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Abstract: Let q = 3l+2 be a prime power. Maximal designed distances of imprimitive Hermitian dual containingq2-ary narrow-sense

(NS) BCH codes of lengthn =
(q6−1)

3 andn = 3(q2−1)(q2+q+1) are determined. For each givenn, non-narrow-sense (NNS) BCH
codes which achieve such maximal designed distances are presented,and a series of NS and NNS BCH codes are constructed and
their parameters are computed. Consequently, many families ofq-ary quantum BCH codes are derived from these BCH codes. Some of
these quantum BCH codes constructed from NNS BCH codes have better parameters than those quantum BCH codes available in the
literature, and some others are new ones.
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1 Introduction

Quantum codes are powerful tool for fighting against
noise in quantum communication and quantum
computation. The most widely studied class of quantum
codes are stabilizer (or additive) quantum codes, which
can be constructed from classical codes with certain
self-orthogonal (or dual containing) properties [1]-[4].
Many papers discussed dual containing conditions of
BCH codes and construction of quantum codes from
classical BCH codes. Steane [5] gave a simple criterion to
decide the condition under which a binary primitive
narrow-sense (NS) BCH code containing its Euclidean
dual code, for given code length and designed distance.
Aly et.al in [6] and [7] generalized Steane’s result to
primitive and non-primitive NS BCH codes overFq or Fq2

with respect to Euclidean and Hermitian duality, and
constructed many quantum BCH codes. In 2009, La
Guardia [8] showed that there are dual containing
primitive non-narrow-sense (NNS) BCH codes having
better parameters than that of NS BCH codes, he
constructed many good non-binary quantum codes from
these NNS BCH codes. Paper [12]-[15] make further
study on construction of quantum codes from (NS or
NNS) BCH codes via Hermitian construction or Steane
construction.

In this paper, letq = 3l+2, we give maximal designed
distances of Hermitian dual containing non-primitive BCH

codes of lengthn = (q6−1)
3 andn = 3(q2−1)(q2+q+1),

determine parameters of some NS and NNS BCH codes,
and construct many good non-binary quantum BCH codes
from Hermitian dual containing NS and NNS BCH codes.

This paper is organized as follows. In Sec.2, basic
concepts onq2-cyclotomic cosets and BCH codes are
reviewed. In Sec.3 and Sec.4, necessary and sufficient
conditions of Hermitian dual containing NS BCH code of
length n and their maximal designed distanceδnew are
given, several families of Hermitian dual containing NNS
BCH codes of lengthn with designed distanceδ ≤ δnew
are presented. At the same time, many new quantum BCH
codes are constructed from these NS and NNS BCH
codes. Finally, the paper is concluded with a discussion in
Sec.5.

2 Preliminaries

In this section, we will review some basic knowledge on
cyclotomic cosets and BCH codes for the purpose of this
paper. For more details, we refer the reader to [9,10] .

It is well known that there is a close relationship
between cyclotomic cosets and cyclic codes, see [9,11].
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This suggests us to useq2-cyclotomic cosets of modulon
to characterize BCH codes overFq2, see [14].

Definition 2.1.[14] If gcd(q,n) = 1, the q2-cyclotomic
coset of modulon containingx is defined by

Cx = {x,xq2,x(q2)2, ...,x(q2)k−1}(modn),

wherek is the smallest positive integer such that(q2)kx ≡
x(modn).

Definition 2.2.[14] Let n,q,Cx be as in definition 2.1. If
n − qx ∈ Cx, Cx is called a skew symmetric coset,
otherwise skew asymmetric. The skew asymmetric coset
come in pairsCx andC−qx =Cn−qx, and is denoted as(Cx,
C−qx).

A cyclic code of lengthn = q2m −1 overFq2 is called
a BCH code with designed distanceδ if its generator
polynomial is of the form

g(x) = ∏
z∈T

(x−ξ z),T =Cb ∪Cb+1∪·· ·∪Cb+δ−2,

whereCx denotes theq2-cyclotomic coset of modulon
containing x, ξ is a primitive element ofFq2m and
m = ordn(q2) is the multiplicative order ofq2 modulon,
given by [7]. Such a BCH code also defined in terms of its
defining set, see following Definition 2.3.

Definition 2.3.[9,10] Let gcd(q,n) = 1. If ξ is a primitive
n-th root of unity in some field containingFq2, T = Cb ∪
Cb+1∪·· ·∪Cb+δ−2 = T[b,b+δ−2], the cyclic code of length
n with defining setT is called a BCH code of designed
distanceδ . If b = 1,C is called a narrow-sense BCH code,
otherwise non-narrow-sense. Ifn = q2m − 1, C is called
primitive, otherwise called non-primitive.

Lemma 2.1.[7] If gcd(q,n) = 1, C is a cyclic code over
Fq2 with defining setT , C⊥h ⊆C if and only if T ∩T−q =

/0, whereT−q = {−qt(modn) | t ∈ T}.
Using terminology of skew symmetric coset and skew

asymmetric coset pair, Lemma 2.1 can be restated as
Lemma 2.2:

Lemma 2.2.[12] If gcd(q,n) = 1, C is a cyclic code over
Fq2 with defining setT , C⊥h ⊆ C if and only if eachCt
is skew asymmetric and any twoCt1 andCt2 do not form a
skew asymmetric pair, wheret, t1, t2 ∈ T .

Skew symmetric and skew asymmetric pair for
q2-cyclotomic cosets can be judged as follows.

Lemma 2.3. [12] Let gcd(q,n) = 1, ordn(q2) = m, 0 ≤
x,y,z ≤ n−1.

(1) Cx is skew symmetric if and only if there is at ≤
⌊m

2 ⌋ such thatx ≡−xq2t+1(modn).
(2) If Cy 6=Cz, (Cy, Cz) form a skew asymmetric pair if

and only if there is at ≤ ⌊m
2 ⌋ such thaty≡−zq2t+1(modn)

or z ≡−yq2t+1(modn).
The following Theorem 2.4 (given in [3,11] is

well-known for constructingq-ary quantum codes from
Hermitian dual containing (or self-orthogonal) codes over
Fq2.

Theorem 2.4.[3,11] If C is an[n,k] linear code overFq2

such thatC⊥h ⊆ C , d = min{wt(v) : v ∈ C \C⊥h}, then
there exists an[[n,2k−n,d]]q quantum code.

Let BC H (n,q2;δ ) denote theq2-ary NS BCH code
of length n with designed distance δ . Let
[m even] = m − 1(mod2), for instance, we have
[m even] = 0 if m is odd, otherwise[m even] = 1. A
maximal designed distances of Hermitian dual containing
imprimitive BCH codes was given by [7], see Theorem
2.5. We will improve their bound in section 3 and section
4 for some special code lengthn.

Theorem 2.5.[7] Suppose thatm = ordn(q2), [m even] =
m−1(mod2) for an integerm. If the designed distanceδ
satisfies 2≤ δ ≤ δmax, where

δmax = ⌊
n

q2m −1
(qm+[m even]−1− (q2−2)[m even])⌋

thenBC H (n,q2;δ )⊥h ⊆ BC H (n,q2;δ ).
Notation. To simplify statement, we use[1,n − 1] to
denote the set{1,2, · · · ,n − 1} and call the set
{e,e+1, · · · , f} as interval[e, f ].

3 BCH codes of lengthn = (q6−1)
3

3.1 Dual containing BCH codes of length

n = (q6−1)
3

According to Theorem 2.5, the maximal designed
distance of Hermitian dual containing NS BCH code of

length n = (q6−1)
3 given in [7] is δmax = ⌊ q3−1

3 ⌋. In this
subsection, we determine the maximal designed distance
of Hermitian dual containing NS BCH code of lengthn is

δnew = 2⌊ q3−1
3 ⌋+ 1 = 2δmax + 1. And show that there is

dual containing NNS BCH code with such maximal
designed distanceδnew.

Theorem 3.1. Let n = (q6−1)
3 ,

δnew = 2⌊ q3−1
3 ⌋+1= 2δmax +1. Then the following hold:

(1) The maximal designed distance of dual containing
NS BCH codes of lengthn is δnew.

(2) A NS BCH code of lengthn with designed distance
δ contains its Hermitian dual code if and only ifδ ≤ δnew.

Proof. For q = 3l + 2, we know 3|(q3 + 1), so let

r = 1
3(q

3+1), thenn = (q6−1)
3 = (q3−1)r. We will prove

a NS BCH code with designed distanceδ ≤ δnew = 2r−1
contains its dual code. It is enough to show, for

x,y ∈ [1,2r − 2] = [1,2⌊ q3−1
2 ⌋] = [1,2δmax], Cx is skew

asymmetric and(Cx,Cy) can not form a skew asymmetric
pair.

I. To proveCx is skew asymmetric forx ∈ [1,2⌊ q3−1
2 ⌋].

From Lemma 2.3, we only need to provex(q2t+1 + 1) 6≡
0(modn) wheret ≤ ⌊3

2⌋.
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Case 1. Fort = 0, then 1< x(q+ 1) < 2⌊ q3−1
3 ⌋(q+

1) = (q2−1) ·2⌊ q2+q+1
3 ⌋< n. Sox(q+1) 6≡ 0(modn).

Case 2. Fort = 1.
If 1 ≤ x ≤ r−1, then 1< x(q3+1)≤ (r−1)(q3+1).

Since(r−1)(q3+1) = r(q3−1)+2(r−1)− (q3−1) ≡
2(r−1)− (q3−1)(modn), and 2(r−1)− (q3−1)< n, so
we have 1< x(q3+1)< n.

If r ≤ x ≤ 2r − 2, one can assume
x = r + b,0 ≤ b ≤ r − 2, then
x(q3 + 1) = r(q3 − 1) + b(q3 − 1) + 2(r + b) ≡
b(q3 − 1) + 2(r + b)(modn), and
1< b(q3−1)+2(r+b)≤ (r−2)(q3−1)+2r−2. Since
(r − 2)(q3 − 1) + 2r − 2 = r(q3 − 1)− 2(q3 − 1) + 2r −
2 ≡ −2(q3 − 1) + 2r − 2(modn), and
−2(q3−1)+2r−2< n, so we have 1< x(q3+1)< n.

From the above two cases, one can deducex(q2t+1+
1) 6≡ 0(modn). This provesCx is skew asymmetric.

II. Next we showCx and Cy can not form a skew
asymmetric pair, so we only need to show
x + yq2t+1 6≡ 0(modn) and y + xq2t+1 6≡ 0(modn) for

t = 0,1. Letx,y ∈ [1,2⌊ q3−1
2 ⌋] andx < y.

Case 1. Fort = 0, it is obvious that 1< x+yq < y(q+
1)< n, 1< y+ xq < y(q+1)< n.

Case 2. Fort = 1.
If 1 ≤ y ≤ r−1, then 1< x+ yq3 < y(q3+1) ≤ (r−

1)(q3+1)< n, 1< y+ xq3 < y(q3+1)< n.
If r ≤ y ≤ 2r − 2, let y = r + b,0 ≤ b ≤ r − 2, then

n < x+rq3 < x+yq3 < x+(2r−2)q3 = 2r(q3−1)+2r−
2q3+x = 2n−2(q3+1)+4r < 2n. 1< y+xq3 < y+(r−
1)q3 < n for x ≤ r − 1 andy+ n < y+ xq3 < y+ (2r −
2)q3 = 2n−2(q3+1)+4r < 2n for x ≥ r.

Hence, we have showedx+yq2t+1 6≡ 0(modn) andy+
xq2t+1 6≡ 0(modn).

Combining the previous two cases, we know thatCx
andCy can not form a skew asymmetric pair.

According to the above discussions and Lemma 2.2,
the theorem follows.

Theorem 3.1 gives the maximal designed distance of
Hermitian dual containing NS BCH codes of lengthn =
(q6−1)

3 . The following theorem will give NNS BCH codes
also achieve the such maximal designed distanceδnew.

Let s = (q2+q+1)(q2−q+1)
3 , a = q+1

3 (q2 + 1) and

b = q−2
3 (q2+q+1). Similar to the above discussion, one

can check that eachCs+i is skew asymmetric and any two
cosetsCs+i andCs+ j do not form a skew asymmetric pair
for −a ≤ i, j ≤ b. Thus we can easily deduce the NNS
BCH code with defining setT[s−a,s+b] is a Hermitian dual
containing BCH code of lengthn.

Theorem 3.2. Let n = (q2 − 1)s, s = (q2+q+1)(q2−q+1)
3 ,

δnew = 2⌊ q3−1
3 ⌋ + 1, a = q+1

3 (q2 + 1) and

b = q−2
3 (q2+q+1). Then the following hold:

(1) A NNS BCH code with defining setT[s−a,s+b] of
length n is a Hermitian dual containing code of the
maximal designed distanceδ = δnew.

(2) A NNS BCH code of lengthn with designed
distanceδ ≤ δnew and defining setT[e, f ] ⊂ T[s−a,s+b], then
it contains its Hermitian dual code.

3.2 Dimensions of BCH codes of length

n = (q6−1)
3

In this subsection, we will first calculate dimensions of
some dual containing NS and NNS BCH codes of length

n = (q6−1)
3 . Then, in terms of these results, for eachδ

satisfying 2≤ δ ≤ δnew, we will determine the parameters
of quantum BCH codes via Hermitian construction.
Before calculating dimensions of NS and NNS BCH
codes of lengthn, we give following Lemma 3.3 and
Corollary 3.4.

Lemma 3.3.Let q= 3l+2. Forn= (q6−1)
3 , δmax = ⌊ q3−1

3 ⌋,
then the following hold:

(1) If x ∈ [1,2δmax], Cx contains three elements.
(2) If x,y ∈ [1,2δmax] andx < y, thenCx = Cy if and

only if y = xq2.

Proof. (1) Since 1≤ x ≤ 2⌊ q3−1
3 ⌋, thusx < xq2 < n and

x 6= xq2, sox,xq2 ∈ Cx. Thus|Cx| = r ≥ 2, butr|3, hence
|Cx|= 3.

(2) If x < y andCx =Cy, thenxq2 ≡ y(modn) or xq4 ≡
y(modn).

First we showxq4 ≡ y(modn) can not hold. Sincex ∈

[1,2δmax] and⌊2δmax/
(q2−1)

3 ⌋ = 2q, so we assumex = i ·
(q2−1)

3 + j, where 0≤ i ≤ 2q and 0≤ j ≤ (q2−1)
3 − 1. If

1≤ x < q2−1
3 , then 1< q4− y < xq4− y < ( q2−1

3 )q4− y =

( q2−1
3 )q4−q4−y< n. If x≥ q2−1

3 , thenx= i · q2−1
3 + j with

i ≥ 1, so we has(i−1)n < xq4− y = i( q2−1
3 + j)q4− y =

i q6−1
3 − i q4−1

3 + jq4 − y < in. From the above facts, one
can deducexq4 6≡ 0(modn). Since−y < xq2−y< xq2 < n,
hencexq2− y ≡ 0(modn) andxq2 ≡ y(modn).

We can give dimensions of dual containing NS BCH
codes for 2≤ δ ≤ δnew.

Corollary 3.4. Let n = (q6−1)
3 , δnew = 2⌊ q3−1

3 ⌋+1. If 2 ≤
δ ≤ δnew, then a NS Hermitian dual containing BCH code
has parameter[n,n−3⌊(δ −1)(1− 1

q2 )⌋,d ≥ δ ].
Similar to the proof of Lemma 3.3, one can show the

following lemma holds.

Lemma 3.5.Let n = (q2−1)s, s = (q2+q+1)(q2−q+1)
3 , a =

q+1
3 (q2+1) andb = q−2

3 (q2+ q+1). Then the following
hold:

(1) Cs = {s}, |Cs+i|= 3 for−a < i < b andi 6= 0.
(2) If −a ≤ i ≤−1, 1≤ j ≤ b, thenCs+i 6=Cs+ j.
(3) If 1 ≤ |i|< | j| andCs+i =Cs+ j, then j = iq2.
La Guardia showed that there are dual containing

primitive NNS BCH codes having better parameters than
that of NS BCH codes, please see Reference [8]. By
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Table 1. Comparison of quantum codes constructed from NNS
BCH codes and NS BCH codes forn = 56−1

3 = 5208 and 2≤
δ ≤ δmax = 41

δ our [[n,K,d ≥ δ ]]5 [[n,K′,d ≥ δ ]]5 in [7]
2 [[5208,5206,d ≥ 2]]5 [[5208,5202,d ≥ 2]]5
3 [[5208,5200,d ≥ 3]]5 [[5208,5196,d ≥ 3]]5
4 [[5208,5194,d ≥ 4]]5 [[5208,5190,d ≥ 4]]5
5 [[5208,5188,d ≥ 5]]5 [[5208,5184,d ≥ 5]]5
· · · · · · · · ·
25 [[5208,5068,d ≥ 25]]5 [[5208,5064,d ≥ 25]]5
26 [[5208,5062,d ≥ 26]]5 [[5208,5064,d ≥ 26]]5
27 [[5208,5062,d ≥ 27]]5 [[5208,5058,d ≥ 27]]5
28 [[5208,5056,d ≥ 28]]5 [[5208,5052,d ≥ 28]]5
· · · · · · · · ·
40 [[5208,4984,d ≥ 40]]5 [[5208,4980,d ≥ 40]]5
41 [[5208,4978,d ≥ 41]5 [[5208,4974,d ≥ 41]]5

applying the method in [8], we can compute dimensions
of dual containing NNS BCH codes for 2≤ δ ≤ δnew.

Corollary 3.6. For n = (q2 − 1)s, s = (q2+q+1)(q2−q+1)
3 ,

δnew = 2⌊ q3−1
3 ⌋+1. Letθδ = 1+3⌊(δ −2)(1− 1

q2 )⌋.

(1) If 2 ≤ δ ≤ (l + 1)q2 + 1, thenT[s−δ+2,s] define a
NNS Hermitian dual containing BCH code of dimension
k = n−θδ .

(2) If (l + 1)q2 + 1 < δ ≤ (l + 1)q2 + 2+ b, then
T[s−(l+1)q2−1,s+δ ] define a NNS Hermitian dual containing
BCH code of dimensionk = n−θδ .

(3) If (l + 1)q2 + 2+ b < δ ≤ δnew, let j = δ − b−
(l +1)q2−2, thenT[s− j,s+b] define a NNS Hermitian dual
containing BCH code of dimensionk = n−θδ .

According to Theorem 2.4, and the results of Corollary
3.4 and Corollary 3.6, some quantum BCH codes can be
constructed from these dual containing NS and NNS BCH
codes, therefore, we have following theorem.

Theorem 3.7.For n = (q6−1)
3 , δnew = 2⌊ q3−1

3 ⌋+1.

(1) If 2 ≤ δ ≤ δnew, θδ = 3⌊(δ −1)(1− 1
q2 )⌋, then an

[[n,n − 2θδ ,d ≥ δ ]]q quantum code can be constructed
from NS BCH code.

(2) If 2 ≤ δ ≤ δnew, θ ′

δ = 1+3⌊(δ −2)(1− 1
q2 )⌋, then

an [[n,n−2θ ′

δ ,d ≥ δ ]]q quantum code can be constructed
from NNS BCH code.

Remark 3.1. It is easy to check, for 2≤ δ ≤ δnew, except
for some special cases, our quantum BCH codes
constructed from NNS BCH codes are better than those
constructed fromq2-ary NS BCH codes in [7] and those
constructed fromq-ary NS BCH codes in [13] via Steane
construction, and quantum BCH codes obtained from
q2-ary NS BCH codes in [7] are better than those in [13].
For δmax + 1 ≤ δ ≤ δnew, our quantum BCH codes
constructed from NS and NNS BCH codes are all new
ones. What is more, among these new quantum BCH
codes, those constructed from NNS BCH codes have
better parameters than those constructed from NS BCH
codes. We use Table 1 and Table 2 to present evidences of

Table 2. Comparison of new quantum codes[[n,K,d ≥

δ ]]5 constructed from NNS BCH codes and[[n,K
′
,d ≥ δ ]]5

constructed from NS BCH codes forn = 56−1
3 = 5208 and 42≤

δ ≤ δnew = 83
δ [[n,K,d ≥ δ ]]5 [[n,K′,d ≥ δ ]]5
42 [[5208,4972,d ≥ 42]]5 [[5208,4968,d ≥ 42]]5
43 [[5208,4966,d ≥ 43]]5 [[5208,4962,d ≥ 43]]5
44 [[5208,4960,d ≥ 44]]5 [[5208,4956,d ≥ 44]]5
45 [[5208,4954,d ≥ 45]]5 [[5208,4950,d ≥ 45]]5
· · · · · · · · ·
50 [[5208,4924,d ≥ 50]]5 [[5208,4920,d ≥ 50]]5
51 [[5208,4918,d ≥ 51]]5 [[5208,4920,d ≥ 51]]5
52 [[5208,4918,d ≥ 52]]5 [[5208,4914,d ≥ 52]]5
53 [[5208,4912,d ≥ 53]]5 [[5208,4908,d ≥ 53]]5
· · · · · · · · ·
75 [[5208,4780,d ≥ 75]]5 [[5208,4776,d ≥ 75]]5
76 [[5208,4774,d ≥ 76]5 [[5208,4776,d ≥ 76]]5
77 [[5208,4774,d ≥ 77]5 [[5208,4770,d ≥ 77]]5
78 [[5208,4768,d ≥ 78]5 [[5208,4764,d ≥ 78]]5
· · · · · · · · ·
83 [[5208,4738,d ≥ 83]5 [[5208,4734,d ≥ 83]]5

these facts. Table 1 has showed that forn = 56−1
3 = 5208

and 2≤ δ ≤ δmax = 41, the parameters of quantum BCH
codes constructed from NNS BCH are better than those
constructed from NS BCH codes in [7], except the case
δ = 26. Table 2 has showed that for
42 = δmax + 1 ≤ δ ≤ δnew = 83 these quantum BCH
codes are all new ones, and one can easily compare that
the parameters of those constructed from NNS BCH
codes are better than those constructed from NS BCH
codes, except forδ = 51,76.

4 BCH codes of length
n = 3(q2−1)(q2+q+1)

According to Theorem 2.5, the maximal designed
distance of Hermitian dual containing NS BCH code of
length n = 3(q2 − 1)(q2 + q + 1) given in [7] is
δmax = 3q+2. In this section, we will first determine the
maximal designed distance of Hermitian dual containing

NS BCH code of lengthn is δnew = q3+3q+2
2 . And then

show that there is a dual containing NNS BCH code of
such designed distanceδnew. Finally, some quantum BCH
codes will be constructed from these dual containing
BCH codes via Hermitian construction.

4.1 Dual containing BCH codes of length
n = 3(q2−1)(q2+q+1)

In this subsection, we will present the maximal designed
distance of Hermitian dual containing NS BCH code of

lengthn is δnew = q3+3q+2
2 .

c© 2014 NSP
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Theorem 4.1. Let n = 3(q2 − 1)(q2 + q + 1),

δnew = q3+3q+2
2 . Then:

(1) The maximal designed distance of dual containing
NS BCH codes of lengthn is δnew.

(2) A NS BCH code of lengthn with designed distance
δ contains its Hermitian dual code if and only ifδ ≤ δnew.

Proof. Let r = 3(q + 1), a = (q2−q+1)
3 , then n = r(q3 −

1) = (q6−1)
a . Now similar to the discussions of Theorem

3.1, there exists two cases:
Case I. Firstly, we proveCx is skew asymmetric for

x ∈ [1,δnew −1].
(1) It is not difficult to check 1< x(q+1)< n.
(2) Letx= kr+b,0≤ b≤ r−1, thenx(q3+1) = (kr+

b)(q3+1) = kr(q3+1)+b(q3+1) = kr(q3−1)+b(q3+
1)+2kr ≡ b(q3+1)+2kr(modn).

If 0 ≤ b ≤ r − 2, then 1< b(q3 + 1) + 2kr ≤
(r−2)(q3+1)+2kr < n−2(q3+1)+2kr < n.

If b = r−1, fromx < δnew −1 andδnew −1= q3+3q
2 −

1= (q+1)(q−2)
6 r+(r−3), we knowk ≤ (q+1)(q−2)

6 −1. So
we has 1< (r − 1)(q3 + 1)+ 2kr = n− (q3 + 1)+ 2(k+
1)r ≤ n− (q3+1)− (q+1)2(q−2)< n.

Combining (1) and (2), we derive
x(q2t+1+1) 6≡ 0(modn), henceCx is asymmetric.

Case II. Secondly, letx,y ∈ [1,δnew −1] andx < y, we
proveCx andCy can not form a skew asymmetric pair. We
only need to show that: fort = 0,1, there must be
x+ yq2t+1 6≡ 0(modn) andy+ xq2t+1 6≡ 0(modn).

(1) For t = 0, then 1< x+ yq < y(q+1) < n and 1<
y+ xq < y(q+ 1) < n. Hencex+ yq 6≡ 0(modn) andy+
xq 6≡ 0(modn).

(2) For t = 1, let y = kr + b,0 ≤ b ≤ r − 1, then
x+ yq3 < y(q3+1) = y(q3−1)+2y = (kr+b)(q3−1)+
2(kr+b)≡ b(q3−1)+2(kr+b)(modn).

If 0 ≤ b ≤ r − 2, then
b(q3−1)+2(kr+b) ≤ (r−2)(q3−1)+2(k+1)r−4=
r(q3−1)−2(q3+1)+2(k+1)r = n−2(q3+1)+2(k+
1)r ≤ n−2(q3+1)+(q+1)2(q−2)< n.

If b = r−1, thenb(q3−1)+2(kr+b) = (r−1)(q3−
1)+ 2(k + 1)r − 2r(q3 − 1)− (q3 + 1)+ 2(k + 1)r = n−
(q3+1)+2(k+1)r < n.

Summarizing the discussions of (1) and (2), we have
proved that any twoCx and Cy do not form a skew
asymmetric pair.

From Case I and Case II, we know that if
x,y ∈ [1,δnew − 1], any Cx is skew asymmetric and any
two Cx andCy do not form a skew asymmetric pair.

According to the above discussions and Lemma 2.2,
the theorem follows.

Arguing as in Theorem 4.1, we can show that there are
also Hermitian dual containing NNS BCH codes whose
designed distance isδnew.

Let s = 3(q2 + q + 1), γ = q−2
3 ,

u = 1
2(−q3 + 6q2 + 9q + 6) and

v = (q − 4)(q2 + q + 1) − 1. Similar to the above
discussions, one can check that eachCγs+i is skew

asymmetric and any two cosetsCγs+i and Cγs+ j do not
form a skew asymmetric pair for−a ≤ i, j ≤ b. Thus we
easily deduce the NNS BCH code with defining set
T[γs−u,γs+v] is a Hermitian dual containing BCH code of
lengthn.

Theorem 4.2.Let n = (q2 − 1)s, s = 3(q2 + q+ 1), γ =
q−2

3 , δnew = q3+3q+2
2 , u = 1

2(−q3+6q2+9q+6) andv =
(q−4)(q2+q+1)−1. Then:

(1) A NNS BCH code with defining setT[γs−u,γs+v] of
lengthn is a Hermitian dual containing code of maximal
designed distanceδ = δnew.

(2) A NNS BCH code of lengthn with designed
distanceδ ≤ δnew and defining setT[e, f ] ⊂ T[γs−u,γs+v],
then it contains its Hermitian dual code.

4.2 Dimensions of BCH codes of length
n = 3(q2−1)(q2+q+1)

In this subsection, we will determine dimensions of some
dual containing NS BCH codes and NNS BCH codes for
n = 3(q2 − 1)(q2 + q + 1). To simplify calculation, we
restrict the designed distanceδ of BCH codes with
2≤ δ ≤ mq2+1, and construct new quantum BCH codes
via Hermitian construction. Similar to the discussions of
subsection 3.2, one can easily deduce the following
Lemma 4.3 and Lemma 4.4, so all proofs of Lemma 4.3
and Lemma 4.4 are omitted.

Lemma 4.3. Let n = 3(q2 − 1)(q2 + q + 1),

δnew = q3+3q+2
2 , then the following hold:

(1) If x ∈ [1,δnew −1], Cx contains three elements.
(2) If x,y ∈ [1,δnew −1] andx < y, thenCx =Cy if and

only if y = xq2.

Lemma 4.4. Let n = 3(q2 − 1)(q2 + q + 1), s = 3(q2 +

q+1), γ = q−2
3 u = 1

2(−q3+6q2+9q+6) andv = (q−
4)(q2+q+1)−1. Then the following hold:

(1) Cγs = {γs}, |Cγs+i|= 3 for−u < i < v andi 6= 0.
(2) If −u ≤ i ≤−1, 1≤ j ≤ v, thenCγs+i 6=Cγs+ j.
(3) If 1 ≤ |i| ≤ ⌊ q

3⌋, thenCγs+iq2 =Cγs+i.
According to Lemma 4.3 and Lemma 4.4, the

dimensions of some Hermitian dual containing NS BCH
codes and NNS BCH codes can be computed as in
Theorem 4.5 and Theorem 4.6, respectively.

Theorem 4.5.Let n = 3(q2−1)(q2+q+1), θδ = 3⌊(δ −
1)(1− 1

q2 )⌋ for 2≤ δ ≤ mq2+1 wherem = ⌊ q
3⌋. Then:

(1) There is an[n,n − θδ ,d ≥ δ ] Hermitian dual
containing NS BCH code.

(2) An [[n,n − 2θδ ,d ≥ δ ]]q quantum code can be
constructed from NS BCH code.

Proof. (1) From Theorem 4.1, we know thatT[1,δnew−1]
defines a Hermitian dual containing NS BCH code. If
[1, f ] ⊂ [1,δnew − 1], thenT[1, f ] defines a Hermitian dual
containing NS BCH code. For 2≤ δ ≤ mq2 + 1, let
f ≤ δ −1, the NS BCH codeC with defining setT[1,δ−1]
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is a Hermitian dual containing BCH code of designed
distance δ . From Lemma 4.3, we know that
θδ = |T[1,δ−1]| = 3⌊(δ − 1)(1 − 1

q2 )⌋. Hence,

C = [n,n−θδ ,d ≥ δ ].
(2) According to (1) and Theorem 2.4, then (2)

follows.
Theorem 4.6 Let n = 3(q2 − 1)(q2 + q + 1),
θδ = 1+ 3⌊(δ − 2)(1− 1

q2 )⌋ for 2 ≤ δ ≤ mq2+ 1 where

m = ⌊ q
3⌋.Then:

(1) There is an[n,n − θδ ,d ≥ δ ] Hermitian dual
containing NNS BCH code.

(2) An [[n,n − 2θδ ,d ≥ δ ]]q quantum code can be
constructed from NNS BCH code.

Proof. (1) From Theorem 4.2, we know thatT[γs−u,γs+v]
defines a Hermitian dual containing NNS BCH code. If
[e, f ] ⊂ [γs − u,γs + v], then T[e, f ] defines a Hermitian
dual containing NNS BCH code. Now we construct a
suitable subinterval[e, f ] of [γs − u,γs + v] and get the
desired Hermitian dual containing NNS BCH code. For
2≤ δ ≤ mq2+1, let f = γs,e = γs−δ +2, then the NNS
BCH codeC with defining setT[γs−δ+2,γs] is a Hermitian
dual containing BCH code of designed distanceδ . From
Lemma 4.4, we know that
θδ = |T[γs−δ+2,γs]| = 1 + 3⌊(δ − 2)(1 − 1

q2 )⌋. Hence,

C = [n,n−θδ ,d ≥ δ ].
Hence, According to (1) and Theorem 2.4, then (2)

follows.

Table 3.Comparison of quantum codes constructed from NNS

BCH code and NS BCH code forn =
(86−1)

19 = 13797 and
2≤ δ ≤ δmax = 26

δ our [[n,K,d ≥ δ ]]8 [[n,K′,d ≥ δ ]]8 in [13]
2 [[13797,13795,d ≥ 2]]8 [[13797,13791,d ≥ 2]]8
3 [[13797,13789,d ≥ 3]]8 [[13797,13779,d ≥ 3]]8
4 [[13797,13783,d ≥ 4]]8 [[13797,13767,d ≥ 4]]8
5 [[13797,13777,d ≥ 5]]8 [[13797,13755,d ≥ 5]]8
6 [[13797,13771,d ≥ 6]]8 [[13797,13743,d ≥ 6]]8
7 [[13797,13765,d ≥ 7]]8 [[13797,13731,d ≥ 7]]8
· · · · · · · · ·
24 [[13797,13663,d ≥ 24]]8 [[13797,13551,d ≥ 24]]8
25 [[13797,13657,d ≥ 25]]8 [[13797,13545,d ≥ 25]]8
26 [[13797,13651,d ≥ 26]]8 [[13797,13533,d ≥ 26]]8

Remark 4.1For 2≤ δ ≤ δmax, we have constructed many
quantum BCH codes from Hermitian dual containing NS
and NNS BCH codes via Hermitian construction. The
quantum BCH codes constructed from Hermitian dual
containing NNS BCH codes are better than those in [7,
13]. Similar to Table1, one can show that quantum BCH
codes constructed from NNS BCH codes are better than
those constructed from NS BCH codes in [7]. So we only
to show quantum BCH codes constructed from NNS BCH
codes are better than those in [13], for details see Table 3.
Table 3 has showed that forq = 8, 2≤ δ ≤ δmax = 26, our
quantum BCH codes constructed from NNS BCH codes
are better than those in [13]. For δmax +1≤ δ ≤ δnew, one
can construct quantum BCH codes from NS and NNS

Table 4. Comparison of new quantum codes[[n,K,d ≥

δ ]]8 constructed from NNS BCH codes and[[n,K
′
,d ≥ δ ]]8

constructed from NS BCH codes forn = 86−1
19 = 13797 and

27= δmax +1≤ δ ≤ δnew = 269
δ [[n,K,d ≥ δ ]]8 [[n,K′,d ≥ δ ]]8
27 [[13797,13645,d ≥ 27]]8 [[13797,13641,d ≥ 27]]8
28 [[13797,13639,d ≥ 28]]8 [[13797,13635,d ≥ 28]]8
· · · · · · · · ·
64 [[13797,13423,d ≥ 64]]8 [[13797,13419,d ≥ 64]]8
65 [[13797,13417,d ≥ 65]]8 [[13797,13419,d ≥ 65]]8
66 [[13797,13417,d ≥ 66]]8 [[13797,13413,d ≥ 66]]8
· · · · · · · · ·
128 [[13797,13045,d ≥ 128]]8 [[13797,13041,d ≥ 128]]8
129 [[13797,13039,d ≥ 129]]8 [[13797,13041,d ≥ 129]]8
130 [[13797,13039,d ≥ 130]]8 [[13797,13035,d ≥ 130]]8
· · · · · · · · ·
192 [[13797,12667,d ≥ 192]]8 [[13797,12663,d ≥ 192]]8
193 [[13797,12661,d ≥ 193]]8 [[13797,12663,d ≥ 193]]8
194 [[13797,12661,d ≥ 194]]8 [[13797,12657,d ≥ 194]]8
· · · · · · · · ·
216 [[13797,12529,d ≥ 216]]8 [[13797,12525,d ≥ 216]]8
217 [[13797,21523,d ≥ 217]]8 [[13797,12525,d ≥ 217]]8
218 [[13797,21523,d ≥ 218]]8 [[13797,12525,d ≥ 218]]8
219 [[13797,21523,d ≥ 219]]8 [[13797,12525,d ≥ 219]]8
220 [[13797,21523,d ≥ 220]]8 [[13797,12523,d ≥ 220]]8
221 [[13797,12517,d ≥ 221]]8 [[13797,12517,d ≥ 221]]8
· · · · · · · · ·
256 [[13797,12307,d ≥ 256]]8 [[13797,12307,d ≥ 256]]8
257 [[13797,12307,d ≥ 257]]8 [[13797,12307,d ≥ 257]]8
258 [[13797,12301,d ≥ 258]]8 [[13797,12301,d ≥ 258]]8
· · · · · · · · ·
268 [[13797,12241,d ≥ 268]]8 [[13797,12241,d ≥ 268]]8
269 [[13797,12235,d ≥ 269]]8 [[13797,12235,d ≥ 269]]8

BCH codes given in Theorem 4.1 and Theorem 4.2, and
these quantum BCH codes constructed from NS and NNS
BCH codes are all new. However, we only give part
results in Theorem 4.5 and Theorem 4.6, the discussions
of constructing quantum BCH codes constructed from NS
and NNS BCH codes for allδ can be given as in Section
3, but a little complex. So we use Table 4 to give a special
case forq = 8. Table 4 has showed that forq = 8 and
27 = δmax + 1 ≤ δ ≤ δnew = 269, these quantum BCH
codes constructed from NS and NNS BCH codes are all
new. For 27≤ δ ≤ 216 quantum BCH codes constructed
from NNS BCH codes are better than those constructed
from NS BCH codes, except in the caseδ = 65,129,193.
For 221≤ δ ≤ 269 quantum BCH codes constructed from
NNS BCH codes and NS BCH codes have same
parameters.

5 Conclusion

We have determined the maximal designed distancesδnew
of imprimitive Hermitian dual containingq2-ary NS BCH

codes of lengthn = (q6−1)
3 andn = 3(q2−1)(q2+ q+1)

for q = 3l + 2. We also presented two families of
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Hermitian dual containing NNS BCH codes whose
maximal designed distances achievingδnew. At the same
time, we calculated the dimensions of these NS and NNS
BCH codes, then constructed manyq-ary quantum BCH
codes from these NS and NNS BCH codes. For
2≤ δ ≤ δmax, except for some special cases, our quantum
BCH codes constructed from NNS BCH codes are better
than the ones available in the literature. For
δmax + 1 ≤ δ ≤ δnew, our quantum BCH codes
constructed from NS and NNS BCH codes are new ones.
These new quantum BCH codes constructed from NNS
BCH codes have better parameters than those constructed
from NS BCH codes.
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