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Abstract: The effect of atomic spontaneous decay is considered for a two-levelatom interacting with a single mode of electromagnetic
field.The exact solution of the master equation is found for a chosen initialstate. We study the effects of atomic decay on information
and entanglement through temporal evolution of atomic quantum Fisher information, partial entropy of the atom and negativity.
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1 Introduction

The Jaynes-Cummings (JC) model [1] has been used
extensively in quantum optics to describe the quantum
feature of the interaction of a single two-level atom with a
quantized radiation field. Despite its simplicity, the JC
model has great importance because technological
advances have enabled the researchers to experimentally
realize this rather idealized mode [2,3,4]. Excited by the
success of the JC model, more researchers have paid
special attention to generalize the model in order to
investigate new quantum effects [5]. Such a
generalization is of considerable interest because of its
relevance to the study of the nonlinear coupling between a
two-level atom and the radiation field [6,7,8,9,10]. Much
work has been concentrated to the theoretical study of the
dissipative JC model [11,12,13] by considering cavities
losses and atomic decay. Also, there are some
experiments that have shown decoherence of the
superposition of states due to the interaction of the system
with the environment [14]. After introducing of the JC
model, attention has been focused on some dissipative
variants of this model in the last three decades [15,16,17,
18,19]. The experiments with highly excited Rydberg
atoms allowed some of the predictions of the extended
versions of the JC model to be observed. Besides the
experimental drive, also there exists a theoretical

motivation to include relevant damping mechanism to the
JC model because its dynamics is more interesting. The
dissipative effects of the JC model are caused by the
energy exchange between the system and environment
which is represented by a thermal reservoir. Since
entanglement is a central topic in quantum information
science, the degree of entanglement in some physical
systems is studied [20]. Also there are many studies that
focused on the properties of entanglement [21]-[29]
which neglect the damping of the atom. However, the
entanglement induced by the atomic damping of a
dispersive reservoir was discussed in [30]. In this paper,
we investigate the quantum feature attendant to atomic
damping especially the entanglement. In the
literature,there are more than one measure for
entanglement such as atomic quantum Fisher information,
von Neumman reduced entropy and negativity [30] . In
this article, we find the exact solution of the master
equation with atomic damping by using dressed-state
(D-S) representation. the paper is arranged as follows:
Section 2 is dedicated to JC model and solution of density
matrix elements. In Section 3, we present our results and
discussion of entanglement using various measures with
focus on effects of atomic damping. Finally, in Section 4,
we exhibit our conclusion.
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2 The model and solution of master equation

Consider two-level atom interacting resonantly with a
single mode of electromagnetic field with intensity
dependent coupling and described by Hamiltonian [31]

H = ω(
σ̂z

2
+ â+â)+λ (

√
â+ââ+σ̂−+ â

√
â+âσ̂+) (1)

whereω is the field frequency as well as the transition
frequency of the two level tom interacting resonantly with
the cavity field,λ is the atom-field coupling constant,
σ̂z = |e〉〈e| − |g〉〈g|is the population inversion operator,
σ̂± are the Pauli raising and lowering operators and ˆa+, â
are the creation and the annihilation operators which
describe the cavity field. The Hamiltonians (1) describes a
nonlinear transition from|e〉 ↔ |g〉 in the two level system
through intensity dependent coupling. Now, we consider
the master equation which describes only the atomic
damping of thermal reservoir [32,33,34] by the parameter
γA, given by

dρ̂(t)
dt

=−i [Ĥ , ρ̂(t)]+γA (2σ̂−ρ̂σ̂+−σ̂+σ̂−ρ̂− ρ̂σ̂+σ̂−)

(2)
The exact solution for this equation in the case of a

high-Q cavity (γ<<λ ) is obtained by analytic method by
using the D-S representation [34] i.e., representation
consisting of the complete set of eigenstates of the
Hamiltonian (1), which is given by

|β±
n 〉= 1√

2
(|e,n〉± |g,n+1〉) (n = 0,1,2, ....) (3)

with
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2
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1
2
)±µn µn = λ (n+1)

We write the atomic operators in terms of the D-S as
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and using the following representation

̂̇x = e iĤ t ∂ x̂(t)
∂ t

e −iĤ t + i [Ĥ , x̂(t)] (4)

where ˆx is an arbitrary operator of the combined system.
We assume that the atom initially in its excited state i.e.
|e〉, while the radiation field is in the coherent state which
is defined as

|α〉= e−
1
2 |α |2

∞

∑
n=0

αn
√

n!
|n〉=

∞

∑
n=0

qn|n〉 (5)

Therefore, ˆx(0) in the D-S representation is given by

x̂(0) =
1
2

∞
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qkq ∗
j (
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The solution of the master equation in the high-Q limit
with the considered initial condition

ρ̂(t) =
∞

∑
j,k=0

[ρee
k, j(t) |k,e〉〈 j,e|+ρeg

k, j(t) |k,e〉〈 j+1,g|+

ρge
k, j(t) |k+1,g〉〈 j,e|+ρgg

k, j(t) |k+1,g〉〈 j+1,g| ] (7)

where

ρee
k, j(t) =

{
qkq ∗

j e−[γ+i ω(k− j)]t cosµkt cosµ jt ∀k 6= j
1
2(χk)+ | qk|2e−γt cos2µkt ∀k = j

(8)

ρeg
k, j(t) = (ρge

k, j(t))
+= iqkq ∗

j e−[γ+i ω(k− j)]t sinµ jt cosµkt ∀k, j

(9)

ρgg
k, j(t) =

{
qkq ∗

j e−[γ+i ω(k− j)]t sinµkt sinµ jt ∀k 6= j
1
2(χk)−|qk|2 e−γt cos2µkt ∀k = j

(10)
with

χk = e−(n +γt)(
n
γt
)

k
2 Ik(2

√
nγt)

(11)
whereIk(·) is the modified Bessl function andn = |α|2 .
The coherence properties and entanglement will be studied
by using the exact solution (8)-(10).

In the following section we use the elements of density
matrix to obtain information features of the system such as
entanglement, total correlation and degree of mixing of the
modified JCM model with atomic damping.

3 Measures of entanglement

We start by mentioning of the measures and indicators of
entanglement.
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3.1 von Neumman entropy

We start our investigation with the degradation of purity of
the system states caused by atomic damping reservoir, by
using von Neumman entropy

ST =−
∞

∑
i=0

λ S
i ln(λ S

i ) (12)

which may be used as a measure of entanglement of the

state of the whole system, whereλ S
i are eigenvalues of the

density operator of the system̂ρ(t).
The reduced entropy of the field and the atom have

been introduced in [35,36]. It has been shown that the
reduced entropy is very useful and sensitive measure of
the purity of the quantum state, because it includes all the
moments of the density operator. The purity of the field
state investigates by using the field entropySF ,which is
defined by

SF =−
∞

∑
i=0

λ F
i ln(λ F

i ) . (13)

whereλ F
i are the eigenvalues of the reduced field density

matrix ρ̂F(t) = TrA{ρ̂(t)}, which is computed by using
numerical calculation. To study the purity loss of atomic
state, we use the marginal density matrix of the atomSA
which is given by

εA =−
2

∑
i=0

λ A
i ln(λ A

i ) (14)

where
λ A

1,2 = 1
2{1 ±

√
( ∑

i=0
ρee

i (t)−ρgg
i (t))2+4 | ∑

i=0
ρeg

i (t) |2,

and λ A
1,2 are eigenvalues of the reduced density matrix

ρ̂A(t) = TrF{ρ̂(t)}.

3.2 Atomic quantum Fisher information (QFI)

The QFI, which lies at the heart of the quantum
estimation theory, is the information we know about a
certain parameter in a quantum state. It is related to the
degree of statistical distinguishability of a quantum state
from its neighbors in parameter space [40,41].
Considering a quantum stateρ(θ) with θ a parameter, the
QFI for θ is defined as

FQ(θ) = tr[ρ(θ)L2
θ ] (15)

whereLθ , the so-called symmetric logarithmic derivative,
is determined by the following equation

∂θ ρ(θ) =
1
2
[Lθ ρ(θ)+ρ(θ)Lθ ] (16)

where∂θ =
∂

∂θ
andLθ can be resolved by rewriting the

above equation.
If we want to estimateθ through measuringρ(θ), the

variance ofθ is limited by a fundamental bound, which is
given by the quantum Cramer-Rao (QCR)[42,43]

inequality

△θ >△θQCR =
1√

FQ(θ)
(17)

If FQ(θ) is large, the variance (△)of our estimation is
small.

3.3 Negativity

Negativity is a good measure of entanglement in every
sense. It a computable measure of entanglement and
thereby fill an important gap in the study of entanglement.
It is based on the trace norm of the partial transposeρ̂TA

of the bipartite mixed stateρ , a quantity whose evaluation
is completely straightforward using standard linear
algebra packages. It essentially measures the degree to
whichρTA fails to be positive, and therefore it can be
regarded as a quantitative version of Peres’ criterion for
separability[37]. From the trace norm ofρTA , denoted by∥∥ρ̂TA

∥∥
1, the negativity is defined as

N(ρ) =
∥∥ρ̂TA,

∥∥
1−1

2
(18)

which corresponds to the absolute value of the sum of
negative eigenvalues of̂ρTA [38] , and which vanishes for
unentangled states,N(ρ) does not increase under local
operations and classical communications (LOCC), i.e., it
is an entanglement monotone [39], and as such it can be
used to quantify the degree of entanglement in composite
systems.

In the following section we discuss the effect of
damping parameter on entanglement properties through
the previous measures.

4 Discussion and results

Now, we proceed to describe the Figures. In Fig. 1 we
plot atomic von Neumman entropySA(T ) and atomic QFI
FA(T ) against scaled timeT = λ t for the atom initially in
the excited state|e〉 and field is in the coherent state|α〉
with α = 4 with different values of the atomic damping

parameter
γ
λ

. From Fig. 1(a,b), we find that at weak

damping
γ
λ

= 0.00001 the entropy and QFI exhibit a

periodic behaviour with period (nπ,n = 1,2,3....) with
unvariant amplitude, we notice that information about the
atom is lost in Fig. 1(b) in wide range between every two
local maxima. For larger value of damping parameter to
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γ
λ

= 0.3 in Fig.1(c,d), behaviour of entropy and QFI

shows some oscillations but when time increases entropy
tends to stationary behaviour and information is lost
completely in Fig. 1(d). Increasing damping parameter
makes atom goes finally (t → ∞) to maximally entangled
state and information is lost completely in short time.

Fig. 1. The evolution of the: atomic von Neumman entropy
SA(T ) and quantum Fisher informationFA(T ) for α = 4 with
γ
λ = 0.00001in Fig.1 (a,b) andγ

λ = 0.3 in Fig.1 (c,d)

To visualize the influence of atomic damping on the
temporal evolution of the negativity and the von
Neumman entropy. We have plottedN(ρ) andS(ρ) with
different values of the atomic damping parameter
γ
λ

= 0.00001, 0.3 (see Fig. 2). From Fig. 2(a), the

negativity with
γ
λ

= 0.00001 behave similar to the

correspondence atomic von Neumman entropy but with
different scale maxima ofSA(T ) = ln(2)and maxima of

N(ρ) = 0.5. For
γ
λ

= 0.3, negativity exhibits oscillatory

behaviour, the negativityN(ρ) of the global system
vanishes in the asymptotic limit, this means that in this
region (N(ρ) = 0) the entanglement between the atom
and the field is completely destroyed, and the total state of
the system disentangled in a finite time and goes to a
vacuum state. Finally, Fig. 2(c) presents the von
Neumman entropyS(ρ) of the total system for different
previous values of the damping parameter. For weak
damping parameter the total entropyS(ρ) = 0 at any time
since there is no dissipation almost, this means that the

atom and the field are disentangled. For
γ
λ

= 0.3, S(ρ)
arise rapidly as will as the coherence loss of the atom and
the field. Finally the total state will reach a statistically
mixed state and hence loss of information.

Fig. 2.The evolution total von Neumman entropyS(ρ)and
negativityN(ρ) for α = 4with γ

λ = 0.00001and γ
λ = 0.3

5 conclusion

In this article we have studied a system of a two-level
atom interacting resonantly with a single-mode quantized
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electromagnetic field through intensity dependent
coupling. The atoms and the field are initially prepared in
the excited and coherent state, respectively. The effect of
atomic damping on entanglement dynamics has been
discussed through some measures such as atomic QFI ,
atomic von Neumman entropy and negativity , von
Neumman entropy for global system have been treated. .
We have made a comparison between QFI and atomic von
Neumman entropy as a measure of entanglement, we have
shown that information about atom completely disappears
as time becomes very large in the case of large damping
parameter. Negativity and von Neumman entropy are
studied for global system under effect of atomic decay.
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