined on[0,1] x [0,1] can be
approximated as the following

fxy) =~ T OKY(y).

Here the entries of matriX = [Kij]ok-1p k-1 Will be
obtain by

O kij = (¢ (), (F(x,Y), &j (¥) Mh(¥))Wh (),
ij=1,2,...,2<M. (13)

The integration of the vectap(x), defined in {0) can be
achieved as

(11)

(12)

X

|| witet=Puo (14

Tme1(X) = 2XT(X) — T1(X),m=1,2, ... (5) WwherePisthe 1M operational matrix of integratiori,
19]. This matrix is determined as follows
The set of Chebyshev wavelets is an orthogonal set r .
. . . L F F . F
with respect to the weight function _
Wh(X) = W(2%x— 2n+1). oL F
A function f(x) defined on the interval0,1] may be p— 1 (15)
presented as %00 L
f(x) = z Z ChmWnm(X). (6) O - O O L]
n=1m=0 WhereL, F andO areM x M matrices given by
The series representation 6fx) in (6) called a wavelet | _
series and the wavelet coefficiewts, are given bycym = 1 19 0 0 ol
V2
(f(X), wnm(x))VVn(X)' V2 0 1 0 0 0
The convergence of the serie®,(in L2[0, 1], means that _% N 4 1
—y2 -2 0 to 0
sl <2 : . _ - : (16)
lim [|f(x)— ComPnm(X) || = 0. (7) ’ : C )
w072, 2, R Il
Therefore one can consider the following truncated sefies : L I 1 :
for series 6) LD (w2 —m) O 00 0 =i O
2kIm-1 [ 2 0 - O]
f(x) ~ Z Z Cnmqfnm:CT(IJ(X), (8) 0 0.---0
& i _2y2 0.0
whereC andy(x) are ¥~*M x 1 matrices given by . . Coe a7
C=[c10:C11;---,CLM-1,C2,0:C2,1; ---,C2 M1, B I e e N T
T 2 ( r r—2 )
s G105 Cerya] = Do
[C1,C2, 1, M CM 1, -, Gty 9 VCAM (aM2y o
L 2 ( M M—-2 ) _
and
00 --
YxX) = [Pro(X), Pr.1(X), ..., Prm-1(X), Y2,0(X), 00 ..
q,’z"l(x), ceey (IJZ’M,]_(X), ceny ka—l’o(X), ceny (,Uzk—l"Mfl(X)]T - O - o (18)
[@(X), W2(X), ooy (X), Y 2(X), oo Py (9] (10) 00 -
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The property of the product of two Chebyshev system 21), will be resulted to:
wavelets vector functions will be as follows

YW ()Y =Y (x) (19 Ty ~FTy Z
whereY is a given vector and is a X 1M x 2¢-1M

matrix. This matrix is called the operational matrix of Z/ YT OKij@(s) (G PY(s)+ Dl y(s))ds=
product.

FTo + S YW+

3 Chebyshev wavelets applied to systems of m = ;

integro-differential equations > LIJT(t)Kij(/O W(s)(CP+D] )y(s)ds=
=1

A system of integro-differential can be considered in ,;T Wit) + gYJ )+ Z ll’ K.JYPLp ),
general as follows: -

dx(t) t i=12,..,n, m_1,2,... (25)
S = Fex)+ [ Ktsx(s)ds
0
(20) where Y, are XM x 1 matrices andP is the
2-IM x 2-1M operational matrix of integration.

where According to the Galerkin method by multiplying
X(t) = (X (8), %0 (1), s Xa ()T, K (t,SX(1)) Wh ()W (t ), in both sides of the systen2%) and then

— (ka(t, 5 (), k Et $X()), . ’ kn(t7 s x(s)T. applylngjO (.)dt, linear system in terms of the entries of

’ " Ci,i = 1,2,...,n, will be obtained. The elements of vector

If K(t,S,X(S)) andF(t,x(t)) be linear, the systen2() can fUDCtIOﬂSCI i =12,..,n can be computed by solving
be represented as the following simple form this system.
dx (t m t

O hw+ Zl(wi,j(t)x,-(tn/o ki (t,9)%j(5)ds),

=

x0)=aj,i=12..nm=12.. (21) 4 Examples

For solving system21), by Chebyshev wavelets method,
consider the following approximations:

dxi () - ) In this section we present two examples. These examples
at Gyt),i=12..n (22)  are considered to illustrate the Chebyshev wavelets
approach for systems of integro-differential equations.
WhereGC;, i = 1,2,...,nare ¥ M x 1 matrices given by
o ] o _ Example 1. [14]: Consider the following system of
C=1[C10:C11,C1M-1:C20:Co15 - Com—1 integro-differential equations with the exact solutions
T x1(t) =€ andx(t) = e,

i i
ceey C2k*1,0’ ceey C2k71’M71

[i.1,Gi.25 -+ CiM M1 -+ G ok 1] T (23)

dxg(t) 43

and qJ(t_) is _defined in 10). Also consider the following dt
approximations 2L2(t 1 L)xat) + / Y($ — Pa(s) + (2 — )xa(9))ds
Xi(t) =~ G PY(t) + Dl (), fitt) =R y(t), %2(0) = 1 °

wij (X (t) = YT @(t), i=1,2,..,n j=1,2..m, dolt) _’ a1

kLJ'(taS)—w (OKijg(s). (24) dt =" =37+ 24 2(t - L)xa(t) +

4 53, o2
whereK;; are the M x 2<"IM matrices,F; are the (27 + 207+ 27 - 1)xp(t) +

25-IM x 1 matrices, and;j are column vectors with the /1((sz—t2)x1(s) (2 1 12)x5(s))ds,

entries of the vector§; fori =21,2,...n, j=1,2,....m. 0

substitution of approximations2®) and @4) into the x»(0)=1. (26)

— 2t~ 6+ (32— Bt + 7)xq(t) +
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Lets Table 1: Numerical results of Example 1.
dxa (1) X1 (exact) x1(CWM) Error(x(t))
W cly), 0.0 1.0000000000 0.9999999367 _ 0.0000000633
dt 0.1 1.1051709180 1.105168372  0.000002546
xa(t) ~ C] Py(t) +xq(0) ~ C] Py(t) + DI (t), 0.2 1.2214027580 1.221395345  0.000007413
dxa(t) 0.3 1.3498588080 1.349843148  0.000015660
e CIy), 0.4 1.4918246980 1.491795531  0.000029167
t . . 0.5 1.6487212710 1.648671304  0.000049967
Xo(t ) Ca Pw (t) +%2(0) ~ G PyY(t) + Do Y(t), 0.6 1.8221188000 1.822038466  0.000080334
-3 226~ F Y(t), —t*—3t2+2~F y(t), 0.7 2.0137527070 2.013629713  0.000122994
) . ) T 0.8 2.2255409280 2.225360121  0.000180807
(3t°—6t+ 7)X1(t) =Y P(t), 205(t+ 1)xa(t) = Yo (1), 0.9 24596031110 2.459347874  0.000255237
2(t— Lxa(t) = YT @(b), 1.0 27182818280 2.717938847  0.000342981
4 3 2 T
(2 +32t 20— 1) =Y gt 3 . Xo(&ad) ROWM)  Error(g)
(S —%) = YT (OKaW(s), t3(S — %) = YT (HK20(s), 1.0000000000  0.9999999364  0.0000000636
212 ~ uT (DK {2(2 4t (27 0.9048374180 0.9048383793  0.0000009613
( ) = YT (OKag(9), 15 9= T (K (5)(27) 0.8187307531 0.8187330857  0.0000023326
Substitution into the systen®26), leads to the following 0.7408182207 0.7408227857  0.0000045650
system 0.6703200460 0.6703277642  0.0000077182
0.6065306597  0.6065429205 0.0000122608
. N . 0.5488116361 0.5488306415 0.0000190054
CLy(t) =F Yt)+Y, Y(t) + 0.4965853038  0.4966142473  0.0000289435
t
- T - 0.4493289641 0.4493727673  0.0000438032
(UK / W(s)(C1P+Dy)(s)ds+ 0.4065696597  0.4066378071  0.0000681474
0.3678794412 0.3679932628 0.0001138216
YT K / W(9)(CIP+ DY) y(s)ds =
FLw) + YT w®) +YF wt) + pT OKAPY(t) +
gt KzYZPuJ(t),

2T Yt)+Y3 Yt) + Y4 W) + T (OKPY(t) +
T()K4Y2PY(t), (28)
Multiply Wh(t)@wT (t), on both sides of the syste2§),
applyingfol(.)dt, and then solve the system.

The elements of vector function8; and C, can be
obtained as follows

C1 =1[2.1970722630.75322177140.09314234913
0.00774501693%.00050077306510.00003345920292
0.0.00000500230086D.00000178965775}3

C, =[—0.80823213010.2774598271-0.03418569156
0.002900083585-0.0001498235218.00002099796862
0.000004561044308.000001798662095.

Therefore, the following solutions will result.
x(t) ~ CIPY(t) + x1(0) ~ CIPy(t) + Di(t)

0.001651417118  —  0.00273055147#&  +
0.0131203050¢  + 0.0386828160%*  +

0.1674220138° + 0.4998030468° 4 0.999989862% +

0.9999999367,
Xo(t) ~ CIPY(t) + x(0) ~ CIPY(t) + DI(t) =
0.001505744420 0.00342143581& —
0.0027592447 40 0.0384372150%" —
0.165654869%° + 0.499870075% — 0.999984158X +
0.9999999364

Table 1 shows some values of the solutions and absolute
errors at some and plots of the exact and approximate

solutions are shown in Figute

x
O x1(CWM) — x1Exac)

Fig. 1: Comparison of the exact and approximate solutions of

Example 1.

x
O xACWM) —— x2(Exac)
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Example 2. [14]: Consider the following system of

Table 2: Numerical results of Example 2.

integro-differential equations with the exact solutions X (exact)

X1 (CWM)

Error(xs(t))

x1(t) = cosh(t) andx(t) = sinh(t). 0.0 1.0000000000

1.000000106

0.000000106

0.1 1.005004168  1.005003366 0.000000802
dxe (t) . ) 0.2 1.020066756  1.020062970 0.000003786
G~ b et-1+ Xq(t) + (7 —2t)x(t) + 0.3 1.045338514  1.045327515 0.000010999
. 0.4 1.081072372  1.081046428 0.000025944
/ ((s+t)x1(s) + (s—t)*2(9))ds, x1(0) =1, 0.5 1127625965  1.127569437 0.000056528
do " 0.6 1.185165218  1.185347262 0.000117956
X2 ) 0.7 1.255169006  1.254930768 0.000238238
i =3t +t— 64 (7—2t)xq(t) +Xx2(t) + 0.8 1.337434946  1.336965782 0.000469164
t 0.9 1.433086385 1.132180810 0.000905575
/0 ((s—1)%a(8) + (s+1)%x(s))ds, %2(0) = 0. (29) 1.0 1.543080635  1.541364860 0.001715775
By applying the Chebyshev wavelets method and solving %o (exact) X2(CWM) Error (x(t))
the resulted linear system, the following results would be 0.0000000000 0.0000001065 0.0000001065
achieved. 0.4001667500 0.4001647411 0.0000020089
0.2013360025 0.2013305348  0.0000054677
C; = [0.69134403970.51168387930.02727964186 0.3045202934 0.3045075234 0.0000127700
0.4107523258  0.4107247356  0.0000275902
0.004340530682-0.0001604934677-0.00006543048876 D eonooea0ne O trrearnes 0 0000e T
—0.00001670580723-0.000003004951770, 0.6366535821 0.6365315523  0.0001190298
0.7585837018 0.7583417709  0.0002389309
C, — [1.4997749400.234443396400.06157643030 S eacas

0.00149884579,0.00001601905546-0.000074065054542

1.175201194

1.173486179

0.0017150150

—0.000016397378437-0.000003021159578.

Therefore, we have the following approximate solutions

x(t) = —0.005515113284 + 0.0132920441€ — 5 Conclusion
0.0126624489% + 0.0479664053¢" — .
0.001878448028 + 0.500175283&° _ In this research, we have presented the Chebyshev

wavelet method for solving system of integro-differential
equations. The Chebyshev operational matrix of
integration is used to solve these systems. The present
0.16464129183 + 0.0002430555256 + method reduces system of integro-differential equations
0.999969438%+ 1.06531672% x 10~. into a set of algebraic equations. lllustrative examples
Some values of exact, approximate solutions and absolutBave been discussed to demonstrate the validity and
errors are presented in Table 2 and the plots of exact an@pplicability of the technique and the results have been
approximate solutions are shown in Figre compared with the exact solution.

0.00001296863640+ 1.000000106
Xo(t) = —0.005413291216 + 0.0121058194% —
0.00459296698¢  +  0.00653272476¢  +
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