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Abstract: In the present paper, we introduce the notiog@heralized left derivationf a BCl-algebraX, construct several examples,
and investigate related properties. Also establish some results on rggokxalized left derivatiarFurthermore, for a generalized left
derivationH, the concept of &i-invariantgeneralized left derivatiors introduced, and examples are discussed. Using this concept a
condition for ageneralized left derivatioto be regular is provided. Finally, some results on p-semisirB@lealgebra are obtained
and it is shown that letl be a self map in a p-semisimpBEI-algebraX. ThenH is ageneralized left derivatioif and only if it is a
derivation onX.
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1 Introduction 10 years, a greater interest has been devoted to the study
on derivations inBCl-algebras and a number of research

The notion of BCK-algebras and BCl-algebras werearticles have been published in this direction on various

introduced by Y. Imai and K. Iseki in 19669[10]. aspects (se€l[8,15,16,17,18,20)).

BCK-algebras and BCl-algebras are algebraic

formulation of BCK-system and BCIl-system in

combinatory logic. Later, the notion of BCI algebras have

been extensively investigated by many researchers (see

[2,3,14] and references there in). BCl-algebra is a

generalization of a BCK-algebra that is every

BCK-algebra is a BCl-algebra but not vice versa(sde [ Motivated by notions ofleft derivations [1] and

Therefore, most of the algebras related to the t-normgeneralized derivations [18] in the theory of

based logic such as MTL5], BL, hoop, MV [4] (i.e BCl-algebras, in this paper, we introduced the notion of

lattice implication algebra) and Boolean algebras ete, ar generalized left derivationson BCl-algebras and

extensions of BCK-algebras which have a lot of investigate related properties. The concepgeneralized

applications in computer science (séé]). Cosequetly, left derivationscovers the concept déft derivationson

BCK/BCl-algebras are considerably general structures. BCl-algebras. Further, we obtain some results on regular
generalized left derivationsAlso, for a generalized left

Throughout the present papeX will denote a  derivationH, we introduce the concept of ld-invariant

BCl-algebra. Jun and Xinlfl] applied the notion of generalized left derivationand give some examples.

derivation in ring and near-ring theory BCl-algebras in ~ Using this concept we provide a condition for a

the year 2004 and introduced a new concept called ajeneralized left derivatiorto be regular. Finally, we

(regular) derivation inBCl-algebras, and investigated characterize the notion of p-semisimple BCl-algelriay

some of its properties. Using the notion of a regularusing the concept ajeneralized left derivatioand show

derivation, they also established characterizations of ahat letH be a self map in a p-semisimgB|-algebraX.

p-semisimple BCl-algebra. For a self magl of a  ThenH is ageneralized left derivatioif and only if it is a

BCl-algebra, they defined d-invariant ideal, and gave derivation onX.

conditions for an ideal to bd-invariant. During the last
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2 Preliminaries

all x,y € X and alla,b € Ly(X). Note thatLp(X) = {x €
X'| ax = x}, which is thep-semisimple part oKX, andX

in this section, we collect the following definitions and is a p-semisimpleBCl-algebra if and only ifLy(X) = X
properties from the existing literature that will be needed(see [L2],[Proposition 3.2]). Note also thak € Ly(X), i.e.,

in the sequel.

A nonempty setX with a constant O and a binary
operation« is called aBCl-algebraif for all x,y,z € X the
following conditions hold:

(N ((xxy)* (xx2))* (zxy) =0,

(1) (X (x*y)) *y =0,
(M xxx =0,
(IV)xxy=0andyxx=0implyx=y.

Define a binary relatior< on X by lettingxxy = 0 if
and only ifx <y. Then(X, <) is a partially ordered set. A
BCl-algebraX satisfying 0< x for all x € X, is called
BCK-algebra.

A BCl-algebraX has the following properties: for all
X,y,ze X

(@lx*x0=x.

(@2)(xxy) *z= (X*2Z) Y.

(@3x <yimpliesxxz<ysxzandzxy < zxX.
(@d)xx2) * (yx2) < XxV.

(a5)x (x* (X*Y)) = X*Y.

(a6)0x (xxy) = (0% X) * (0Oxy).

(@a7xx0=0 impliesx = 0.

For aBCl-algebraX, denote byX, (resp.G(X)) the
BCK-part (resp. th&CI-G part) ofX, i.e., X, is the set of
allx e X such that < x (resp.G(X) := {x € X | 0xx=Xx}).
Note thatG(X) N X, = {0} (see 1L3)). If X; = {0}, then
X is called ap-semisimple BCl-algebrén a p-semisimple
BCl-algebraX, the following hold:

(@8)x*2) x (YxZ) = XxY.

(29)0x (0xx) = xfor all x € X.
(al0k* (0xy) =y (0xX).
(allxxy =0 impliesx=y.
(al2xxa=xxbimpliesa=b.
(al3pxx=bx*ximpliesa=b.
(aldpx (axx) =x.

(@15 xxy) * (Wx2Z) = (XxW) * (Y*Z).

Let X be a p-semisimpleBCl-algebra. We define
addition “+” asx+y = xx (0xy) for all x,y € X. Then
(X,+) is an abelian group with identity 0 and
x—y = xxYy. Conversely le{X,+) be an abelian group
with identity 0 and letxxy = x—y. Then X is a
p-semisimpleBCl-algebra andk+y = xx (0« y) for all
X,y € X (see [L4)).

For aBCl-algebraX we denotex Ay = yx (y*X), in
particular O« (0% X) = ay, andLp(X) :={ae X |xxa=
0 = x=a,Vxe X}. We call the elements dfy(X) the p-
atomsof X. For anya € X, letV(a) := {x€ X |axx= 0},
which is called théoranchof X with respect ta. It follows
thatxxy € V(axb) wheneverx € V(a) andy € V(b) for

0x (O ay) = ax, which implies thaty xy € Lp(X) for all

y € X. Itis clear thatG(X) C Lp(X), andx* (x+xa) = a

andaxXx e Lp(X) for all a€ Lp(X) and allx € X. For more
details, refer to2,3,11,12,13,14].

3 Generalized Left Derivations

We introduce the notion ajeneralized left derivation
of a BCl-algebraX as follows:

Definition 1.Let X be a BCl-algebra. Then a self map:H
X — X is called a generalized left derivation of X if there
exists a left derivation DX — X such that

D(xxy) =xxH(y) AyxD(x) forall x,y e X.

Note that ifH = D, then thegeneralized left derivation
of aBCl-algebraX is a left derivation of 8Cl-algebraX.

Example lLet be X = {0,1,2} a BCl-algebra with the
following Cayley table:

(1) We define a map

. 2if xe {0,1},
D: X=X, XH{Oifo,
It can be easily verified thd is a left derivation oiX.
Again, define a map

0if x € {0,1},

HZX—>X7X»—>{2ifX27

It is easy to check thatl is ageneralized left derivation
of X.

(2) Define a map

0if xe {0,2},

DZX%X,X}—){lifX:L

It is easy to check thdd is a left derivation oiX.

(2.1) Define a map

. 2if xe {0,1},
H: X=X, XH{Oifx:Z,
It is esay to see that is ageneralized left derivatioof
X.
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(2.2) If we define a mapl : X — X by H(x) = 2 for
all x € X, then we can easily verify thad is generalized
left derivatiorof X.

(2.3) If we define a mapi : X — X by H(x) = 0 for
all x € X, then we can easily verify thad is generalized
left derivatiorof X.

Theorem 1let H be a generalized left derivation of a
BCl-algebra X Then

(IxeLp(X) = H(x) € Lp(X) forall x € X.
(2H(x) =0+H(x) forall x € X.
(B)H(x+y) =x+H(y) forall x € Lp(X).
(4)x e G(X) = H(x) € G(X) forall x € X.

Proof(1) For anyx € Lp(X), we have

H(x) = H(0x (0xx))
= (0xH(0xx)) A ((0%x) xD(0))
= ((0%x) +D(0)) * (((0+x) ¥ D(0)) * (0 H(0xx)))

=0xH(0xx) € Lp(X).
(2) By (1), we haveH (x) € Lp(X). Then

H(x) =
(3) For anyx,y € Ly(X), we have

p(

H(x+y) =H (xx (0xy))

= (XxH(0xy)) A ((0*y) = D(x))

= ((0xy) *D(x)) * (((0xy) xD(x)) * (xx H(0x*Y)))

=XxxH(0xy)

=xx((0xH(y)) A

=xx(0xH(y))

=x+H(y).

0% (0xH(x)) =0+ H(x).

(y+D(0)))

(4)Letx € G(X). Then B«x = X, and sO

H(x) =H(0xXx)
= (0*xH(x)) A (xxD(0))
= (xxD(0)) * ((x+D(0)) * (0+ H(x)))
=0xH(x)
since 0x H(x) € Lp(X). Hence H(x) € G(X). This
completes the proof

If we takeH = D in Theoreml, then we have the
following corollary.

Corollary 1([1]). Let D be a left derivation of a
BCl-algebra X. Then

(I)x e Lp(X) = D(x) € Lp(X) forall x € X.
(2)D(x) =0+ D(x) forall x € X.

(3)D(x+Yy) =x+D(y) forall x,y € Lp(X).
(4)x e G(X) = D(x) € G(X) forall x e X.

Theorem 2Let H be a generalized left derivation of a
BCl-algebra X Then

(1)x€L (X) = H(x) =xxH(0) =x+H(0) forall x €

(2)H(x+y) H(x) +H(y) —H(0) for all x,y € Ly(X).
(3)H is identity on Ly(X) if and only if H(0) = 0.
(AH(xxy) < xxH(y) forall x,y € X.

Proof(1) For anyx € Lp(X), we have

(xxH(0)) A (0
= (0% D(x)) * (0% D(x)) (x>
= (0xD(x)) * ((0x (xxH(0))) *
=0x* (0 (xxH(0)))
=xxH(0) =x* (0xH(0))
=Xx+H(0)

H(x) = (x* 0) *D(X))
H(0)))

) *
) * D(x))

sincexx H(0) € Lp(X) andH(0) € G(X).
(2) If x,y € Lp(X), thenx+y € Lp(X). Using (1), we
have

H(x+y) = (x+Yy)+H(0)
=X+H(0)+y+H(0) —
=H(X)+H(y) = H(0).

(3) It follows from (1).

H(0)

(4) For anyx,y € X, we have
xxH(y)) A (y*D(x)

—~

H(xxy) =

~—
*

This completes the proof.

Definition 2.A generalized left derivaton H of a
BCl-algebra X is said to be regular if {0) =

Example 21) Thegeneralized left derivation Hf X in
Examplesl (1) and1 (2.3) are regular.

(2) Thegeneralized left derivation t8f X in Examples
1(2.1) andl (2.2) are not regular.

Theorem 3If X is a BCK-algebra, then every generalized
left derivation of X is regular.

ProofLet H be a generalized left derivationof a
BCK-algebraX. Then

H(0) =H(0x*X)
= (0xH(x)) A (xxD(0))
=0A(xxD(0)) =0.
HenceH is regular.

In aBCl—algebra, Theorer is not true as seen in the
following example:
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Example 3n Examplel1 (2.1), H is a generalized left
derivationof a BCl-algebraX which is not regular.

Theorem 4Let H be a regular generalized left derivation
of a BCl-algebra X Then

(1)Both x and Hx) belong to the same branch for alkx

(2H(x) <x forall xe X.
BHX) xy <xxH(y) forall x,y € X.

Proof(1) Letx € X. Then we have

0=H(0) =H(ax*X)
= (ax*xH(X)) A (xxD(ax))
= (xxD(ax)) * ((x*D(ax)) * (ax * H(x)))
= ayxxH(X)

since ay * H(x) € Lp(X). Hence ay < H(x), and so
H(x) € V(ax). Obviously,x € V (ay).

(2) SinceH is regularH(0) = 0. Then

H(x) = H(x*0)

= (xxH(0)) A (0xD(x))

= (xx0) A (0% D(x))
(0%D(x)) * (0% D(x)) *Xx)
X

I

(3) SinceH(x) < xfor all x € X by (2). Using (a3), we
have
H(X)xy < xxy < xxH(y).

This completes the proof.

Theorem 5For any generalized left derivation H of a
BCl-algebra X the set

H1(0) := {xe X |H(x) =0}

is a subalgebra of X if x= 0 for all x € X. Moreover,

H™(0) € X,

Proof Assume thak = 0 for all x € X. Letx,y € H1(0).
ThenH (x) = 0=H(y), and so

H(xxy) <xxH(y)=0x0=0

by Theorem2(4). HenceH(xxy) = 0 by (a7), that is,
x+y € H71(0). Hence H(0) is a subalgebra oK.
Further, letx € H=1(0). Then 0= H(x) < x by Theorem
4(2), which implies that x € X,, showing that
H~1(0) C X,. This completes the proof.

Definition 3.For a generalized left derivation H of a BCI-
algebra X we say that an ideal | of X is H-invariant if
H(l)ClI.

Example 41) LetH be ageneralized left derivationf X
which is described in Examplé (2.1). We know that
| :={0,1} is an ideal ofX which is notH-invariant.

(2) LetH be ageneralized left derivationf X which
is described in Examplg (1). We know that := {0,1} is
aH-invariant ideal ofX.

Theorem 6Let H be a generalized left derivation of a
BCl-algebra X Then H is regular if and only if every
ideal of X is H-invariant.

ProofLet | be an ideal ofX. SupposeH is regular, then
it follows from Theorem (2) thatH(x) < x for all x € X
implying therebyH (x) *x = 0. Lety € X be such thay €
H(l). Theny = H(x) for somex € |. Thus

yxXx=H(X)xx=0¢€l.

Sincel is an ideal ofX, it follows thaty € A so that
H(l) C 1. Thereforel is H-invariant.

Conversely, suppose that every ideal of is
H-invariant. Since the zero ideaK0} is clearly
H-invariant, we haveH ({0}) C {0}, and soH(0) = 0.
HenceH is regular.

If we takeH = D in Theoren®, then we have the following
corollary.

Corollary 2([1]). Let D be a left derivation of a
BCl-algebra X Then D is regular if and only if every
ideal of X is D-invariant.

Next, we prove some results in a p-semisimplel-
algebra.

Theorem 7Let H be a generalized left derivation of a
p-semisimple BCl-algebra Xwe have the following
assertions:

(A)xxH(x) =y=xH(y) forall x,y € X.
(2H (xxy) =xxH(y) forall x,y € X.
(BH(X) xx=H(y)*y forall x,y € X.
(MH(X)xx=yxH(y) forall x,y € X.

Proof(1) Let X be a p-semisimpl8Cl-algebra. Then for
anyxy € X, we have

H(0) = H(xxx) = (XxH (X)) A (xxD(x)) = x*xH(X).
Also,

H(0) =H(yxy) = (yxH(y)) A (y=D(y)) = y+H(y).
Henceforth, we get«H(x) =y« H(y).

(2) LetX be a p-semisimplBCl-algebra. Then for any
X,y € X, we have

H(xxy) = (xxH(y)) A (y*D(X)) = xxH(y).

© 2014 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.8, No. 3, 1153-1158 (2014)www.naturalspublishing.com/Journals.asp NS

1157

=

(3) Using (1), we have

(xxy)* (XxH(y)) <H(y)*y

and
(y#X)* (yxH (X)) <H(x)*x

these above inequalities can be rewritten as
((xxy)* (xxH(y))) = (H(y) xy) =0
and
((y*x) # (y*H(x))) * (H(X) xx) =0

Consequently, we get

(Ocxy) * (xxH(Y))) * (H(Y) #y) = ((y#X) * (yxH(x))) % (H(X) *X)

(3.1)
Also, using (1) and (2), we obtain
(xxy) x H(xxy) = (y*X) xH(y*X)
= (Xxy)x (xxH(y)) = (y#x) * (y*H(x)) (3.2)

Since, X is a p-semisimpleBCl-algebra. Hence, by
using equation (3.2) and (al2), the above equai®h)
yieldsH (x) xx = H(y) * V.

(4) We know thatH (0) = xx H(x). Using (3), we get
H(0) «0 = H(y) xy implies H(0) = H(y) xy. Therefore
H(y) xy = x* H(x) implying therebyH (x) * x =y« H(y).
This completes the proof.

If we takeH = D in Theorem7, then we have the
following corollary.

Corollary 3([1]). Let D be a left derivation of a
p-semisimple BCl-algebra Xwe have the following
assertions:

(1)D(xxy) = xxD(y) forall x,y € X.
(2)D(x) xx=D(y)*y forall x,y € X.
(3)D(x) xx=y=xD(y) forall x,y € X.

Theorem 8Let H be a self map in a p-semisimple BCI-

algebra X Then H is a generalized left derivation if and
only if it is a derivation on X.

Proof Suppose thaH is a generalized left derivatiomn
X. First , we show thaH is a(r,l)-derivation on X. Let
X,y € X. Using (al14) , we have

H(xxy) =xxH(y)
= (HX)*y)* (H(X) xy) * (xxH(y)))
= (XxxH(Y)) A (H(X) xy).

HenceH is a(r,l)-derivationon X.

Again, we show thaH is a(l,r)-derivation on X. Let
X,y € X. Using Theoren¥(4) and (al5), we have

= (xx0) xH(y)
= (Xx (H(0)xH(0))) «H(y)

(xx ((xxH (X)) x (H(y) xy))) « H(y)
= (XxH(y)) = (xxH(x))* (H(y) *y))
= (XxH(y)) = ((xxH(y)) * (H(x) xy))
= (H(X) xy) A (xxH(y))

Conversely, suppose thitis a derivation ofX. As H
is a(r,l)-derivationon X. Then for anyx,y € X, we have

H(xxy) = (xxH(y)) A (H(X) *Y)
= (H(X) xy) = (H(X) xy) = (xxH(y)))
=xxH(y)
= (y*D(x)) * ((y*D(x)) * (xxH(y)))
= (xxH(y)) A (yxD(x)).

HenceH is ageneralized left derivatianThis completes
the proof.

If we takeH = D in Theorem8, then we have the
following corollary.

Corollary 4([1]). Let D be a self map in a p-semisimple
BCl-algebra X Then D is a left derivation if and only if it
is a derivation on X.
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