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Abstract: In the present paper, we introduce the notion ofgeneralized left derivationof a BCI-algebraX, construct several examples,
and investigate related properties. Also establish some results on regulargeneralized left derivation. Furthermore, for a generalized left
derivationH, the concept of aH-invariantgeneralized left derivationis introduced, and examples are discussed. Using this concept a
condition for ageneralized left derivationto be regular is provided. Finally, some results on p-semisimpleBCI-algebra are obtained
and it is shown that letH be a self map in a p-semisimpleBCI-algebraX. ThenH is ageneralized left derivationif and only if it is a
derivation onX.
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1 Introduction

The notion of BCK-algebras and BCI-algebras were
introduced by Y. Imai and K. Iseki in 1966 [9,10].
BCK-algebras and BCI-algebras are algebraic
formulation of BCK-system and BCI-system in
combinatory logic. Later, the notion of BCI algebras have
been extensively investigated by many researchers (see
[2,3,14] and references there in). BCI-algebra is a
generalization of a BCK-algebra that is every
BCK-algebra is a BCI-algebra but not vice versa(see [6]).
Therefore, most of the algebras related to the t-norm
based logic such as MTL [5], BL, hoop, MV [4] (i.e
lattice implication algebra) and Boolean algebras etc., are
extensions of BCK-algebras which have a lot of
applications in computer science (see [19]). Cosequetly,
BCK/BCI-algebras are considerably general structures.

Throughout the present paperX will denote a
BCI-algebra. Jun and Xin [11] applied the notion of
derivation in ring and near-ring theory toBCI-algebras in
the year 2004 and introduced a new concept called a
(regular) derivation inBCI-algebras, and investigated
some of its properties. Using the notion of a regular
derivation, they also established characterizations of a
p-semisimple BCI-algebra. For a self mapd of a
BCI-algebra, they defined ad-invariant ideal, and gave
conditions for an ideal to bed-invariant. During the last

10 years, a greater interest has been devoted to the study
on derivations inBCI-algebras and a number of research
articles have been published in this direction on various
aspects (see [1,8,15,16,17,18,20]).

Motivated by notions of left derivations [1] and
generalized derivations [18] in the theory of
BCI-algebras, in this paper, we introduced the notion of
generalized left derivationson BCI-algebras and
investigate related properties. The concept ofgeneralized
left derivationscovers the concept ofleft derivationson
BCI-algebras. Further, we obtain some results on regular
generalized left derivations. Also, for a generalized left
derivationH, we introduce the concept of aH-invariant
generalized left derivationsand give some examples.
Using this concept we provide a condition for a
generalized left derivationto be regular. Finally, we
characterize the notion of p-semisimple BCI-algebraX by
using the concept ofgeneralized left derivationand show
that letH be a self map in a p-semisimpleBCI-algebraX.

ThenH is ageneralized left derivationif and only if it is a
derivation onX.
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2 Preliminaries

in this section, we collect the following definitions and
properties from the existing literature that will be needed
in the sequel.

A nonempty setX with a constant 0 and a binary
operation∗ is called aBCI-algebraif for all x,y,z∈ X the
following conditions hold:

(I)((x∗y)∗ (x∗z))∗ (z∗y) = 0,
(II)(x∗ (x∗y))∗y= 0,

(III) x∗x= 0,
(IV)x∗y= 0 andy∗x= 0 imply x= y.

Define a binary relation≤ on X by lettingx∗ y= 0 if
and only ifx≤ y. Then(X,≤) is a partially ordered set. A
BCI-algebraX satisfying 0≤ x for all x ∈ X, is called
BCK-algebra.

A BCI-algebraX has the following properties: for all
x,y,z∈ X

(a1)x∗0= x.
(a2)(x∗y)∗z= (x∗z)∗y.
(a3)x≤ y impliesx∗z≤ y∗zandz∗y≤ z∗x.
(a4)(x∗z)∗ (y∗z)≤ x∗y.
(a5)x∗ (x∗ (x∗y)) = x∗y.
(a6)0∗ (x∗y) = (0∗x)∗ (0∗y).
(a7)x∗0= 0 impliesx= 0.

For aBCI-algebraX, denote byX+ (resp.G(X)) the
BCK-part (resp. theBCI-G part) ofX, i.e.,X+ is the set of
all x∈X such that 0≤ x (resp.G(X) := {x∈X | 0∗x= x}).
Note thatG(X)∩X+ = {0} (see [13]). If X+ = {0}, then
X is called ap-semisimple BCI-algebra.In a p-semisimple
BCI-algebraX, the following hold:

(a8)(x∗z)∗ (y∗z) = x∗y.
(a9)0∗ (0∗x) = x for all x∈ X.

(a10)x∗ (0∗y) = y∗ (0∗x).
(a11)x∗y= 0 impliesx= y.
(a12)x∗a= x∗b impliesa= b.
(a13)a∗x= b∗x impliesa= b.
(a14)a∗ (a∗x) = x.
(a15)(x∗y)∗ (w∗z) = (x∗w)∗ (y∗z).

Let X be a p-semisimpleBCI-algebra. We define
addition “+” asx+ y = x∗ (0∗ y) for all x,y ∈ X. Then
(X,+) is an abelian group with identity 0 and
x− y = x∗ y. Conversely let(X,+) be an abelian group
with identity 0 and let x ∗ y = x − y. Then X is a
p-semisimpleBCI-algebra andx+ y = x∗ (0∗ y) for all
x,y∈ X (see [14]).

For aBCI-algebraX we denotex∧ y = y∗ (y∗ x), in
particular 0∗ (0∗ x) = ax, andLp(X) := {a ∈ X | x∗ a =
0 ⇒ x= a,∀x∈ X}. We call the elements ofLp(X) thep-
atomsof X. For anya∈ X, letV(a) := {x∈ X | a∗x= 0},
which is called thebranchof X with respect toa. It follows
that x∗ y ∈ V(a∗b) wheneverx ∈ V(a) andy ∈ V(b) for

all x,y ∈ X and alla,b ∈ Lp(X). Note thatLp(X) = {x ∈
X | ax = x}, which is thep-semisimple part ofX, andX
is a p-semisimpleBCI-algebra if and only ifLp(X) = X
(see [12],[Proposition 3.2]). Note also thatax ∈ Lp(X), i.e.,
0∗ (0∗ax) = ax, which implies thatax ∗ y∈ Lp(X) for all
y ∈ X. It is clear thatG(X) ⊂ Lp(X), andx∗ (x∗ a) = a
anda∗x∈ Lp(X) for all a∈ Lp(X) and allx∈ X. For more
details, refer to [2,3,11,12,13,14].

3 Generalized Left Derivations

We introduce the notion ofgeneralized left derivation
of a BCI-algebraX as follows:

Definition 1.Let X be a BCI-algebra. Then a self map H:
X → X is called a generalized left derivation of X if there
exists a left derivation D: X → X such that

D(x∗y) = x∗H(y)∧y∗D(x) f or all x,y∈ X.

Note that ifH =D, then thegeneralized left derivation
of aBCI-algebraX is a left derivation of aBCI-algebraX.

Example 1.Let be X = {0,1,2} a BCI-algebra with the
following Cayley table:

∗ 0 1 2
0 0 0 2
1 1 0 2
2 2 2 0

(1) We define a map

D : X → X, x 7→

{

2 if x∈ {0,1},
0 if x= 2,

It can be easily verified thatD is a left derivation ofX.

Again, define a map

H : X → X, x 7→

{

0 if x∈ {0,1},
2 if x= 2,

It is easy to check thatH is a generalized left derivation
of X.

(2) Define a map

D : X → X, x 7→

{

0 if x∈ {0,2},
1 if x= 1,

It is easy to check thatD is a left derivation ofX.

(2.1) Define a map

H : X → X, x 7→

{

2 if x∈ {0,1},
0 if x= 2,

It is esay to see thatH is a generalized left derivationof
X.
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(2.2) If we define a mapH : X → X by H(x) = 2 for
all x ∈ X, then we can easily verify thatH is generalized
left derivationof X.

(2.3) If we define a mapH : X → X by H(x) = 0 for
all x ∈ X, then we can easily verify thatH is generalized
left derivationof X.

Theorem 1.Let H be a generalized left derivation of a
BCI-algebra X. Then

(1)x∈ Lp(X) ⇒ H(x) ∈ Lp(X) f or all x ∈ X.

(2)H(x) = 0+H(x) f or all x ∈ X.

(3)H(x+y) = x+H(y) f or all x ∈ Lp(X).
(4)x∈ G(X) ⇒ H(x) ∈ G(X) f or all x ∈ X.

Proof.(1) For anyx∈ Lp(X), we have

H(x) = H(0∗ (0∗x))

= (0∗H(0∗x))∧ ((0∗x)∗D(0))

= ((0∗x)∗D(0))∗ (((0∗x)∗D(0))∗ (0∗H(0∗x)))

= 0∗H(0∗x) ∈ Lp(X).

(2) By (1), we haveH(x) ∈ Lp(X). Then

H(x) = 0∗ (0∗H(x)) = 0+H(x).

(3) For anyx,y∈ Lp(X), we have

H(x+y) = H (x∗ (0∗y))

= (x∗H(0∗y))∧ ((0∗y)∗D(x))

= ((0∗y)∗D(x))∗ (((0∗y)∗D(x))∗ (x∗H(0∗y)))

= x∗H(0∗y)

= x∗ ((0∗H(y))∧ (y∗D(0)))

= x∗ (0∗H(y))

= x+H(y).

(4)Letx∈ G(X). Then 0∗x= x, and so

H(x) = H(0∗x)

= (0∗H(x))∧ (x∗D(0))

= (x∗D(0))∗ ((x∗D(0))∗ (0∗H(x)))

= 0∗H(x)

since 0∗ H(x) ∈ Lp(X). Hence H(x) ∈ G(X). This
completes the proof.

If we take H = D in Theorem1, then we have the
following corollary.

Corollary 1([ 1]). Let D be a left derivation of a
BCI-algebra X. Then

(1)x∈ Lp(X) ⇒ D(x) ∈ Lp(X) f or all x ∈ X.

(2)D(x) = 0+D(x) f or all x ∈ X.

(3)D(x+y) = x+D(y) f or all x,y∈ Lp(X).
(4)x∈ G(X) ⇒ D(x) ∈ G(X) f or all x ∈ X.

Theorem 2.Let H be a generalized left derivation of a
BCI-algebra X. Then

(1)x∈ Lp(X) ⇒ H(x) = x∗H(0) = x+H(0) f or all x ∈
X.

(2)H(x+y) = H(x)+H(y)−H(0) f or all x,y∈ Lp(X).
(3)H is identity on Lp(X) if and only if H(0) = 0.
(4)H(x∗y)≤ x∗H(y) f or all x,y∈ X.

Proof.(1) For anyx∈ Lp(X), we have

H(x) = H(x∗0) = (x∗H(0))∧ (0∗D(x))

= (0∗D(x))∗ ((0∗D(x))∗ (x∗H(0)))

= (0∗D(x))∗ ((0∗ (x∗H(0)))∗D(x))

= 0∗ (0∗ (x∗H(0)))

= x∗H(0) = x∗ (0∗H(0))

= x+H(0)

sincex∗H(0) ∈ Lp(X) andH(0) ∈ G(X).

(2) If x,y∈ Lp(X), thenx+ y∈ Lp(X). Using (1), we
have

H(x+y) = (x+y)+H(0)

= x+H(0)+y+H(0)−H(0)

= H(x)+H(y)−H(0).

(3) It follows from (1).

(4) For anyx,y∈ X, we have

H(x∗y) = (x∗H(y))∧ (y∗D(x))

= (y∗D(x))∗ ((y∗D(x))∗ (x∗H(y)))

≤ x∗H(y).

This completes the proof.

Definition 2.A generalized left derivation H of a
BCI-algebra X is said to be regular if H(0) = 0.

Example 2.(1) Thegeneralized left derivation Hof X in
Examples1 (1) and1 (2.3) are regular.

(2) Thegeneralized left derivation Hof X in Examples
1 (2.1) and1 (2.2) are not regular.

Theorem 3.If X is a BCK-algebra, then every generalized
left derivation of X is regular.

Proof.Let H be a generalized left derivationof a
BCK-algebraX. Then

H(0) = H(0∗x)

= (0∗H(x))∧ (x∗D(0))

= 0∧ (x∗D(0)) = 0.

HenceH is regular.

In aBCI−algebra, Theorem3 is not true as seen in the
following example:
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Example 3.In Example 1 (2.1), H is a generalized left
derivationof aBCI-algebraX which is not regular.

Theorem 4.Let H be a regular generalized left derivation
of a BCI-algebra X. Then

(1)Both x and H(x) belong to the same branch for all x∈
X.

(2)H(x)≤ x f or all x∈ X.

(3)H(x)∗y≤ x∗H(y) f or all x,y∈ X.

Proof.(1) Letx∈ X. Then we have

0= H(0) = H(ax ∗x)

= (ax ∗H(x))∧ (x∗D(ax))

= (x∗D(ax))∗ ((x∗D(ax))∗ (ax ∗H(x)))

= ax∗H(x)

since ax ∗ H(x) ∈ Lp(X). Hence ax ≤ H(x), and so
H(x) ∈V(ax). Obviously,x∈V(ax).

(2) SinceH is regular,H(0) = 0. Then

H(x) = H(x∗0)

= (x∗H(0))∧ (0∗D(x))

= (x∗0)∧ (0∗D(x))

= (0∗D(x))∗ ((0∗D(x))∗x)

≤ x.

(3) SinceH(x)≤ x for all x∈ X by (2). Using (a3), we
have

H(x)∗y≤ x∗y≤ x∗H(y).

This completes the proof.

Theorem 5.For any generalized left derivation H of a
BCI-algebra X, the set

H−1(0) := {x∈ X | H(x) = 0}

is a subalgebra of X if x= 0 for all x ∈ X. Moreover,
H−1(0)⊆ X+.

Proof.Assume thatx= 0 for all x∈ X. Let x,y∈ H−1(0).
ThenH(x) = 0= H(y), and so

H(x∗y)≤ x∗H(y) = 0∗0= 0

by Theorem2(4). HenceH(x ∗ y) = 0 by (a7), that is,
x ∗ y ∈ H−1(0). Hence H−1(0) is a subalgebra ofX.

Further, letx ∈ H−1(0). Then 0= H(x) ≤ x by Theorem
4(2), which implies that x ∈ X+, showing that
H−1(0)⊆ X+. This completes the proof.

Definition 3.For a generalized left derivation H of a BCI-
algebra X, we say that an ideal I of X is H-invariant if
H(I)⊆ I .

Example 4.(1) Let H be ageneralized left derivationof X
which is described in Example1 (2.1). We know that
I := {0,1} is an ideal ofX which is notH-invariant.

(2) Let H be ageneralized left derivationof X which
is described in Example1 (1). We know thatI := {0,1} is
aH-invariant ideal ofX.

Theorem 6.Let H be a generalized left derivation of a
BCI-algebra X. Then H is regular if and only if every
ideal of X is H-invariant.

Proof.Let I be an ideal ofX. SupposeH is regular, then
it follows from Theorem4 (2) thatH(x) ≤ x for all x∈ X
implying therebyH(x)∗x= 0. Let y∈ X be such thaty∈
H(I). Theny= H(x) for somex∈ I . Thus

y∗x= H(x)∗x= 0∈ I .

Since I is an ideal ofX, it follows that y ∈ A so that
H(I)⊆ I . ThereforeI is H-invariant.

Conversely, suppose that every ideal ofX is
H-invariant. Since the zero ideal{0} is clearly
H-invariant, we haveH({0}) ⊆ {0}, and soH(0) = 0.
HenceH is regular.

If we takeH =D in Theorem6, then we have the following
corollary.

Corollary 2([ 1]). Let D be a left derivation of a
BCI-algebra X. Then D is regular if and only if every
ideal of X is D-invariant.

Next, we prove some results in a p-semisimpleBCI-
algebra.

Theorem 7.Let H be a generalized left derivation of a
p-semisimple BCI-algebra X, we have the following
assertions:

(1)x∗H(x) = y∗H(y) f or all x,y∈ X.

(2)H(x∗y) = x∗H(y) f or all x,y∈ X.

(3)H(x)∗x= H(y)∗y f or all x,y∈ X.

(4)H(x)∗x= y∗H(y) f or all x,y∈ X.

Proof.(1) Let X be a p-semisimpleBCI-algebra. Then for
anyx,y∈ X, we have

H(0) = H(x∗x) = (x∗H(x))∧ (x∗D(x)) = x∗H(x).

Also,

H(0) = H(y∗y) = (y∗H(y))∧ (y∗D(y)) = y∗H(y).

Henceforth, we getx∗H(x) = y∗H(y).

(2) LetX be a p-semisimpleBCI-algebra. Then for any
x,y∈ X, we have

H(x∗y) = (x∗H(y))∧ (y∗D(x)) = x∗H(y).
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(3) Using (I), we have

(x∗y)∗ (x∗H(y))≤ H(y)∗y

and
(y∗x)∗ (y∗H(x))≤ H(x)∗x

these above inequalities can be rewritten as

((x∗y)∗ (x∗H(y)))∗ (H(y)∗y) = 0

and
((y∗x)∗ (y∗H(x)))∗ (H(x)∗x) = 0

Consequently, we get

((x∗y)∗ (x∗H(y)))∗ (H(y)∗y) = ((y∗x)∗ (y∗H(x)))∗ (H(x)∗x)
(3.1)

Also, using (1) and (2), we obtain

(x∗y)∗H(x∗y) = (y∗x)∗H(y∗x)

=⇒ (x∗y)∗ (x∗H(y)) = (y∗x)∗ (y∗H(x)) (3.2)

Since,X is a p-semisimpleBCI-algebra. Hence, by
using equation (3.2) and (a12), the above equation(3.1)
yieldsH(x)∗x= H(y)∗y.

(4) We know thatH(0) = x∗H(x). Using (3), we get
H(0) ∗ 0 = H(y) ∗ y implies H(0) = H(y) ∗ y. Therefore
H(y)∗y= x∗H(x) implying therebyH(x)∗x= y∗H(y).
This completes the proof.

If we take H = D in Theorem7, then we have the
following corollary.

Corollary 3([ 1]). Let D be a left derivation of a
p-semisimple BCI-algebra X, we have the following
assertions:

(1)D(x∗y) = x∗D(y) f or all x,y∈ X.

(2)D(x)∗x= D(y)∗y f or all x,y∈ X.

(3)D(x)∗x= y∗D(y) f or all x,y∈ X.

Theorem 8.Let H be a self map in a p-semisimple BCI-
algebra X. Then H is a generalized left derivation if and
only if it is a derivation on X.

Proof.Suppose thatH is a generalized left derivationon
X. First , we show thatH is a (r,l)-derivation on X. Let
x,y∈ X. Using (a14) , we have

H(x∗y) = x∗H(y)

= (H(x)∗y)∗ ((H(x)∗y)∗ (x∗H(y)))

= (x∗H(y))∧ (H(x)∗y) .

HenceH is a(r,l)-derivationonX.

Again, we show thatH is a (l,r)-derivation on X. Let
x,y∈ X. Using Theorem7(4) and (a15), we have

H(x∗y) = x∗H(y)

= (x∗0)∗H(y)

= (x∗ (H(0)∗H(0)))∗H(y)

= (x∗ ((x∗H(x))∗ (H(y)∗y)))∗H(y)

= (x∗H(y))∗ ((x∗H(x))∗ (H(y)∗y))

= (x∗H(y))∗ ((x∗H(y))∗ (H(x)∗y))

= (H(x)∗y)∧ (x∗H(y)) .

Conversely, suppose thatH is a derivation ofX. As H
is a(r,l)-derivationonX. Then for anyx,y∈ X, we have

H(x∗y) = (x∗H(y))∧ (H(x)∗y)

= (H(x)∗y)∗ ((H(x)∗y)∗ (x∗H(y)))

= x∗H(y)

= (y∗D(x))∗ ((y∗D(x))∗ (x∗H(y)))

= (x∗H(y))∧ (y∗D(x)) .

HenceH is a generalized left derivation. This completes
the proof.

If we take H = D in Theorem8, then we have the
following corollary.

Corollary 4([ 1]). Let D be a self map in a p-semisimple
BCI-algebra X. Then D is a left derivation if and only if it
is a derivation on X.
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