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Abstract: In this paper, the linear semiorthogonal compactly supported B-spline wavelets together with their dual wavelets have
been applied to approximate the solutions of Fredholm integral equations ofthe second kind. Properties of these wavelets are first
presented; these properties are then utilized to reduce the computation of integral equations to some algebraic equations. The method
is computationally attractive, and application of it has been demonstrated through illustrative examples.
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1 Introduction

Wavelets theory is a relatively new and emerging area in
mathematical research. It has been applied in a wide
range of engineering disciplines; particularly, wavelets
are very successfully used in signal analysis for waveform
representations and segmentations, time frequency
analysis, and fast algorithms for easy implementation [1].
Wavelets permit the accurate representation of a variety of
functions and operators. Moreover, wavelets establish a
connection with fast numerical algorithms. Wavelets can
be separated into two distinct types, orthogonal and
semiorthogonal [1, 2]. The research works available in
open literature on integral equation methods have shown
a marked preference for orthogonal wavelets [3]. This is
probably because the original wavelets, which were
widely used for signal processing, were primarily
orthogonal. In signal processing applications, unlike
integral equation methods, the wavelet itself is never
constructed since only its scaling function and
coefficients are needed. However, orthogonal wavelets
either have infinite support or a nonsymmetric, and in
some cases fractal, nature. These properties can make
them a poor choice for characterization of a function. In
contrast, the semiorthogonal wavelets have finite support,
both even and odd symmetry, and simple analytical
expressions, ideal attributes of a basis function [3].

Numerical methods for approximating the solution of
Fredholm integral equation of second kind are limitedly
known. In the present paper, we apply compactly
supported linear semiorthogonal B-spline wavelets,
specially constructed for the bounded interval to solve the
second Kind linear Fredholm integral equations of the
form:

y(x) = f (x)+
∫ 1

0
K(x, t)y(t)dt, 06 x6 1, (1)

whereK(x, t) and f (x) are known functions andy(x) is
unknown function to be determined.

In recent years, the applications of methods based on
wavelets have influenced many areas of applied
mathematics. In areas such as the numerical solutions of
differential equations, partial differential equations and
fractional differential equations, wavelets are recognized
as a powerful tool. Another area in which the wavelet is
gaining considerable attention is the study of integral
equations. It is found that semiorthogonal wavelets are
best suited for integral equation applications.
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The present method consists of reducing equation (1)
to a set of algebraic equations by expanding the unknown
function as linear B-spline wavelets with unknown
coefficients. The properties of these wavelets are then
utilized to evaluate the unknown coefficients.

2 B-spline scaling functions and wavelet
functions

When semiorthogonal wavelets are constructed from
B-spline of orderm, the lowest octave levelj = j0 is
determined in [4-6] by

2 j0 ≥ 2m−1 (2)

so as to give a minimum of one complete wavelet on the
interval [0,1]. In this paper, we will use a wavelet
generated by a linear B-spline,m= 2, the second order
cardinal B-spline function. From (2), the second-order
B-spline lowest level, which must be an integer, is
determined toj0 = 2. This constrains all octave levels to
j ≥ 2.

As in the case with all semiorthogonal wavelets, the
second-order B-spline also serves as scaling functions.
The second-order B-spline scaling functions are given by
[7, 8]

ϕ j,k(x) =











x j −k, k≤ x j ≤ k+1
2− (x j −k), k+1≤ x j ≤ k+2,
0, otherwise

(3)

f or k= 0, ...,2 j −2

with the respective left and right side boundary scaling
functions are

ϕ j,k(x) =

{

2− (x j −k), 0≤ x j ≤ 1
0, otherwise

(4)

f or k=−1

ϕ j,k(x) =

{

x j −k, k≤ x j ≤ k+1
0, otherwise

(5)

f or k= 2 j −1

The actual coordinate positionx is related tox j = 2 jx.

The second order B-spline wavelets are given by [7, 8]

ψ j,k(x) =
1
6











































x j −k k≤ x j ≤ k+ 1
2

4−7(x j −k) k+ 1
2 ≤ x j ≤ k+1

−19+16(x j −k) k+1≤ x j ≤ k+ 3
2

29−16(x j −k) k+ 3
2 ≤ x j ≤ k+2

−17+7(x j −k) k+2≤ x j ≤ k+ 5
2

3− (x j −k) k+ 5
2 ≤ x j ≤ k+3

0 otherwise,
(6)

f or k= 0, ...,2 j −3

with the respective left and right hand side boundary
wavelets are

ψ j,k(x) =
1
6



























−6+23x j 0≤ x j ≤ 1
2

14−17x j
1
2 ≤ x j ≤ 1

−10+7x j 1≤ x j ≤ 3
2

2−x j
3
2 ≤ x j ≤ 2

0 otherwise

(7)

f or k=−1

ψ j,k(x) =
1
6



























2− (k+2−x j) k≤ x j ≤ k+ 1
2

−10+7(k+2−x j) k+ 1
2 ≤ x j ≤ k+1

14−17(k+2−x j) k+1≤ x j ≤ k+ 3
2

−6+23(k+2−x j) k+ 3
2 ≤ x j ≤ k+2

0 otherwise
(8)

f or k= 2 j −2

Some of the important properties relevant to the present
work are given in [9, 10] as:

1.Vanishing moment: A waveletψ(x) is said to be have
a vanishing moment of orderm if

∫ ∞

−∞
xpψ(x)dx= 0; p= 0,1, ...,m−1.

All wavelets must satisfy the above condition forp=
0. Linear B-spline wavelet has 2 vanishing moments.
That is

∫ ∞

−∞
xpψ4(x)dx= 0, p= 0,1.

For a good approximation and data compression,
vanishing moments property is necessary condition.

2.Semiorthogonality: The wavelets ψ j,k form a
semiorthogonal basis if

〈ψ j,k,ψs,i〉= 0; j 6= s; ∀ j,k,s, i ∈ Z.

Linear B-spline wavelets are semiorthogonal.

3 Function approximation

A function f (x) defined over interval [0, 1] may be
approximated by B-spline wavelets as [2]

f (x) =
2 j0−1

∑
k=−1

c j0,kϕ j0,k(x)+
∞

∑
j= j0

2 j−2

∑
k=−1

d j,kψ j,k(x). (9)
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In particular, for j0 = 2, if the infinite series in equation
(9) is truncated atM , then eq. (9) can be written as [7,8]

f (x)≈
3

∑
k=−1

ckϕ2,k(x)+
M

∑
j=2

2 j−2

∑
k=−1

d j,kψ j,k(x) =CTΨ(x).

(10)
where ϕ2,k and ψ j,k are scaling and wavelet functions,
respectively, hereC and Ψ are (2M+1 + 1)× 1 vectors
given by

C= [c−1,c0, ...,c3,d2,−1, ...,d2,2, ...,dM,−1, ...,dM,2M−2]
T
,

(11)

Ψ = [ϕ2,−1, ...,ϕ2,3,ψ2,−1, ...,ψ2,2, ...,ψM,−1, ...,ψM,2M−2]
T
,

(12)
with

ck =
∫ 1

0
f (x)ϕ̃2,k(x)dx, k=−1,0, ...,3,

d j,k =
∫ 1

0
f (x)ψ̃ j,k(x)dx, j = 2, ...,M, k=−1, ...,2 j −2,

(13)
whereϕ̃2,k(x) and ψ̃ j,k(x) are dual functions ofϕ2,k and
ψ j,k, respectively. These can be obtained by linear
combinations of ϕ2,k, k = −1, ...,3 and
ψ j,k, j = 2, ...,M, k=−1, ...,2 j −2, as follows. Let

Φ = [ϕ2,−1(x),ϕ2,0(x),ϕ2,1(x),ϕ2,2(x),ϕ2,3(x)]
T
, (14)

Ψ̄ = [ψ2,−1(x),ψ2,0(x), ...,ψM,2M−2(x)]
T
. (15)

Using eq. (3-5) and eq. (14), we get

∫ 1

0
ΦΦTdx= P1 =













1
12

1
24 0 0 0

1
24

1
6

1
24 0 0

0 1
24

1
6

1
24 0

0 0 1
24

1
6

1
24

0 0 0 1
24

1
12













, (16)

and from eq. (6-8) and eq. (15), we have

∫ 1

0
Ψ̄Ψ̄Tdx= P2 =















N4×4
1
2N8×8

.

.

.

1
2M−2 N2M×2M















,

(17)
whereP1 andP2 are 5× 5 and(2M+1 − 4)× (2M+1 − 4)
matrices, respectively, andN is a five diagonal matrix

given by

N=





























2
27

1
96 − 1

864 0 0 . . . 0
1
96

1
16

5
432 − 1

864 0 . . . 0
− 1

864
5

432
1
16

1
96 − 1

864 . . . 0
. . . . . . .

. . . . . . .

. . . . . . .

0 . . . − 1
864

5
432

1
16

5
432 − 1

864
0 . . . 0 − 1

864
5

432
1
16

1
96

0 . . . 0 0 − 1
864

1
96

2
27





























.

(18)
SupposeΦ̃ and ˜̄Ψ are the dual functions ofΦ and Ψ̄ ,
respectively, given by

Φ̃ = [φ̃2,−1(x), φ̃2,0(x), φ̃2,1(x), φ̃2,2(x), φ̃2,3(x)]
T
, (19)

˜̄Ψ = [ψ̃2,−1(x), ψ̃2,0(x), ..., ψ̃M,2M−2(x)]
T
. (20)

Using eqs. (14)-(15) and (19)-(20), we have

∫ 1

0
Φ̃ΦTdx= I1,

∫ 1

0

˜̄ΨΨ̄Tdx= I2, (21)

where I1 and I2 are 5× 5 and(2M+1 − 4)× (2M+1 − 4)
identity matrices, respectively. Then eqs. (16), (17) and
(21) yield

Φ̃ = P−1
1 Φ ,

˜̄Ψ = P−1
2 Ψ̄ . (22)

4 Fredholm integral equations of second kind

In this section, linear Fredholm integral equation of the
second kind of the form (1) has been solved by using B-
spline wavelets. For this, we use eq. (10) to approximate
y(x) as

y(x) =CTΨ(x), (23)

whereΨ(x) is defined in eq. (12), andC is (2M+1+1)×1
unknown vector defined similarly as in eq. (11). We also
expandy(x) and K(x, t) by B-spline dual waveletsΨ̃
defined as in eqs. (19-20) as

f (x) =CT
1 Ψ̃(x), K(x, t) = Ψ̃ T(t)ΘΨ̃(x), (24)

where

Θi, j =
∫ 1

0

[

∫ 1

0
K(x, t)Ψi(t)dt

]

Ψj(x)dx. (25)

From eqs. (24) and (23), we get

∫ 1

0
K(x, t)y(t)dt =

∫ 1

0
CTΨ(t)Ψ̃T(t)ΘΨ̃(x)dt

=CTΘΨ̃(x) (26)
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since
∫ 1

0
Ψ(t)Ψ̃T(t)dt = I .

By applying eqs. (23)-(26) in eq. (1). we have

CTΨ(x)−CTΘΨ̃(x) =CT
1 Ψ̃(x). (27)

By multiplying both sides of the eq. (27) withΨT(x) from
the right and integrating with respect tox from 0 to 1, we
get

CTP−CTΘ =CT
1 , (28)

since
∫ 1

0
Ψ̃(x)ΨT(x)dx= I ,

andP is a(2M+1+1)× (2M+1+1) square matrix given by

P=
∫ 1

0
Ψ(x)ΨT(x)dx=

[

P1 0
0 P2

]

(29)

Consequently, from equation (28), we get
CT = CT

1 (P−Θ)−1
. Hence we can calculate the solution

for y(x) =CTΨ(x).

5 Illustrative examples

Example 1

Consider the equation

y(x) = cosx+
3
2

xsinx+
∫ 1

0
K(x, t)y(t)dt, 0≤ x≤ 1,

where

K(x, t) =

{

−3sin(x− t), 0≤ t ≤ x
0, x≤ t ≤ 1

The solution fory(x) is obtained by the method explained
in section 4. The numerical approximate results for
M = 2,M = 4 together with their exact solutions
y(x) = cosx and absolute errors are cited in Tables 1 and
2 respectively.

The error function is given by

Error function=
∥

∥yexact(xi)−yapproximate(xi)
∥

∥

=

√

n

∑
i=1

(yexact(xi)−yapproximate(xi))2

Global error estmate=R.M.S.error

=
1√
n

√

n

∑
i=1

(yexact(xi)−yapproximate(xi))2

Table 1: Approximate solutions forM = 2
x yapproximate yexact Absoluteerror
0 1.001300 1.000000 1.30173E-3
0.1 0.995052 0.995004 4.75992E-5
0.2 0.979500 0.980067 5.66575E-4
0.3 0.954792 0.955336 5.44546E-4
0.4 0.921120 0.921061 5.94170E-5
0.5 0.878726 0.877583 1.14300E-3
0.6 0.825360 0.825336 2.45777E-5
0.7 0.764394 0.764842 4.47947E-4
0.8 0.696316 0.696707 3.90444E-4
0.9 0.621667 0.621610 5.68924E-5
1 0.541039 0.540302 7.36347E-4

Table 2: Approximate solutions forM = 4
x yapproximate yexact Absoluteerror
0 1.000080 1.000000 8.13789E-5
0.1 0.995007 0.995004 3.28342E-6
0.2 0.980032 0.980067 3.50527E-5
0.3 0.955302 0.955336 3.42873E-5
0.4 0.921064 0.921061 2.80525E-6
0.5 0.877654 0.877583 7.14185E-5
0.6 0.825339 0.825336 2.96120E-6
0.7 0.764815 0.764842 2.72328E-5
0.8 0.696682 0.696707 2.51241E-5
0.9 0.621612 0.621610 1.63566E-6
1 0.540347 0.540302 4.44686E-5

In example 1,Error estimates (or R.M.S. errors)are
0.00064165 and 0.0000398951 forM = 2 and M = 4
respectively.

Example 2

Consider the equation

y(x) = x+
∫ 1

0
(xt2+x2t)y(t)dt, 0≤ x≤ 1

The solution fory(x) is obtained by the method explained
in section 4. The numerical approximate results for
M = 2,M = 4 together with their exact solutions
y(x) = 180x+80x2

119 and absolute errors are cited in Tables 3
and 4 respectively.

In example 2,Error estimates (or R.M.S. errors)are
0.0010266 and 0.0000641496 forM = 2 and M = 4
respectively.
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Table 3: Approximate solutions forM = 2
x yapproximate yexact Absoluteerror
0 -0.001751 0.000000 1.75070E-3
0.1 0.157913 0.157983 7.01720E-5
0.2 0.330182 0.329412 7.70007E-4
0.3 0.515056 0.514286 7.69838E-4
0.4 0.712534 0.712605 7.06777E-5
0.5 0.922618 0.924370 1.75154E-3
0.6 1.149510 1.149580 7.10762E-5
0.7 1.389000 1.388240 7.69042E-4
0.8 1.641100 1.640340 7.68812E-4
0.9 1.905810 1.905880 7.17658E-5
1 2.183120 2.184870 1.75269E-3

Table 4: Approximate solutions forM = 4
x yapproximate yexact Absoluteerror
0 -0.000109 0.000000 1.09419E-4
0.1 0.157979 0.157983 4.37731E-6
0.2 0.329460 0.329412 4.81431E-5
0.3 0.514334 0.514286 4.81424E-5
0.4 0.712601 0.712605 4.37929E-6
0.5 0.924260 0.924370 1.09422E-4
0.6 1.149580 1.149580 4.38085E-6
0.7 1.388280 1.388240 4.81393E-5
0.8 1.640380 1.640340 4.81384E-5
0.9 1.905880 1.905880 4.38354E-6
1 2.184760 2.184870 1.09427E-4

Example 3

Consider the equation

y(x) =

(

1− 1
π2

)

sin(πx)+
∫ 1

0
K(x, t)y(t)dt, 0≤ x≤ 1,

where

K(x, t) =

{

x(1− t), x≤ t
t(1−x), t ≤ x

The solution fory(x) is obtained by the method explained
in section 4. The numerical approximate results forM =
2,M = 4 together with their exact solutionsy(x) = sin(πx)
and absolute errors are cited in Tables 5 and 6 respectively.

In example 3,Error estimates (or R.M.S. errors)are
0.00466338 and 0.000285911 forM = 2 and M = 4
respectively.

6 Conclusion

In the present paper, linear Fredholm integral equations of
second kind have been solved by using second order
B-spline wavelets. The method is based upon compactly

Table 5: Approximate solutions forM = 2
x yapproximate yexact Absoluteerror
0 0.001187 0.000000 0.001187
0.1 0.310083 0.309017 0.001065
0.2 0.584716 0.587785 0.003069
0.3 0.804107 0.809017 0.004910
0.4 0.951212 0.951057 0.000155
0.5 1.012920 1.000000 0.012924
0.6 0.951212 0.951057 0.000155
0.7 0.804107 0.809017 0.004910
0.8 0.584716 0.587785 0.003069
0.9 0.310083 0.309017 0.001065
1 0.001187 0.000000 0.001187

Table 6: Approximate solutions forM = 4
x yapproximate yexact Absoluteerror
0 1.823150E-5 0.000000 1.82315E-5
0.1 0.309012 0.309017 4.75611E-6
0.2 0.587571 0.587785 2.14100E-4
0.3 0.808735 0.809017 2.81802E-4
0.4 0.951092 0.951057 3.51844E-5
0.5 1.000800 1.000000 8.03434E-4
0.6 0.951092 0.951057 3.51844E-5
0.7 0.808735 0.809017 2.81802E-4
0.8 0.587571 0.587785 2.14100E-4
0.9 0.309012 0.309017 4.75611E-6
1 1.823150E-5 0.000000 1.82315E-5

supported linear semiorthogonal B-spline wavelets. The
dual wavelets for these B-spline wavelets have been also
presented. Because of semiorthogonality, compact
support and vanishing moments properties of B-spline
wavelets, the matrices are very sparse. The illustrative
examples have been included to demonstrate the validity
and applicability of the technique. These examples show
the accuracy and efficiency of the described method.

References

[1] C. K. Chui , An introduction to Wavelets, Wavelet Analysis
and Its Applications, Academic press, Massachusetts,1,
(1992).

[2] J. C. Goswami and A. K. Chan,Fundamentals of Wavelets,
Theory, Algorithms, and Applications, John Wiley and Sons,
Inc., New Jersey, (2011).

[3] R. D. Nevels , J. C. Goswami and H. Tehrani,Semiorthogonal
versus Orthogonal Wavelet Basis Sets for Solving Integral
Equations, IEEE Trans. Antennas. Propagat.,45, 1332-1339
(1997).

[4] J. C. Goswami, A. K. Chan and C. K. Chui,On solving first-
kind integral equtions using wavelets on a bounded interval,
IEEE Trans. Antennas propagate.,43, 614-622 (1995).

[5] G. Ala, L. D. Silvestre, E. Francomano and A. Tortorici,An
Advanced Numerical Model in Solving Thin-Wire Integral
Equations by using Semi-orthogonal Compactly Supported

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1184 S. S. Ray, P. K. Sahu: Application of Semiorthogonal B-Spline Wavelets for the...

Spline Wavelets, IEEE Trans. Electromagn. Compat.,45, 218-
228 (2003).

[6] N. Aghazadeh and K. Maleknejad,Using Quadratic B-
Spline Scaling Functions for Solving Integral Equations,
International Journal: Mathematical Manuscripts,1, 1-6
(2007).

[7] M. Lakestani, M. Razzaghi and M. Dehghan,Semiorthogonal
Spline Wavelets Approximation for Fredholm Integro-
Differential Equations, Mathematical Problems in
Engineering, Article ID 96184, 1-12 (2006).

[8] M. Lakestani, M. Razzaghi and M. Dehghan,Solution
of Nonlinear Fredholm- Hammerstein Integral Equations
by using Semiorthogonal Spline Wavelets, Mathematical
Problems in Engineering,2005, 113-121 (2005).

[9] K. Maleknejad and M. N. Sahlan,The Method of Moments for
Solution of Second Kind Fredholm Integral Equations Based
on B-Spline Wavelets, Int. J. Comp. Math.,87, 1602-1616
(2010).

[10] K. Maleknejad, M. Nosrati and E. Najafi,Wavelet Galerkin
Method for Solving Singular Integral Equations, Comput.
And Appl. Math.,31, 373-390 (2012).

S. Saha Ray is currently
an Associate Professor at the
Department of Mathematics,
National Institute of
Technology, Rourkela, India.
Dr. Saha Ray completed his
Ph.D. in 2008 from Jadavpur
University, India. He received
his M.C.A. degree in the year
2001 from the then Bengal

Engineering College, Sibpur, Howrah. He completed his
M.Sc. in Applied Mathematics at Calcutta University in
1998 and B.Sc. (Honors) in Mathematics at St. Xaviers
College, Kolkata, in 1996. Dr. Saha Ray has about
thirteen years of teaching experience at undergraduate
and postgraduate levels. He has also about twelve years
of research experience in various field of Applied
Mathematics. He has published immense research papers
in numerous fields and various international SCI journals
of repute like Transaction ASME Journal of Applied
Mechanics, Annals of Nuclear Energy, Physica Scripta,
Applied Mathematics and Computation, Communication
in Nonlinear Science and Numerical Simulationetc. He
authored a book entitledGraph Theory with Algorithms
and Its Applications: In Applied Science and Technology
published by Springer. He has several papers on
topics of fractional calculus, mathematical modelling,
mathematical physics, stochastic model, integral
equation, wavelet transforms and others. He is member of
the Society for Industrial and Applied Mathematics
(SIAM) and American Mathematical Society (AMS). He
was the Principal Investigator of the BRNS research
project granted by BARC, Mumbai. Currently, he is
acting as Principal Investigator of a research Project
financed by DST, Govt. of India and also acting as

Principal Investigator of a research Project financed by
BRNS, BARC, Mumbai, Govt. of India. It is not out of
place to mention that he had been acted as lead guest
editor in the International SCI journals of Hindawi
Publishing Corporation, USA.

P. K. Sahu is a Ph.
D. scholar (with GATE
fellowship) in department
of Mathematics of National
Institute of Technology
Rourkela, Odisha, India.
He received his M.Sc. degree
in Mathematics in the year
2011 from Utkal University,
Bhubaneswar, Odisha, India

and currently pursuing his research under the principal
supervision of Dr. S. Saha Ray. His current research
interest includes the numerical methods for the solutions
of linear and nonlinear integral equations.

c© 2014 NSP
Natural Sciences Publishing Cor.


	Introduction
	B-spline scaling functions and wavelet functions
	Function approximation
	Fredholm integral equations of second kind
	Illustrative examples
	Conclusion

