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Abstract: In this paper, the linear semiorthogonal compactly supported B-spliveleta together with their dual wavelets have
been applied to approximate the solutions of Fredholm integral equatiaihe afecond kind. Properties of these wavelets are first
presented; these properties are then utilized to reduce the computatidegoéirequations to some algebraic equations. The method
is computationally attractive, and application of it has been demonstrataeythillustrative examples.
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1 Introduction

Numerical methods for approximating the solution of
redholm integral equation of second kind are limitedly
nown. In the present paper, we apply compactly
upported linear semiorthogonal B-spline wavelets,

mathematical research. It has been applied in a wid
range of engineering disciplines; particularly, wavelets
are very successfully used in signal analysis for waveforneUPP -
representations and segmentations, time frequenc pecially c.onst'ructed for the boynded mtervallto solve the
analysis, and fast algorithms for easy implementation [1].36¢0Nd Kind linear Fredholm integral equations of the
Wavelets permit the accurate representation of a variety 0§orm.

functions and operators. Moreover, wavelets establish a 1

connection with fast numerical algorithms. Wavelets can y(x) = f(x) +/0 Kxtyt)dt, 0<x<1, (1)

be separated into two distinct types, orthogonal and '

semiorthogonal [1, 2]. The research works available inwhereK(x,t) and f(x) are known functions angl(x) is
open literature on integral equation methods have showmnknown function to be determined.

a marked preference for orthogonal wavelets [3]. This is

probably because the original wavelets, which were

widely used for signal processing, were primarily In recent years, the applications of methods based on
orthogonal. In signal processing applications, unlikewavelets have influenced many areas of applied
integral equation methods, the wavelet itself is nevermathematics. In areas such as the numerical solutions of
constructed since only its scaling function and differential equations, partial differential equationsda
coefficients are needed. However, orthogonal waveletdractional differential equations, wavelets are recogdiz
either have infinite support or a nonsymmetric, and inas a powerful tool. Another area in which the wavelet is
some cases fractal, nature. These properties can malgaining considerable attention is the study of integral
them a poor choice for characterization of a function. Inequations. It is found that semiorthogonal wavelets are
contrast, the semiorthogonal wavelets have finite supporthbest suited for integral equation applications.

both even and odd symmetry, and simple analytical

expressions, ideal attributes of a basis function [3].

Wavelets theory is a relatively new and emerging area iqz
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The present method consists of reducing equation (1) for k=0,...,21 —3

to a set of algebraic equations by expanding the unknown . . . .
function as linear B-spline wavelets with unknown with the respective left and right hand side boundary

coefficients. The properties of these wavelets are thed'avelets are

utilized to evaluate the unknown coefficients. 6423 0<x < %
1 1417 I<x<1

2 B-spline scaling functions and wavel et Yik(x) =g 1047 L1<x< 3 (@)
functions 2-X $<x<2

. 0 otherwise
When semiorthogonal wavelets are constructed from
B-spline of orderm, the lowest octave leve] = jo is for k= —1
determined in [4-6] by

jo _
2l >2m—1 @) 2— (k+2-x) k<xj <k+3

S0 as to give a minimum of one complete wavelet on the —10+7(k+2—-%j) k+3<xj<k+1

interval [0,1]. In this paper, we will use a wavelet _ _1 14— 17(K+2 — x: Kl<xi < k3
generated by a linear B-spling) = 2, the second order Vi) 6 2:5. k+ 2 XJ_) k+ 3;)(]_ < k+§
cardinal B-spline function. From (2), the second-order —6+23k+2-x) kt3<x<k+

B-spline lowest level, which must be an integer, is 0 otherwise
determined tojo = 2. This constrains all octave levels to _ (8)
j>2. for k=21 -2

As in the case with all semiorthogonal wavelets, theSome of the important prqpertles relevant to the present
work are given in [9, 10] as:

second-order B-spline also serves as scaling functions.
The second-order B-spline scaling functions are given by 1.Vanishing momentA wavelets(x) is said to be have

[7, 8] a vanishing moment of orden if
Xj—k, kSXjSk—I—l o 0
P ={2—(x—k), k+l<x<k+2 (3) /_mx Y(x)dx=0; p=0,1,...m-—1
0, otherwise ) -
_ All wavelets must satisfy the above condition foe=
for k=0,...,2! -2 0. Linear B-spline wavelet has 2 vanishing moments.
with the respective left and right side boundary scaling ~ 11atis
functions are /oo P a(x)dx— 0 o1
xXPYa(x)dx=0, p=0,1.
2—(Xj—k)7 0<x; <1 —0 N P
Pik(x) = 0 otherwise @ P ;
’ For a good approximation and data compression,
for k= —1 vanishing moments property is necessary condition.
Bi1(X) = Xji—k k<xj<k+1 (5) 2.Semiorthogonality The wavelets (jx form a
’ 0, otherwise semiorthogonal basis if
Y . . .
for k=2/-1 Wik Ysi) =0; j #s Vj,ksieZ

The actual coordinate positioris related tox; = 2/x.
Linear B-spline wavelets are semiorthogonal.
The second order B-spline wavelets are given by [7, 8]

Xj — k k< Xj < K+ % . . .
4—7(x—K) ket <x; <k+1 3 Function approximation

. , 3

1 | 19+ 16(xi —k)  k+ % <Xj <k+3 A function f(x) defined over interval [0, 1] may be
Wik(x) =g 129-16(xj —k) ki3 <xj <k+2 approximated by B-spline wavelets as [2]
—17+7(xj—K)  k+2<x <k+3
3—(Xj—k) k+g§Xj§k+3 ) :
0 therwi 2io 1 o 212
otherwise F)="3 Ciokdjok¥)+ > > djxjx(¥). (9)
(6) K1 iSjokm1
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In particular, forjo = 2, if the infinite series in equation given by
(9) is truncated aM , then eq. (9) can be written as [7,8]
r2 1_1 g g 0 |
27 9 ges :
5 3 M 2] N Ty 9751 Tés 4—%2 7%1 01 . 0
(X) ~ :71Ck¢2k + 22 Z ], ka k (X) —3864 432 16 96 864 0
(10) _ . . .
where ¢, and Jj x are scaling and wavelet functions, _ o _
respectively, herec and ¥ are (2V+1 + 1) x 1 vectors 0 1 5 1 5 1
given by 0 864 3 6 4 g
R kg
| 0 0 0 —saa s =

C= [C,J_,Co,...,Cg,dZ,l, ~-~7d2,2,---7dM,71a~-~7dM72M_2]T,
(11)
W= 1,....023 W21, P22, UM 1, YoM 2],
(12)
with
1
o= [ F00F2x(dx k=-10,...3
Jo
1 A
d,-.k:/ )P (0d% | =2, M, k= —1,..,2 —2,
0
(13)

where ¢, (x) and ; (x) are dual functions of, and

Wi ki respectively. These can be obtained by linear

combinations of o, .k = -1,..,3 and
Uik, i=2,...M, k=-1,...,21 -2, as foIIows. Let
= [2,-1(X), $2.0(X), 92.1(X), $22(X), d23(X)] ", (14)
W= [ 1(X), Yo0(X), e, M _o(0]T. (15)
Using eq. (3-5) and eq. (14), we get
LLooo
E 214 100
1 T 24 (i‘ 214 1
/q)q; dx=P=[04 T Lol, ()
0 00 i 21 1
24 6 24
00045+
and from eq. (6-8) and eq. (15), we have
N4><4
. INgys
PYPTdx=P = ' ,
0 )
2M71—2N2’\"><2’VI
a7)
whereP; andP, are 5x 5 and (2M+1 — 4) x (2M+1 — 4)

matrices, respectively, an is a five diagonal matrix

( 18)
Suppose® and @ are the dual functions ofb and W,
respectively, given by

C’i) = [(pZ.,fl(X)v (,0270()(), (pZ,l(X)7 @,Z(X)v @2,3()()]1-7 (19)
Y = [@2-1(0), P20(0), o Puu_o]T- (20)
Using egs. (14)-(15) and (19)-(20), we have
1 S
/ HdTdx= 1, / PPTdx=1,,  (21)
JO JO
wherel; andl, are 5x 5 and (2M+1 — 4) x (2M+1 _ 4)

identity matrices, respectively. Then eqgs. (16), (17) and
(21) yield

d=Plo, W=Ply. (22)

4 Fredholm integral equations of second kind

In this section, linear Fredholm integral equation of the
second kind of the form (1) has been solved by using B-
spline wavelets. For this, we use eq. (10) to approximate
y(x) as

y(x) =CT¥(x), (23)

whereW(x) is defined in eq. (12), an@is (2V+1 +1) x 1
unknown vector defined similarly as in eq. (11). We also
expandy(x) and K(x,t) by B-spline dual waveletsV
defined as in egs. (19-20) as

f(x) =Cl¥(x), K(xt)=¥T(t)oP(x), (24)
where
.,_/ Uth dt]w,()d (25)
From egs. (24) and (23), we get
1 1 N
/ K(x,t)y(t)dt = / CTy ) ¥ 1)eP ()t
0 JO
=CTov¥(x) (26)
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since L
/0 WO @ (tdt=1.
By applying egs. (23)-(26) in eq. (1). we have
CTw(x)—CTe¥(x) =Cl ¥ (x). (27)

By multiplying both sides of the eq. (27) witHT (x) from
the right and integrating with respectxdrom 0 to 1, we
get

c'p-CcTo=c], (28)

since

/Olli’(x)t.UT(x)dx: 1,

andPis a(2M*+! 4-1) x (2M+1 4-1) square matrix given by

P /Oltl-’(x)L.UT(x)dx: [Fg F?J (29)

Consequently, from equation (28), we get
C" =C/(P-0)71. Hence we can calculate the solution
for y(x) = CTY¥(x).

5 [llustrative examples

Example 1

Consider the equation

1
Y(X):C09<+gxsinx+/ K(xt)y(t)dt, 0<x<1
0
where
~3sinx—t), 0<t<x
K ==
(x0) {0, x<t<1

The solution fory(x) is obtained by the method explained

in section 4. The numerical approximate results for

M = 2 M = 4 together with their exact solutions

Table 1: Approximate solutions fokM = 2

X | Yapproximate | Yexact Absoluteerror
0 | 1.001300 | 1.000000| 1.30173E-3
0.1 0.995052 | 0.995004| 4.75992E-5
0.2 | 0.979500 | 0.980067| 5.66575E-4
0.3 0.954792 | 0.955336| 5.44546E-4
0.4 0921120 | 0.921061| 5.94170E-5
0.5 | 0.878726 | 0.877583| 1.14300E-3
0.6 | 0.825360 | 0.825336| 2.45777E-5
0.7 | 0.764394 | 0.764842| 4.47947E-4
0.8 | 0.696316 | 0.696707| 3.90444E-4
0.9 | 0.621667 | 0.621610| 5.68924E-5
1 | 0.541039 | 0.540302| 7.36347E-4

Table 2: Approximate solutions foM =4

X Yapproximate | Yexact Absoluteerror
0 1.000080 1.000000| 8.13789E-5
0.1 | 0.995007 0.995004 | 3.28342E-6
0.2 | 0.980032 | 0.980067| 3.50527E-5
0.3 | 0.955302 | 0.955336| 3.42873E-5
0.4 | 0.921064 | 0.921061| 2.80525E-6
0.5 | 0.877654 0.877583| 7.14185E-5
0.6 | 0.825339 | 0.825336| 2.96120E-6
0.7 | 0.764815 | 0.764842| 2.72328E-5
0.8 | 0.696682 | 0.696707| 2.51241E-5
0.9 | 0.621612 0.621610| 1.63566E-6
1 0.540347 0.540302| 4.44686E-5

In example 1,Error estimates (or R.M.S. errorsare
0.00064165 and 0.0000398951 fbt =2 andM = 4
respectively.

Example 2

Consider the equation

1
y(x) = x+/ (xt? +>%t)y(t)dt, 0<x<1
0

y(x) = cosx and absolute errors are cited in Tables 1 andThe solution fory(x) is obtained by the method explained

2 respectively.
The error function is given by

Error function= ||Yexact(Xi) — Yapproximatdi)||

— \/-Zi(yexact(Xi ) — Yapproximate(Xi ))2

Global error estmate=R.M.S.error

= \% \/i;(yexact(xi )— Yap proximat&xi ))2

in section 4. The numerical approximate results for
M = 2,M = 4 together with their exact solutions

2 . .
y(x) = 18880 and absolute errors are cited in Tables 3

and 4 respectively.

In example 2,Error estimates (or R.M.S. errorsqre
0.0010266 and 0.0000641496 fot = 2 and M = 4
respectively.
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Table 3: Approximate solutions foM = 2 Table 5: Approximate solutions foM = 2
X__ | Yapproximate | Yexact Absoluteerror X__ | Yapproximate | Yexact Absoluteerror
0 -0.001751 | 0.000000| 1.75070E-3 0 0.001187 | 0.000000| 0.001187
0.1 | 0.157913 | 0.157983| 7.01720E-5 0.1 | 0.310083 | 0.309017| 0.001065
0.2 | 0.330182 0.329412| 7.70007E-4 0.2 | 0.584716 0.587785| 0.003069
0.3 | 0.515056 0.514286| 7.69838E-4 0.3 | 0.804107 0.809017| 0.004910
0.4 | 0.712534 0.712605| 7.06777E-5 0.4 | 0.951212 0.951057| 0.000155
0.5 | 0.922618 0.924370| 1.75154E-3 0.5 | 1.012920 1.000000| 0.012924
0.6 | 1.149510 1.149580| 7.10762E-5 0.6 | 0.951212 0.951057| 0.000155
0.7 | 1.389000 1.388240| 7.69042E-4 0.7 | 0.804107 0.809017| 0.004910
0.8 | 1.641100 1.640340| 7.68812E-4 0.8 | 0.584716 0.587785| 0.003069
0.9 | 1.905810 | 1.905880| 7.17658E-5 0.9 | 0.310083 | 0.309017| 0.001065
1 2.183120 2.184870| 1.75269E-3 1 0.001187 0.000000| 0.001187
Table 4: Approximate solutions foM = 4 Table 6: Approximate solutions foM = 4
X Yapproximate | Yexact Absoluteerror X Yapproximate | Yexact Absoluteerror
0 -0.000109 | 0.000000| 1.09419E-4 0 1.823150E-5| 0.000000| 1.82315E-5
0.1 | 0.157979 | 0.157983| 4.37731E-6 0.1 | 0.309012 0.309017| 4.75611E-6
0.2 | 0.329460 0.329412| 4.81431E-5 0.2 | 0.587571 0.587785| 2.14100E-4
0.3 | 0.514334 0.514286| 4.81424E-5 0.3 | 0.808735 0.809017| 2.81802E-4
0.4 | 0.712601 0.712605| 4.37929E-6 0.4 | 0.951092 0.951057| 3.51844E-5
0.5 | 0.924260 | 0.924370| 1.09422E-4 0.5 | 1.000800 1.000000| 8.03434E-4
0.6 | 1.149580 | 1.149580| 4.38085E-6 0.6 | 0.951092 0.951057| 3.51844E-5
0.7 | 1.388280 1.388240| 4.81393E-5 0.7 | 0.808735 0.809017| 2.81802E-4
0.8 | 1.640380 1.640340| 4.81384E-5 0.8 | 0.587571 0.587785| 2.14100E-4
0.9 | 1.905880 1.905880| 4.38354E-6 0.9 | 0.309012 0.309017| 4.75611E-6
1 2.184760 2.184870| 1.09427E-4 1 1.823150E-5| 0.000000| 1.82315E-5
Example 3 supported linear semiorthogonal B-spline wavelets. The
dual wavelets for these B-spline wavelets have been also
Consider the equation presented. Because of semiorthogonality, compact

. support and vanishing moments properties of B-spline
1) . wavelets, the matrices are very sparse. The illustrative
y(x) = (1_ 712> sin(rx) +/o K ty(dt, 0<x<1, examples have been included to demonstrate the validity
and applicability of the technique. These examples show
where the accuracy and efficiency of the described method.
x(1-t), x<t
Kixt) = {t(l—x), t<x
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