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Abstract: The outer coating of an optical fiber cable protects the optical fiber, and the contraction rate of the outer coating can affect
the communication capacity and distance, so the contraction rate is often regarded as the key factor in defining the quality of an optical
fiber cable. For this reason, using the example of the circular single-pin optical fiber cable manufacturing process of the largest optical
communication manufacturer in the world, the Taguchi Method (TM) is used to screen the variables that have significant effects on the
contraction rate of the outer coating. Furthermore, the optimization engineering of Response Surface Methodology (RSM) is utilized
for the empirical research to acquire a prediction model that can be used to optimize the optical fiber outer coating injection molding
process. The research results show that the contraction rate predictedby the integration of the Taguchi Method and RSM is 2.28%.
The empirical results reveal that the contraction rate of the outer coating indeed decreased from the original 3.83% down to 2.16%,
indicating that the integration of the Taguchi Method and RSM could effectively improve the quality.
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1 Introduction

An optical fiber cable is regarded as a tool to achieve
optical conduction by applying the Total Reflection
Theory for a fiber made of glass or plastic materials.
Optical fiber communication facilitates long-distance
transmission at high speeds and is able to avoid
electromagnetic interference (EMI) while providing low
transmission loss, high secrecy, and high bandwidth.
Optical fibers are used in long-distance videotext systems,
telephones, the Internet, and computer data transmission.
In recent years, the development of multimedia
transmission media, such as FTTB (Fiber To The
Premises), FTTH (Fiber To The Home), and LANs (Local
Area Networks), has resulted in an increasing demand for
optical fiber cable. Therefore, the optical fiber cable
connection technology is becoming more critical [1].

Circular single-pin optical fiber cable is the most
commonly and widely applied indoor optical fiber cable,
and it is often used in various device components,

instrument panels, and the pigtails and patch cords for
equipment. Nevertheless, the outer coating of assembled
patch cords is fixed on metal components so that the
optical fiber cannot contract and shorten when the outer
coating contracts, but this slightly bends the outer
coating, which causes optical signal loss and affects the
communication capacity and transmission distance of the
cable. For this reason, the contraction rate of the optical
fiber outer coating has been defined as the key factor in
determining the quality of the cable. Because of the
increasing competition within the global market,
enterprises have come to expect higher-quality products
[2].

In the industries related to optical fiber
communication, the Taguchi Method is the most
commonly used experimental design because exploring
the many experimental parameters identified by
traditional experimental designs would increase the
number of experimental runs and require too many
valuable resources, such as money and time, to be spent.
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Comparatively, the Taguchi Method makes it possible to
identify an optimal value from the preset factor levels
with fewer experiments and in a shorter period of time.
Nonetheless, the value of the optimal level acquired with
the Taguchi Method might not be the global optimum [3].
As a result, parameter optimization is necessary. Many
researchers, including Yoo et al. [4], Wang et al. [5], and
Ne?eli et al. [6], have applied Response Surface
Methodology (RSM) to plan experiments and improve the
quality of products in the past few years. This approach
not only reduces the experimental costs and time but also
identifies the optimal process parameters that can reduce
the variability of product quality. However, the key
factors from among the experimental variables are not
identified with RSM. By integrating the experimental
design methods of the Taguchi Method and RSM, the
former is utilized for screening the primary variables
affecting the contraction rate of the optical fiber outer
coating, and the optimization engineering of the latter is
applied to planning the experiments and verifying the
variables screened with the Taguchi Method to identify
the optimal process parameter composition.

2 Literature Review

The Taguchi Method and RSM are often independently
utilized to develop new products and to improve quality.
Nevertheless, these two experimental design methods
appear to have significant differences in terms of
efficiency and additivity.

2.1 Taguchi Method

The Taguchi Method, transformed from traditional
experimental design methods, was developed by Dr.
Taguchi Genichi in 1949. He wanted to reduce the
number of experiments and effectively examine problems
in the research and development of communication
systems [7]. Such a unique experimental design method
could be used to improve the process and product design
by combining orthogonal arrays with simple function
computation. Taguchi et al. [8] indicated that the Taguchi
Method uses parameter design to improve the quality by
defining the target functions aiming at the quality
required for improvement, identify the factors and levels
in the target functions, and apply orthogonal arrays to
determine the allocation of experimental factors and the
number of times so that fewer experiments are needed to
acquire the same information obtained in full-factorial
experiments. As a result, little experimental data needs to
be analyzed to effectively improve product quality. Julie
et al. [9] noted that Orthogonal Arrays and S/N Ratios are
the major tools used in the Taguchi Method and
emphasized the consideration of quality in product and
process design. In other words, the emphasis was on

reducing the variability of product performance by
utilizing ANOVA to understand the effects of various
significant factors in tolerance design and further setting
the tolerance of different significant factors based on the
costs of the significant factors to acquire the best quality
and most robust design. Utilizing engineering knowledge
to plan the experiments, the Taguchi Method focuses on
finding a solution to achieve the objectives. The
experimental results of Taguchi’s experimental design
method have the following advantages: high
reproducibility, easy identification of the experimental
variables, a reduced number of experiments, and easily
understood analyses. The Taguchi Method therefore has
been utilized for improving the industry and optimizing
parameter design. For instance, Su et al. [10] effectively
enhanced optical whiteness with Taguchi’s Dynamic
Approach, Hong [11] identified the key factors in the
market segment with the Taguchi Method, and Souza et
al. [12] applied the Taguchi Method to improving the
quality of hemodialysis. By computing the target function
and transforming it into a Signal-to-Noise ratio, the
Signal-to-Noise ratio of the quality characteristics is
divided into the Larger the Better, Nominal the Better,
and the Smaller the Better in the definition of Taguchi
Method. This study aims to decrease the contraction rate
of optical fiber outer coatings; the smaller the contraction
rate, the better the communication capacity and
transmission distance. In this case, the Smaller the Better
(STB) is used to compute the Signal-to-Noise ratio of the
contraction rate, as shown in equation (1).

SNSTB=−10· log10(
1
n

n

∑
i=1

y2
i ) (1)

whereyi is the performance response to theith setting
of the parameter combination, andn is the number of
samples for the performance response corresponding to
the number of design parameter combinations. The
variability is inversely proportional to the S/N ratio,
meaning that a larger S/N ratio corresponds to a more
robust system. Following the analysis of variance
(ANOVA), the experimental results are acquired by
independently extracting the main effects of these factors
and determining the statistically significant factors. This
process identi?es the controlling factors and optimizes the
magnitude of the effects accordingly. Although the
Taguchi Method can be used to screen the key factors
from the experimental factors and to determine an
optimum from the preset factor levels, such values are not
necessarily the global optimum [13]. For this reason, a
parameter optimization study is required.

2.2 Response Surface Methodology (RSM)

Different from the Taguchi Method, Response Surface
Methodology basically combines statistical and
experimental methods with data-fitting techniques. Based
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on the responses acquired in the experiments, Regression
Analysis is utilized to identify the relationships between
the responses and the variables to establish a
mathematical model that satisfies the relationship
between a group of test factors and objective functions.
This model is then used to explore the optimal solution in
the experimental area [14][15]. Because of its
practicability, favorable efficiency, and ease of
implementation, RSM has been widely applied to various
industries, such as chemical engineering, semiconductors,
electronics manufacturing, machining, and metal cutting.
Bappa et al. [16] applied RSM to rapidly identify the
optimal welding set for laser transmission welding.
Paventhan et al. [17] utilized Response Surface
Methodology to design their experiments and established
a Regression Model to identify the optimal welding
parameters and efficiently determine the effects of various
factors on the quality. Rajamurugan et al. [18] applied
RSM to the modeling and analysis of thrust force in the
drilling of GFRP Composites to identify the optimal
setting for reducing the processing time and significantly
enhancing the production rate. Another important issue
for Response Surface Methodology is explaining the
shape of the Response Surface based on the relationships
between the responses and independent variables. When
the independent variables change values in certain
directions, the responses should also change [19]. In other
words, RSM tends to focus on the relationships between
multiple factors (x1,x2,x3, ...,xk) and the response
(quality) y. Consequently, the functional relationship
between the responses and the independent variables
should first be determined to produce a proper
approximating function, and then the factor setting levels
(xi) needed to obtain the optimal response should be
identified. The relationship between the response
variables and the independent variables (factors) can be
presented in the form of equation (2).

y= f (x1,x2,x3, ...,xk) (2)

where f is a multivariate function, the items represent
the factors (independent variables), and the relationship
describes a curved surfacey = f (x1,x2,x3, ...,xk) that is
known as a Response Surface.

Equation (3) and (4) are First-Order and Second-Order
Response Surfaces, respectively.

y= β0+β1x1+β2x2+ ...++βkxk+ ε , (3)

y= β0x0+
k

∑
i=1

βixi +
k

∑
i=1

βii x
2
i +∑

i< j
∑βi j xix j + ε (4)

A Response Surface is analyzed through the fitting
surface, and the analysis of the fitting surface is regarded
as an analysis of the real system when the fitting surface
thoroughly describes the response function. Generally,
Response Surface Methodology utilizes First-Order and

Second-Order models; the Second-Order model would be
used in cases in which the First-Order model is not
suitable [19]. When selecting fitting experiments
requiring Second-Order RSM, Central Composite Design
(CCD) experiments are normally performed. CCD was
developed by Box and Wilson [20] and improved by
successive researchers. Because Second-Order fitting
with CCD provides favorable predictions, the fitting
model shows consistent and stable variance for the
prediction of any input point. CCD combines the original
fractional factorial or full factorial design with axial runs
and center points to produce Central Composite Design
experiments. Including axial runs in the design is done to
introduce quadratic terms in the model, while the
inclusion of center points tends to test the curvature of the
response surface. In the beginning of the solving
procedure, a starting point is selected as the experimental
center for the CCD factorial fitting experiments.
Regression Analysis is applied to the experimental results
to find a suitable model. A Desirability Function is further
applied to acquire the optimal processing parameter
composition and operating window.

3 Research Methods

The Taguchi Method was first utilized to screen variables
that appeared to have significant effects on the quality.
RSM was further used to optimize the screened variables
and to determine the operating window by identifying the
optimal process parameter composition. The steps are
described below. 1. Determine experimental variables and
levels: The experimental variables and levels were
selected according to the required parameters and the
range for the process. 2. Design and run experiment: The
Taguchi Method was applied to the experiments and data
were recorded. 3. Screen key independent variables: By
analyzing the experimental variables with ANOVA and
testing and calculating the percent contribution, the
variables that appeared to have significant effects on the
quality were identified, and the ideal contraction ratio was
predicted. 4. Create response surface design and run
experiment: The screened variables with notable effects
were further investigated using CCD experiments with
RSM. The data were analyzed, and the fitting model was
applied to study the interactions among factors; isopleths
and a response surface map were used for in-depth
investigation of the Response Surface System to identify
the process region that produced the optimal responses. 5.
Optimization: A Desirability Function was utilized to
determine the operating window necessary to acquire the
optimal composition and to predict the ideal contraction
ratio, which were further compared with the predictions
from the Taguchi Method. 6. Confirmation tests: The
optimal composition predicted by the response surface
design was tested with confirmation experiments, and the
results were compared with the prediction results from
the Taguchi Method and RSM
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4 Case Study

4.1 Determine experimental variables and levels

The key process used to form optical fiber cable involves
melting plastic for take-up (Figure 1). Six factors
(experimental variables) were selected that effect the key
processing procedure used to form optical fiber cable
(Figure 1). The levels were selected by the process
managers, engineers, and quality assurance personnel
from the optical fiber cable manufacturer. The required
parameters and the range for the present optical fiber
cable process were analyzed and discussed. The settings
chosen for the experimental variables and levels are
shown in Table 1.

die size (L1) model size (L2)

die stretch ratio=L2/L1external die

external die

��������die

operating 
temperature

air cooling distance water cooling temperature

set-out speed

take-up speed

melt plastic extrusion molding cooling take-up

Fig. 1: Key processing procedure used to form optical fiber
cable.

4.2 Design and run experiment

Table 2 shows the orthogonal array and the associated
experimental results for the contraction rate with the
calculated S/N ratios. The data analysis were mainly
applied to screening the experimental variables with
significant effects on the quality, so the interactions
among variables are not discussed in this study.

4.3 Screen key independent variables

Variables with remarkable effects on the quality were
screened by analyzing the experimental variables with
ANOVA and testing and calculating the percent
contribution.

4.3.1 Analysis of experiment factors

Analysis of the influence of each experiment factor (A, B,
C, D, E, and F) on the contraction rate were performed
with a so-called S/N response table, using the Minitab 16
software package. Table 3 shows the orthogonal array and
the associated experimental results for the contraction rate

with the calculated S/N ratio. The S/N response table for
the contraction rate is presented in Table 3. It shows the
calculated S/N ratios of experimental factors in each level.
The experimental factor with the strongest influence was
determined depending on the value of delta, as shown in
Table 3. Delta equals the difference between the maximum
and the minimum S/N ratios for a particular experimental
factor. The higher the value of delta, the more influential
the experimental factor. The experimental factors and their
interactions were sorted according to the values of delta.

Referring to Lee [21], Sheu [22], and Yang [23], the
experimental factors with a value of delta larger than the
mean effect were selected as the key factors in this study.
From Tables 3 and 4, the strongest influence was exerted
by the air cooling distance (factor D) and the operating
temperature (factor B), respectively, meaning that the
response table presented in Table 4 also gave the same
results for the influence of the factors.

The plots for the S/N ratio are shown in Figure 2. The
optimal levels for each experimental factor could be
easily determined from these graphs in accordance with
Taguchi’s ”the smaller the better” performance
characteristic. The response graphs showed the variation
of the S/N ratio when the setting of the experiment factors
was changed from one level to another. Figure 2 suggests
that the optimal settings for obtaining the minimum
contraction rate involve the following combination of the
experimental factors: A1, B2, C2, D1, E1, and F2 levels.

Fig. 2: Main effect plots for contraction rate: (a) S/N ratio and
(b) mean.

4.3.2 ANOVA

ANOVA was used to investigate which design parameter
significantly affected the quality characteristic. ANOVA
was performed by separating the total variability of the
S/N ratio into contributions from each of the design
parameters and the errors. The total variability of the S/N
ratio was measured by the sum of the squared deviations
from the total mean S/N ratio. Su et al. [10], Chen and Ou
[24], and Souza et al. [12] applied P test values to proceed
with the decision-making process. The P value was
calculated for each design parameter. Usually, when the P
value is> 0.05, the related design parameter appears to
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Table 1: Experiment factors and levels
code Experimental variables Level in coded form

1 2 Units
A Die stretch ratio 1.5 2.1 R
B Operating temperature 162.0 175.0 ◦C
C Water cooling temperature 25.0 35.0 ◦C
D Air cooling distance 10.0 35.0 cm
E Take-up speed 20 40 m/min
F Set-out speed 20 40 m/min

Table 2: Experimental design using L8 orthogonal array and response value

Run Order
Die

Stretch
ratio

Operating
temperature

Water
cooling

temperature

Air
cooling
distance

Take-up
speed

Set-up
speed

Contraction
Rate

S/N Ratios

1 1 1 1 1 1 1 0.0352 29.0691
2 1 1 1 1 2 2 0.0440 27.1309
3 1 2 2 1 1 2 0.0289 30.7820
4 1 2 2 2 2 1 0.0391 28.1565
5 2 1 2 1 2 1 0.0355 28.9954
6 2 1 2 2 1 2 0.0442 27.0916
7 2 2 1 1 2 2 0.0308 30.2290
8 2 2 1 2 1 1 0.0405 27.8509

Table 3: S/N response table for the contraction rate
Level A B C D E F

1 28.78 28.07 28.57 29.77 28.70 28.52
2 28.54 29.25 28.76 27.56 28.63 28.81

Delta 0.24 1.18 0.19 2.21 0.07 0.29
Rank 4 2 5 1 6 3

have a significant effect on the quality characteristic;
when the P value for a factor is> 0.05, that factor is not
significant and can be neglected. Hong [11], Hsiang and
Lin [25], and Su and Yeh [3] applied the Percent
Contribution to the decision-making process. Percent
Contribution equals the ratio of the Pure Sum of Squares
(Pure SS) to the Total Sum of Squares (Total SS) of each
factor. When the percentage (lerr) of pooled error≤ 15%,
no key factor was lost in the experiment. In other words,
the factors in the pooled error terms were not significant
and could be neglected. The examination of the calculated
P test values and percent contribution for all experiment
factors also shows a very high influence of factor B and
factor D on the contraction rate (Table 5).

The P value was first examined, and the P values of
factors B and D were 0.029 and 0.015, respectively.
Because the P values were≤ 0.05, factors B and D could
be judged to have significant effects on the contraction
rate. In contrast, the P value of factors A, C, E, and F>

0.05 meant that these factors were not significant and
could be neglected. Percent Contribution was further
examined: the Percent Contribution of the air cooling
distance (factor D) and the operating temperature (factor
B) was 21.03% and 74.95%, respectively. Furthermore,

the percentage of the pooled error was 4.02%, revealing
that no important factor was being neglected.

Based on the analysis of experimental factors and
ANOVA, it was judged that the air cooling distance
(factor D) and the operating temperature (factor B) had
remarkable effects on the contraction rate.

4.3.3 Prediction

Based on the above discussion, the optimal control
factor-level combination was set asB2D1. Next, the
contraction ratio under the optimal combination needed to
be predicted. To avoid overestimation, only Factors B and
D were used for calculating the predicted contraction
ratio. The average of eight contraction ratios was T =
0.03728. The average contraction ratio atB2 wasav.B2 =
0.03483, and the average contraction ratio atD1 was
av.D1 = 0.03260. The expected contraction ratio at the
optimal combination was Contraction ratio = T + (av.B2 -
T) + (av.D1 - T) = av.B2 + av.D1 - T = 0.03015
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Table 4: Means response table for the contraction rate
Level A B C D E F

1 0.03680 0.03972 0.03762 0.03260 0.03720 0.03757
2 0.03775 0.03483 0.03692 0.04195 0.03735 0.03697

Delta 0.00095 0.00490 0.00070 0.00935 0.00015 0.00060
Rank 3 2 4 1 6 5

Table 5: Results of the analysis of variance for the contraction rate
Source df SS MS F P values Pure SS Contribution (%)

A 1 0.11803* 0.11803 20.78 0.137 – –
B 1 2.79816 2.79816 492.62 0.029* 2.7238 21.03%
C 1 0.06947* 0.06947 12.23 0.177 – –
D 1 9.78090 9.78090 1721.93 0.015* 9.7065 74.95%
E 1 0.00993* 0.00993 1.75 0.412 – –
F 1 0.16866* 0.16866 29.69 0.116 – –

Error 1 0.00568* 0.00568 – –
Pooled error (5) (0.37177) (0.074354) 0.5205 4.02%

Total 7 12.9508 12.9508 100%

4.4 Create response surface design and run
experiment

Using the Taguchi Method to screen the factors, the air
cooling distance and the operating temperature were
determined to be the key factors having notable effects on
the contraction rate. As a consequence, the air cooling
distance and the operating temperature were used in the
CCD allocation and experiments with RSM, and isopleths
and a response surface map were used to facilitate
in-depth discussions of the Response Surface System to
identify the regions that would produce the optimal
responses.

4.4.1 Response Surface Methodology (RSM)

Both the operating temperature and the air cooling
distance were regarded as experimental variables for the
Central Composite Design (CCD) that was created using
the Minitab 16 software package. The experimental
allocation, factor levels, and experimental results are
shown in Table 6 (value of Alpha (α) face centered).

4.4.2 Fitting Results of RSM

For the Response Surface Analysis, the fitness of the
established Regression Model should first be confirmed.
The significance analysis of the Lack-of-Fit is normally
applied to understanding the fitting between regressors
and responses. The experimental data in Table 6 were
used for the model fitting with the Minitab16 software
package. Table 7 shows the Second-Order fitting results,
where the P value of Lack-of-Fit appears to be 0.182
(>0.05), indicating that the Full Quadratic Model did not

exhibit Lack-of-Fit; R-Sq = 94.45% revealed that the
quadratic model was acceptable as the statistical model.

With y as the contraction rate of the outer coating, A
as the operating temperature, and B as the air cooling
distance, the relation between the regressors and the
response is shown below.

y = 4.43002− 0.05073A− 0.00532B+ 0.00015A2 +
0.00004B2

4.4.3 Surface plot and contour plot

Figure 3 shows the contraction ratio of the surface plot vs.
the air cooling distance and operating temperature. The
curve bent from the surface plot, showing that there was a
minimum contraction ratio in the research range. Figure 4
shows the contraction ratio in the form of a contour plot,
with the isolines representing distinct levels. From the
figure, for an air cooling distance of approximately 20 cm
and an operating temperature of approximately 172◦C,
the minimum contraction ratio is lower than 0.025 (2.5%).

4.5 Optimization engineering

Box and Behnken [26] proposed a Simultaneous Optimal
Solution with a Composite Desirability Function for
acquiring the optimal parameter composition. Figure 5
shows the optimal parameter composition and the
predicted response acquired by the Desirability Function,
wherey is the minimum response of the contraction ratio,
d is the individual Desirability Function, and D is the
Composite Desirability Function for the best opportunity
to achieve the objective. This study involves a single
response, so the composite desirability and the individual
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Table 6: Experimental configuration and response values for the CCD design
Std Order Run Order Operating Temperature Air Cooling Distance Contraction Ratio

7 1 173.5 5.0 0.032
11 2 173.5 17.5 0.026
3 3 167.0 30.0 0.028
12 4 173.5 17.5 0.023
2 5 180.0 5.0 0.041
5 6 167.0 17.5 0.028
13 7 173.5 17.5 0.024
9 8 173.5 17.5 0.024
1 9 167.0 5.0 0.036
8 10 173.5 30.0 0.026
6 11 180.0 17.5 0.030
4 12 180.0 30.0 0.040
10 13 173.5 17.5 0.022

Table 7: Experimental configuration and response values for the CCD design
Origin df Seq SS Adj SS Adj MS F value P value

Regression 5 0.000452 0.000452 0.000090 23.84 0.000***
Linear 2 0.000098 0.000132 0.000066 17.48 0.002*
Square 2 0.000342 0.000342 0.000171 45.10 0.000***

Interaction 1 0.000012 0.000012 0.000012 3.23 0.115
Residual 7 0.000027 0.000027 0.000004

Lack-of-Fit 3 0.000018 0.000018 0.000006 2.69 0.182
Pure Error 4 0.000009 0.000009 0.000002

Sum 12 0.000478
S = 0.00194685 R-Sq = 94.45% R-Sq(adj) = 90.49%

Fig. 3: Surface plot of the contraction ratio as a function of the
air cooling distance and the operating temperature.

Desirability Function are the same. With RSM, it was
determined that the optimal conditions that should be
used to achieve the objective are A (air cooling distance)
equal to 20.6566 cm and B (operating temperature) equal
to 171.5960◦C; these settings will yield a minimum
contraction ratio of 2.28% and a Total Desirability
Function D of 1.

Fig. 4: Contour plot of the contraction ratio as a function of the
air cooling distance and the operating temperature.

4.6 Confirmation tests

The final step was to carry out a confirmation test. By
performing the confirmation test, the conclusions drawn
from the analysis were validated. In practice, the air
cooling distance and operating temperature could only be
specified to the first digit after the decimal point;
therefore, the air cooling distance and operating
temperature were set at 171.6◦C and 20.7 cm,
respectively. An experiment was conducted using the new
combination, and the result was compared with the
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Fig. 5: Optimization of the contraction ratio.

predictions from the Taguchi Method and RSM, as shown
in Table 8.

5 Conclusion

The stable quality of the outer coating of the optical fiber
cable could directly affect the yield rate of the products.
By having the process managers, engineers, and quality
assurance personnel at the optical fiber cable
manufacturer analyze and discuss the selected
experimental variables to identify the appropriate
parameter settings and ranges for the optical fiber cable
process, the Taguchi Method could be applied to identify
the key factors affecting the contraction rate of the outer
coating of the optical fiber cable from among the
experimental variables, and the Central Composite
Design from Response Surface Methodology could then
be utilized to optimize the process parameters and
identify the optimal process parameter settings and
responses. Such experimental design methods make it
possible to avoid the experiential rules and
Trial-and-Error methods that are traditionally used for
improvement, further reduce the experimental costs
needed to achieve a stable, high-quality process, and
improve the yield rate of production. The prediction of
the optimal parameter composition acquired by the
Taguchi Method is considered to be a limitation in this
study. The optimization engineering of RSM is further
utilized to verify that the optimal process parameter
composition determined by the Taguchi Method is the
optimal solution. The results show that the optimization
engineering of RSM makes it possible to obtain a
minimum contraction rate for the optical fiber cable outer
coating of 2.28%, which is better than the optimal
solution of 3.015% obtained with the Taguchi Method.
This outcome highlights the feasibility of the integration
of the Taguchi Method and RSM. Based on the combined
approach involving the Taguchi Method and RSM, the

optimal process parameters for the air cooling distance
was 20.6566 cm and for the operating temperature was
171.5960◦C. In practice, the setting of the parameter
digit after the decimal point is restricted, so the air
cooling distance was set to 20.7 cm, and the operating
temperature was set to 171.6◦C. The mean contraction
rate of the optical fiber cable outer coating obtained from
the experimental confirmation run was 2.16%, which is
better than the optimal solution of 2.28% predicted in this
study, indicating that the integration of the Taguchi
Method and RSM is practically effective. The case
manufacturer therefore should invest in production runs
using the specified process parameter composition. The
optimization engineering that can be accomplished with
RSM and the Taguchi Method should be further
investigated. This research can provide relevant
practitioners with a reference for applying these
techniques in practical and academic research.
The authors are grateful to the anonymous referee for a
careful checking of the details and for helpful comments
that improved this paper.
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