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Abstract: The problem of MHD nanofluid flow over a rotating cone in the presence ofthermal radiation has been investigated. The
model used for the nanofluid includes the effects of Brownian motion andthermophoresis with Rosseland diffusion approximation.
The governing nonlinear partial differential equations have been treated analytically by using optimal homotopy analysis method. A
parametric study of various emerging parameters are presented for velocity, temperature, nano particle volume fraction, Skin friction
coefficients, Nusselt and Sherwood numbers in graphical and tabularform. The comparison of present results with the numerical
results available in literature is made and our results are in very suitable agreement with the known results. Also, the main features of
the observations are examined and deliberated.
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1 Introduction

The phenomena of flows over rotating bodies earned
countless consideration because of their occurrence in
turbines and turbo machines, in gaseous and nuclear
reactors, in approximating the conduit of flight of
spinning wheels in the modeling of several geophysical
vortices. The magnetohydrodynamics of rotating
electrically conducting fluids in the presence of the
magnetic field finds uses in geophysics and astrophysics.
The preservation and secular differences of the
geomagnetic field [1]. Solar cycle and the configuration
of rotating magnetic stars are too a remarkable study. It is
practically seen that whenever some rotating flow
collaborates through a surface, a three dimensional
complex flow exists which appear in both outward and
interior flows. Also the probability of cooling the
nose-cone of re-entry vehicles by rotating the nose is an
important application [2]. The flow over an infinite
rotating disk in an ambient fluid was first deliberated by
Von Karman [3]. The influence of the MHD on the
rotating infinite disk in an ambient fluid was studied by
Sparrow and Cess [4] and Tarek et al. [5]. Initially
Dorffman [6] and Krieth [7] investigate the flow and heat
transfer in rotating systems. Hartnett and Deland [8]
examined the effects of Prandtl number on the heat

transfer by rotating bodies. Heiring and Grosh [9] have
reported the mixed convection by a rotational
non-isothermal cone at low Prandtl number. Himasekhar
et al. [10] presents the study of the similarity solution of
the mixed convection flow over a vertical rotating cone in
a fluid for a wide range of Prandtl numbers. Vira and
Fan [11] have examined the flow and heat transfer on a
rotating cone in a rotating fluid. Boundary layers on
rotating cone, disc and axisymmetric surfaces with a
concentrated heat sources have been reported by
Wang [12]. An approximate method of solution for the
heat transfer from vertical cones in laminar natural
convection was examined by Alamgir [13]. The laminar
steady non-similar natural convection flow of gases over
an isothermal vertical cone has been studied by Takhar et
al. [14]. The above cited works are associated to steady
and axi-symmetric flows. On the other hand in many real
world problems the flows are time dependent. Ece [15]
reported the time dependent boundary layer flow of an
impulsively started translating a spinning rotational
symmetric body. Later on Anilkumar and Roy [16]
studied the unsteady mixed convection from a rotating
cone in a rotating fluid with thermal and mass diffusion.
MHD heat and mass transfer from a rotating vertical cone
with heat generation or absorption effects was presented
by Chamkha et al. [17].
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It is evident that convective heat transfer fluids,
containing oil, water and ethylene glycol mixture are not
highly heat transfer fluids, as there is a vital contribution
of thermal conductivity of these fluids on the coefficient
of heat transfer among the heat transfer medium and the
heat transfer surface. Ultra-fine solid particles are broadly
used for improving the heat transfer in the fluids from last
rare years [18,19,20]. The theory of convective heat
transfer in nanofluids takes an excessive concern for
investigators lately due to the reports of impressively
higher thermal properties. Primarily Choi [20]
familiarized the word nanofluid, which is a base fluid with
suspended metallic nano-size particles specifically nano
particles with sizes typically of 1-100nm [21]. If
inveterate and found consistent, nanofluid finds
application in thermal management. Suspended metal
nano particles are likewise settled for other physical
phenomena’s, for example cancer therapy. The nanofluids
are extensively used as coolants, lubricants, heat
exchangers and micro-channel heat sinks. The
interdisciplinary behavior of nanofluid study gives a great
chance for study and innovation at the frontlines of
nanotechnology. Chamkha et al. [22] gives a study of
natural convection past a sphere embedded in a porous
medium saturated by a nanofluid. Some of the studies of
nanofluids are given in refs. [19,20,21,22,23,24,25,26,
27,28,29,30,31].

The motivation of the present analysis is to investigate
the radiative boundary layer flow over a rotating cone in a
nanofluid with magnetic effects. The coupled nonlinear
parabolic partial differential equations governing the
unsteady flow have been solved analytically by using
optimal homotopy analysis method [32,33,34,35,36]. A
parametric study of various parameters are presented in
graphical and tabular form. Also the comparison of
present results with the numerical results available in
literature is given as a special case of the present study.

2 Mathematical formulation

We have considered the unsteady incompressible
electrically conducting fluid flow over a rotating cone in a
viscous fluid with nanoparticles. The cone is rotating with
time-dependent angular velocity about the axis of
symmetry. The non-rotating curvilinear coordinate system
is given in figure 1, wherex is taken along a meridional
section, they-axis along a circular section and thez-axis
normal to the surface of cone. It is assumed thatu, v and
w be the velocity components in tangential, azimuthal and
normal directions, respectively. The wall temperatureTw
and wall nano particle volume fractionCw are linear
functions of distancex and the free stream temperatureT∞
and nano particle volume fractionC∞ are constant. The
time dependent angular velocityΩ0 of the cone causes
the unsteadiness in the flow field. The surface of cone is
taken to be electrically insulated. The magnetic fieldB0 is
applied inz-direction. The magnetic Reynolds number is

Fig. 1: Schematic diagram of the physical model and coordinate
system.

assumed to be smallRem = µ0σV L ≪ 1 whereµ0, σ , V
and L are the magnetic permeability, the electrical
conductivity, characteristic velocity and the length,
respectively. Under such expectations, we neglect the
induced magnetic field. As the flow is not executed by the
applied or polarization of voltage, the electric fieldE = 0.
Hence only the applied magnetic field contributes towards
the Lorentz force. Moreover axi-symmetric nature of flow
is considered and the pressure gradient and viscous
dissipation effects are neglected.

The boundary layer equations for flow, heat and mass
transfer over a rotating cone in a nanofluid are listed as

1
x

∂ (xu)
∂x

+
∂ (w)

∂ z
= 0, (1)

∂u
∂ t

+u
∂u
∂x

+w
∂u
∂ z

−
v2

x
= ν

∂ 2u
∂ z2 −

σ
ρ

B2u, (2)

∂v
∂ t

+u
∂v
∂x

+w
∂v
∂ z

+
uv
x

= ν
∂ 2v
∂ z2 −

σ
ρ

B2v, (3)

∂T
∂ t +u ∂T

∂ x +w ∂T
∂ z = κ0

ρc f

∂ 2T
∂ z2 − 1

ρc f

∂qr
∂ t + τ [DB

∂C
∂ z

∂T
∂ z +

DT
T∞

( ∂ T
∂ z )

2],

(4)

∂C
∂ t

+u
∂C
∂x

+w
∂C
∂ z

= DB
∂ 2C
∂ z2 +

DT

T∞

∂ 2T
∂ z2 (5)

The boundary conditions applicable for problem are given
by [17]

u(x,0, t) = w(x,0, t) = 0, v(x,0, t) = Ω0xsinα∗R(t∗)
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T (x,0, t) = Tw, C (x,0, t) =Cw

u(x,∞, t) = 0, v(x,∞, t) = 0

T (x,∞, t) = T∞, C (x,∞, t) =C∞ (6)

Here ρ is the density,t and t∗ (= Ω sinα∗t) are the
dimensional and dimensionless times, respectively,α∗ is
the semi-vertical angle of the cone,υ is the kinematic
viscosity,Ω0 is the angular velocity of the cone,T is the
temperature,C is the species concentration,κ0 is the
thermal conductivity of the fluid,qr is the radiative heat
flux, τ is the ratio of nano particle heat capacity and the
base fluid heat capacity,DB is the Brownian diffusion
coefficient and DT is the thermophretic diffusion
coefficient, the subscriptsw and∞ denote the conditions
at the wall and the ambient conditions, respectively. By
using the Rosseland approximationqr = −4σ∗

3κ∗
∂T 4

∂ z in
which σ∗ denotes the Stefan–Boltzman constant andκ∗

the Rosseland mean absorption coefficient. The fluid
phase temperature differences within the flow are
sufficiently small so thatT 4 may be described as a linear
function of temperature. Hence, expandingT 4 in Taylors
series about the free-stream temperatureT∞ and
neglecting higher order terms, we have
T 4

≅ 4T 3
∞T −3T 4

∞ . Invoking these in Eq. 4 we may write

∂T
∂ t +u ∂T

∂x +w ∂T
∂ z =

(

κ0
ρc f

+ 16σ∗T 3
∞

3ρc f κ∗

)

∂ 2T
∂ z2 + τ [DB

∂C
∂ z

∂T
∂ z +

DT
T∞

( ∂T
∂ z )

2].

(7)
We now reduce the number of independent variables

in Eqs.(1)− (5) from three(x,z, t) to two (η , t∗) with the
help following transformations.

η =

(

Ω0 sinα∗

v

)
1
2

z, t∗ (= Ω sinα∗t) , u(x,z, t)

= −2−1(Ω0xsinα∗)R(t∗)h
′
(η , t∗) ,

v(x,z, t) = (Ω0xsinα∗)R(t∗)g(η , t∗) ,

w(x,z, t) = (vΩ0 sinα∗)
1
2 R(t∗)h(η , t∗) ,

T (x,z, t)−T∞ = (Tw −T∞)θ (η , t∗) , Tw −T∞ = (T0−T∞)
( x

L

)

,

C (x,z, t)−C∞ = (Cw −C∞)φ (η , t∗) , (Cw −C∞) = (C0−C∞)
( x

L

)

,

R(t∗) = 1+ εt∗, Pr=
ν
α
, Le =

α
DM

,

Nb =
(ρc)pDB (Cw −C∞)

ν(ρc) f
, M =

σB2
0

ρ
(Ω0 sinα∗)−1

Nt =
(ρc)pDT (Tw −T∞)

ν(ρc) f T∞
, Le =

ν
DB

, k =
4σ ∗T 3

∞
κ∗κ0

. (8)

The above transformations satisfies the continuity equation
i.e Eq.(1) and Eqs.(2)− (5) are stated as

h
′′′

−R(t∗)hh
′′
+ 1

2R(t∗)(h
′
)2−2R(t∗)g2− 1

R(t∗)
dR
dt∗ h

′
− ∂h

′

∂ t∗ −Mh
′
= 0,

(9)

g
′′

+R(t∗)
(

gh
′

−hg′
)

−

(

M+
1

R(t∗)
dR
dt∗

)

g−
∂g
∂ t∗

= 0,

(10)

(1+ 4
3k)θ ′′

−Pr
{

R(t∗)
(

hθ ′
−h

′ θ
2

)

− ∂θ
∂ t∗ +Nbφ ′θ ′

+Ntθ ′2
}

= 0,

(11)

φ
′′

−Le

{

R(t∗)

(

hφ
′

−h
′ φ
2

)

+
∂φ
∂ t∗

}

+
Nt
Nb

θ
′′

= 0. (12)

The boundary conditions take the form

Whenη → 0 : h(η , t∗) = 0= h
′
(η , t∗), g(η , t∗) = 1, θ(η , t∗) = φ(η , t∗) = 1,

as η → ∞ : h
′
(η , t∗) = 0, g(η , t∗) = 0, θ(η , t∗) = φ(η , t∗) = 0, (13)

whereNb is the Brownian motion parameter ,Nt is the
Thermophoresis parameter andLe is the Lewis number,k
is the radiation number,M is the dimensionless magnetic
parameter and prime denotes the derivative with respect
to η . The dimensionless local surface skin friction
coefficients in tangential and azimuthal directions, the
local Nusselt number and local Sherwood number are
given as whereNb is the Brownian motion parameter ,Nt
is the Thermophoresis parameter andLe is the Lewis
number,k is the radiation number,M is the dimensionless
magnetic parameter and prime denotes the derivative with
respect toη . The dimensionless local surface skin friction
coefficients in tangential and azimuthal directions, the
local Nusselt number and local Sherwood number are
given as

C f xRe
1
2
x =

2µ( ∂u
∂ z )

∣

∣

∣

z=0

ρ (Ω0xsinα∗)2 =−R(t∗)h
′′

(0, t∗),

2−1C f yRe
1
2
x = −

2µ( ∂v
∂ z )

∣

∣

∣

z=0

ρ (Ω0xsinα∗)2 =−R(t∗)g
′

(0, t∗), (14)

Nu = −

[

x
(

∂T
∂ z

)]

z=0

Tw −T ∞
=−Re

1
2
x θ ′(0, t∗),

Sh = −

[

x
(

∂C
∂ z

)]

z=0

Cw −C∞
=−Re

1
2
x φ ′(0, t∗), (15)

whereRex =
Ω0x2 sinα∗

v is the local Reynolds number.

3 Homotopy analysis method

The initial approximationsh0, g0, θ0 and φ0 with the
respective auxiliary linear operators for the HAM
solutions are

h0 (η , t∗) = 0, (16)

g0 (η , t∗) = exp(−η) , (17)

θ0 (η , t∗) = exp(−η) , (18)

φ0 (η , t∗) = exp(−η) , (19)

ιh =
∂ 3h(η , t∗)

∂η3 −
∂h(η , t∗)

∂η
, (20)
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ιg =
∂ 2g(η , t∗)

∂η2 +
∂g(η , t∗)

∂η
, (21)

ιθ =
∂ 2θ (η , t∗)

∂η2 +
∂θ (η , t∗)

∂η
, (22)

ιφ =
∂ 2φ (η , t∗)

∂η2 +
∂φ (η , t∗)

∂η
. (23)

Some studies on the method are presented in [32,33,34,
35,36].

4 Optimal convergence-control parameters

It is seen that the HAM solutions, contain the non-zero
auxiliary parametersch

0, cg
0, cθ

0 andcφ
0 , which are used to

find the convergence-region and rate of the homotopy
series solutions. In order to determine the optimal values
of ch

0, cg
0, cθ

0 andcφ
0 it is used here the so-called average

residual error defined by [33].

εh
m =

1
k+1

k

∑
j=0

[

Nh(
m

∑
i=0

ĥ(η , t∗),
m

∑
i=0

ĝ(η , t∗))
y= jδy

]2

dy

(24)

εg
m =

1
k+1

k

∑
j=0

[

Ng(
m

∑
i=0

ĥ(η , t∗),
m

∑
i=0

ĝ(η , t∗))
y= jδy

]2

dy

(25)

εθ
m = 1

k+1 ∑k
j=0

[

Nθ (∑m
i=0 ĥ(η , t∗),∑m

i=0 θ̂ (η , t∗) ,∑m
i=0 φ̂ (η , t∗)) y= jδy

]2
dy

(26)

εφ
m = 1

k+1 ∑k
j=0

[

Nφ (∑m
i=0 ĥ(η , t∗),∑m

i=0 θ̂ (η , t∗) ,∑m
i=0 φ̂ (η , t∗)) y= jδy

]2
dy

(27)
Following Liao[33]

ε t
m = εh

m + εg
m + εθ

m + εφ
m (28)

whereε t
m is the total squared residual error,δy = 0.5,

k = 20. Total average squared residual error is minimized
by using symbolic computation software Mathematica.
We have directly applied the commandMinimize to
obtain the corresponding local optimal convergence
control parameters. Tables 1 and 2 are displayed for the
case of single optimal convergence control parameter. It is
found that the averaged squared residual errors and total
averaged squared residual errors are reduces as the order
of approximation increases. Therefore, Optimal
Homotopy Analysis Method gives us a great choice to
select any set of local convergence control parameters to
obtain convergent results.

Table 1: Total Averaged squared residual errors using single
optimal convergence control parameters.

m c0 εt
m

5 −0.56 1.02×10−3

10 −0.63 4.19×10−4

15 −0.50 3.03×10−4

Table 2: Average squared residual errors using Table 1.
m 5 10 15
εh

m 2.00×10−4 5.64×10−7 1.68×10−7

εg
m 2.67×10−5 1.46×10−6 6.55×10−8

εθ
m 5.58×10−4 1.28×10−4 1.11×10−5

εφ
m 2.39×10−4 2.20×10−4 2.11×10−4

5 Graphical results and discussion

The governing nonlinear boundary layer partial
differential equations(9)− (12) along with the boundary
conditions(13) are solved by optimal homotopy analysis
method. The graphical and numerical results of
non-dimensional velocities, temperature, nano particle
volume fraction, Skin friction coefficients, Nusselt and
Sherwood numbers are computed for magnetic parameter
M, Radiation parameterκ , Prandtl numberPr, Brownian
motion parameterNb, Thermophoresis parameterNt and
Lewis numberLe. The influence of magnetic parameter
M on the velocity−h

′
(η , t∗) is presented in Fig. 2. It is

depicted from the respective figure that the increase inM
decreases the velocity and the boundary layer thickness.
The velocityg(η , t∗) shows the similar behavior as that of
velocity −h

′
(η , t∗) for M (see Fig. 3). Figs. 4 and 5 are

plotted to see the influence of magnetic parameterM on
the local Skin friction coefficients in tangential and

azimuthal directions (C f xRe
1
2
x , 0.5C f yRe

1
2
x ) for increasing

and decreasing angular velocityR(t∗) respectively. It is

seen from the Figs. 4 and 5 thatC f xRe
1
2
x decreases by an

increase in the values ofM for both increasing and

decreasing angular velocity but 0.5C f yRe
1
2
x shows an

increasing variation. The magnetic field induces a
magnetic force in the tangential direction which inclines
to directly oppose−h

′
(η , t∗), therefore the values of

−h
′
(η , t∗) is reduced with increasingM and the

tangential velocity gradient is also decreased with
increasingM. On the other side, the non dimensional
velocity g(η , t∗) is an increasing function ofM as the
magnetic force induced by the magnetic field supports the
motion. This causes in an increase in the skin friction

coefficient in the azimuthal direction 0.5C f yRe
1
2
x .

Meanwhile an increase in the angular velocity with time
directly affects the tangential and azimuthal velocity
components, the skin friction coefficients are expressively
affected. But, the influence of an increase in the angular
velocity on the energy and concentration equations are
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Table 3: Comparison of OHAM results and numerical results
whenk = t∗ = λ = Nb = Nt = 0

OHAM results Chamkha et.al[17]

M −h
′′

(0) −g
′

(0) −h
′′

(0) −g
′

(0)
0 1.0207 0.6158 1.0207

1.0210∗
0.6159
0.6160∗

0.5 0.7703 0.8488 0.773
0.7700∗

0.8488
0.8490∗

1 0.6190 1.0692 0.6194
0.6190∗

1.0692
1.0690∗

2 0.4611 1.4418 0.4613
0.4610∗

1.4418
1.4420∗

3 0.3813 1.7477 0.3813
0.3810∗

1.7477
1.7480∗

1 0.3308 2.0097 0.3308
0.3310∗

2.0097
2.0100∗

slightly indirect. Fig. 6 elucidate the effect of radiation
parameterκ on temperature fieldθ(η , t∗). It is inspected
from the figure that θ(η , t∗) increases forκ . The
temperature and the thermal boundary layer thickness
decreases with an increasing values of Prandtl numberPr.
The reason behind this is that greater Prandtl numberPr
fluid has a lower thermal conductivity which results in
thinner thermal boundary layer and therefore the rate of
heat transfer rate increases. For engineering point of view,
the heat transfer rate should be low. This can be achieved
by keeping the low temperature difference between the
surface and the free stream fluid, using a low Prandtl
number fluid, maintaining the surface at a constant
temperature instead of at a constant heat flux. The effects
of Brownian motion parameterNb on the temperature
θ(η , t∗) and the nano particle volume fractionφ(η , t∗) is
shown in Figs. 8 and 9 respectively. The behavior is
found to be opposite for both the fields. It is illustrated
from Figs. 10 and 11 that the Thermophoresis parameter
Nt increases both the temperature as well as the nano
particle volume fraction respectively. Figs. 12 and 13
predicts that Lewis numberLe causes an increase in
temperatureθ(η , t∗) while decreases the nano particle
volume fraction φ(η , t∗). Table 3 and 4 are the
comparison tables computed for OHAM results with the
Numerical results [5,17]. It is obvious from the tables that
there is a decent agreement between the OHAM and
numerical results. The tabular values of local Nusselt
number and local Sherwood number for Prandtl number
Pr, radiation parameterκ and nano parameters are
computed in table 5. It is found that local Nusselt number
is a decreasing function ofκ , Nb, Nt andLe. whereas for
Prandtl number it reveres its trend. Further the local
Sherwood number increases forPr, Le and Nb but
decreases forNt andκ .

Fig. 2: effects of M on tangential velocity−h′(η , t∗) when
R(t∗) = 1+ εt∗, ε = 0.2 att∗ = 1

Fig. 3: effects ofM on Azimuthal velocityg(η , t∗) whenR(t∗) =
1+ εt∗, ε = 0.2 att∗ = 1

Table 4: Comparison of OHAM results and numerical results
whenk = t∗ = λ = Nb = Nt = 0 ∗Values taken from Sparrow
and Cess [4]

OHAM results Chamkha et.al[17]
↓ Pr,M 0.1 1 0.1 1
0.5 0.0426 0.2819 0.0426

0.0428
0.2819
0.282∗

1 0.0281 0.1937 0.0282
0.0244

0.1939
0.194∗

2 0.0105 0.0981 0.0107
0.0108

0.0981
0.0982∗

3 0.00612 0.0585 0.00612
0.00614

0.0587
0.0588∗

4 0.00400 0.0346 0.00406
0.00407

0.0344
0.0395∗

6 Conclusions

The present work is the study of MHD boundary layer
flow on a rotating cone in a rotating nanofluid with
radiative effects. The reduced partial differential
equations are treated by optimal homotopy analysis
method. Magnetic parameterM decreases the velocity in
the primary as well as in the secondary direction. The
thermal boundary layer increases for increasing values for
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Fig. 4: effects ofM on tangential Skin friction coefficientC f xRe
1
2
x

Fig. 5: effects of M on Azimuthal Skin friction coefficient

C f yRe
1
2
x

Fig. 6: effects of k on temperature fieldθ(η , t∗) whenR(t∗) =
1+ εt∗, ε = 0.2 att∗ = 1

Fig. 7: effects of Pr on temperature fieldθ(η , t∗) whenR(t∗) =
1+ εt∗, ε = 0.2 att∗ = 1

Fig. 8: effects ofNb on temperature fieldθ(η , t∗) whenR(t∗) =
1+ εt∗, ε = 0.2 att∗ = 1

Fig. 9: effects ofNb on nano particle volume fractionφ(η , t∗)
whenR(t∗) = 1+ εt∗, ε = 0.2 att∗ = 1
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Fig. 10: effects ofNt on temperature fieldθ(η , t∗) whenR(t∗) =
1+ εt∗, ε = 0.2 att∗ = 1

Fig. 11: effects ofNb on nano particle volume fractionφ(η , t∗)
whenR(t∗) = 1+ εt∗, ε = 0.2 att∗ = 1

Table 5: Numerical variation of local Nusselt number and local
Sherwood number for different emerging parameters

Pr Le Nb Nt k −θ ′

(0) −φ ′

(0)
2.0 1.01316 0.59033
3.0 1.32795 0.60863
4.0 1.66688 0.62706

1.0 0.51703 0.38328
2.0 0.51637 0.44999
3.0 0.51571 0.51622

0.2 0.46384 0.56097
0.4 0.43489 0.60411
0.6 0.40716 0.61833

0.2 0.46825 0.33016
0.4 0.44800 0.10379
0.6 0.42873 −0.05937

0.3 0.61215 0.61215
0.6 0.58345 0.58834
0.9 0.57343 0.57343

Fig. 12: effects ofLe on temperature fieldθ(η , t∗) whenR(t∗) =
1+ εt∗, ε = 0.2 att∗ = 1

Fig. 13: effects ofLe on nano particle volume fractionφ(η , t∗)
whenR(t∗) = 1+ εt∗, ε = 0.2 att∗ = 1

Brownian motion parameter Nb, Thermophoresis
parameterNt and Lewis numberLe. The effect of
Thermophoresis parameterNt is to increase the nano
particle fraction. The nano particle fraction is a
decreasing function of Brownian motion parameterNb
and Lewis numberLe. The behavior of temperature
profile is opposite for Prandtl numberPr and radiative
parameterk. The analytical computation is in acceptable
form when comparing with the previous available
numerical calculations (see table 3 and 4).
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