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1 Introduction and Preliminaries in [1], [17), [19, [25], [27] [30] and [3§ in the
intuitionistic fuzzy normed spaces. Note that the idea of
The notion of fuzzy sets was first introduced by Zadehintuitionistic fuzzy normed space was introduced 36|
[40] in 1965 which is a powerful hand set for modeling and further studied in2{4], [28] [29], [31], [32] and [39].
uncertainty and vagueness in various problems arising iQuite recently, Changd] has established the stability of
the field of science and engineering. Among varioushigher ring derivation in intuitionistic fuzzy Banach
developments of this new theory, a progressivealgebras associated to the Jensen type functional
development has been made to find the fuzzy analoguesquation. In the recent past, Alotaibi and Mohiuddi@k [
of the classical set theory. In fact the fuzzy theory hasestablished the Ulam stability of a cubic functional
become an area of active researches for the last fougquation in random 2-normed spaces, while the notion of
decades. It has a wide range of applications in the field okandom 2-normed spaces was introduced by G8leirid
science and engineering, e.g. populgtion dyngm&}s [ further studied in]8,26,21].
chaos control §, computer programming7], nonlinear Now, we recall some notations and basic definitions

dynamical systemd)], fuzzy physics 19|, etc. The fuzzy : :
topology [L1] proves to be a very useful tool to deal with which will be used throughout the paper.

such situations where the use of classical theories breaks ) ]
down. Definition 1.1. A binary operation
Stability problem of a functional equation was first * - [0,1] x [0,1] — [0, 1] is said to be aontinuous t-norm
posed by Ulam 37] which was answered by Hyerd (] if it samsfles th_e followmg cond|t|0r)s: _ _
and then generalized by AokBJ[ and Rassias35] for (a) * is associative and commutativdy) = is continuous,
additive mappings and linear mappings, respectively.(c) @1 =aforallae [0,1], (d) axb < cxd whenever
Since then several stability problems for various @< ¢andb<d foreacha,b,c,d € [0,1].
functional equations have been investigatedlig],[[13],
[14], [1€], [20Q], [22], [23], [33], [34] and [35]. Recently,  Definition 1.2. A binary operation
the stability problem for mixed type quadratic-additive ¢ : [0,1] x [0,1] — [0,1] is said to be acontinuous
functional equation, Jensen functional equation, adglitiv t-conorm if it satisfies the following conditions:
functional equation, Pexiderized quadratic functional (&) < is associative and commutativeb’) < is
equation, cubic functional equation and mixed typecontinuous, (¢) a0 = a for all a € [0,1],
additive cubic functional equations have been consideredd’) a{b < c{>d whenevera < ¢ and b < d for each
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a,b,c,d €[0,1].

Using the notions of continuoudg-norm and

t-conorm, Saadati and Par&q] introduced the concept of

intuitionistic fuzzy normed space as follows:

Definition 1.3. The five-tuple(X, u, v, *,<) is said to be
an intuitionistic fuzzy normed spaces (for short, IFNS) if

X is a vector spaces is a continuoug-norm, $ is a

continuous t-conorm, and u,v are fuzzy sets on

X x (0,) satisfying the following conditions for each

X,y € X ands;t >0

(i) p(xt) + v(x, t) <1, (i) p(xt) >0, (iii) p(xt) =1if
and only if x = 0, (iv) p(axt) = u(x, M;T) for each
a # 0, (v) uxt) = pys) < X+ yt+s),
(Vi) p(x-) (0 o) — [0,1] is continuous,
(vii) I|m u(x t)=1and Ilmu(x t) =0, (viii) v(x,t) < 1,
(ix) (x,t) =0 |f and only if x = 0,
(x)  v(axt) = v(x, |O{‘) for each a # 0, (x)
vix,H)ov(y,s) > v(x + yt + s), (xii)
V(X,-) : (0,00) — [0,1] is continuous(xiii) tlm v(xt)=0
andtILrgv(x,t) =1.

In this case (u,v) is called an

intuitionigtic fuzzy norm.

Example 1.4.Let (X,]|.||) be a normed space,«b = ab
anda{b = min{a+b,1} for all a,b € [0,1]. For allx € X
and everyt > 0, consider

e if t>0 Xlift>0
Y e
H(X1) {0 if t <o0: and v(xt) {0 \Hlf <0
Then(X, u,v,*,$) is an IFNS.

The concepts of convergence and Cauchy sequences

in intuitionistic fuzzy normed space are studied 36|

Let (X, u,v,x,<$) be an IFNS. A sequence= (Xk)
is said to bantuitionistic fuzzy convergent to L € X if, for
everye>0, there exist&y € N such thaj(xc—L,t)>1—¢
and v(x — L,t)<e for all k > ko. In this case we write

(u,v)—lirrw:Lorka—’VQLaskaoo

Let (X, u,v,*,$) be an IFNS. AX = (k) is said to
be intuitionistic fuzzy Cauchy sequence if, for every e>0
andt>0, there exist& € N such thatu(xx — x,t)>1—¢
andv(x —x,t)<e for all k,1 > kg

An IFNS (X,u,v,*,$) is said to becomplete if
every intuitionistic fuzzy Cauchy sequence

intuitionistic fuzzy convergent in(X, u,v,,$). In this

case(X, U, v) is called intuitionistic fuzzy Banach space.

2 Main Results

Theorem 2.1.Let X be a linear space arf, t,v) be an
intuitionistic fuzzy Banach space. Lét: X x X — [0, )
be a control function such that

d(xy) = 22‘”¢(2”x, 2"y) < o (2.1.2)

for all x,y € X. Let f: X — Y be a uniformly
approximately additive function with respect ¢oin the
sense that

fim p(f(x+y) = 100 = f(y),to(xy)) =

and
tIm)v(f(x+y) —f(x)—

f(y),to(xy) =0 (212

uniformly in X x X. ThenT (X) = (U, v)-limp_e f‘§§x> for
eachx € X exists and defines an additive mappingX —
Y such that if for somé& > 0,a > 0 and allx,y € X,

p(f(x+y)—f(x)—f(y),0¢(xy)) >a

and
V(oY) — 00— Ty). 80 (cy) < 1—a, (213
then
u(T - 10,5000 )>
and

V(T(X) - f(x),itﬁ(x,x)) <l-a.

Proof. Givene > 0. By (2.1.2), we can find sonte > 0
such that

H(F(x+y) — F(X) = f(y),td(xy)) >1—¢€
and
V(F(x+y) = f(x) = f(y),td(xy)) <

for all x,y € X and allt > t,
show that

(2.1.4)

. By induction onn, we shall
n—-1

u <f(2“x) —2Mf(x),t 5 2" k1g(2Kx, 2kx)) >1—¢
k=0

~and
is

v <f(2“x) —27f(x),t nilzn—k—l(p(zkx, 2kx)> <t
k=0

(2.1.5)
forall x e X,t >t, and all positive integens. Puttingy = x
in (2.1.4), we get (2.1.5) fon = 1. Let (2.1.5) hold for
some positive integar. Then

We start our work with an intuitionistic fuzzy version of

the Hyers-Ulam-Rassias stability in which we uniform

approximate a ‘uniform’ approximate additive mapping.

y o <f(2“+1x) _ oM (%)t iznkcp (2%, 2kx)>
k=
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>u (f (2M1x) — 2 (2"x),t, ¢ (27X, 2”x)> *

u<2f(2” ) — 2" (x) z 27K (2%, 2¢x ))

>(1-¢g)x(l—g)=1-¢
and

V(f(2n+1 ) 2n+1f tzzn k¢ 2kX 2k ))
<v <f(2“+lx) —2f(2"%),t,0 (2"x, Z”X)) &

v<2f(2" ) — 2L (%)t Z 2" K (2%, 2%x ))

<egHe=¢.

This completes the induction argument. Let t, and put
n = pthen by replacing with 2"x in (2.1.5), we obtain

f(2"Px) f(2'%) to k-1 K K
“( b on e Z 2@ 2
>1-¢

and
f(2"Px) f(2) t k-1 K K
V( 2P0 U ontp Z)Zp $(2M %27
<g, (2.1.6)

for all integersn > 0 andp > 0. The convergence of (2.1.1)
and

n+p-1

gz—n k— l¢(2ﬂ+k 2n+k Z - k¢ 2kX 2k )

imply that for givend > 0 there isn, € N such that

+p-
5 Z 27K (2%, 2%%) < 9,
for all n > n, and allp > 0. Now we deduce that from
(2.1.6) that
f(2"Px)  f(2"X)
( ontp ~  on 0 )=

n+p Ny
U ( f(§n+px)) o f(2n 7 2n+p z 2p—k—l¢(2n+kx7 2n+kx))

>1-¢
and f(2"Px)  f(2"x)
X X
V( ontp on ’5>

<v ( 2n+px )_

2" ’2n+p ZIS ézp k— 1¢(2n+kx 2n+kx)>

<eg

— )

for all n > n, and allp > 0. Hence( f<§:")) is a Cauchy
sequence | iry. SinceY is an intuitionistic fuzzy Banach

space(f< >) converges to som&(x) € Y . Hence, we
can defme a mappingT : X — Y such that

T(X) = (4, v)-limp_e %:X) namely, for each > 0, and

xe X,
u(T(x)— f(g:x),t): 1 and v(T(x)— f(s:x),t):o.

Now, letx,y € X. Choose any fix value df> 0, ande €
(0,1). Since limy» 2 "¢ (2"%,2"y) = 0, there existsy >
n, such that, ¢ (2"x,2"y) < ZTnt for all n > n;. Hence for
eachn > ng, we have

HT(X+Y) =T =T(y):1)

> H (T(X+y) - HEDE) Qn(;”” : Z) *
o(ro0- 150
(T 120 1)

u(t@ oy f@w - 1@, ) @)
and also
H(F(x+y) — 1(2%) — £(2),2%/4)
> (F2(xy)) — F(2%) — 1(2'), L (2% 2')).

(2.1.8)
Lettingn — o in (2.1.7) and using (2.1.4), (2.1.8), we get

U(TX+Y) =T(X)=T(y),t) >1-¢

for all t > 0 and € € (0,1). Similarly, we obtain
V(T(x+y) —T(xX) = T(y),t) < & for all t >0 and
€ (0,1). It follows that

HTX+Y) =T =T(y),H) =1

and
V(T(X+y)=T(X)=T(y),t) =0,

for allt > 0. ThereforeT (x+y) = T(X) + T(y).
Lastly, suppose that for some positive and a,
(2.1.3) holds and

n-1
n(X, _ kafl 2k ’2k ,
$n(xy) k;) ¢ (2°x,2%y)

for all x,y € X. By a similar argument as in the beginning
of the proof one can deduce from (2.1.3)
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u <f(2“x) —2M(x),8 yp g2k (2kx, 2kx)) >a

and

v (f(z”x) —2M(x),85p g2 k1 (2Kx, 2kx)) <l-a,

(2.1.9)
for all positive integers. Fors> 0, we have

H(F(X) —T(X),0¢0n(X,X)+9)

> u(f(X) - ”;:X)Mn(’(ﬂ‘))*

(128 1)

V(f(X) = T(X), 5¢n(X,X)+S)

<v((109- 15 80x0 )0

V(f(;:x) —T(x),s)

Combining (2.1.9), (2.1.10) and using the fact that

and

(2.1.10)

r!ianu ( f(;:x) —T(x),s>_ 1
and
Amv< f(g:x) —T(x),s>: 0,
we obtain
M) =T (%), 0¢n(x,X) +5) > a
and

V(fF(X) =T (X),00n(X,X)+s) <1—a,
for sufficiently largen. From the (upper semi) continuity
of real functionsu(f(x) — T(x),.) andv(f(x) — T(x),.),
we see that

u(f(x) —T(x),zcﬁ(x,x)+s>2 a

and
v(f(x)—T(x),irﬁ(x,x)—s—s)g l1-a.

Taking the limits — o, we get

Theorem 2.2.Let X be a linear space arf, t,v) be an
intuitionistic fuzzy Banach space. Lét: X x X — [0, )

be a control function satisfying (2.1.1). Lét X — Y be
an uniformly approximately additive function with respect
to ¢. Then there is a unique additive mappiig X — Y
such that

lim p(f(x)—T(x),td(x,x)) =1

n—co

and
lim v(f(x)—T(x),td(x,x)) =0

n—oo

uniformly in X.

(2.2.1)

Proof. The existence of uniform limit (2.2.1) immediately
follows from Theorem 2.1. It remains to prove the
uniqueness assertion. L8tbe another additive mapping
satisfying (2.2.1). Choose any fix value of> 0. Given

€ > 0, there is somg, > 0 such that (2.2.1) fof andS

M)~ T(9, 5(xX) > 1, H(F(9)—SX), 5B (xX)
>1-¢ and

V(F0~T(9, 5B (X)) <&, V(T —SX), 5B(x) <

for all x € X and allt > t,. For somex € X, we can find
some integen, such that

t % 27K (2%, 24%) < <

Ok:n ) 27

for all n > n,. Since

Y 2740(2%2%)
k=n

Y 22k (20, 2 (27))
k=n
_ 1 i 27" (2M(2"%),2™(2"x)) = lcﬁ(2“x 2"x)
2n rn:o ) 2n ) )

we have

u(st9 - T09.0 > ("5

(500~ -5 r2)

= u(f(2"%)—T(2"%),2" Lc)* u(S(2"x) — £ (2"x),2"1c)

> <f (2"%) — T (2"x), 2", i 27K (2, 2kx)> *
k=n

u (S(Z”x) — £(2"),2", % 27K (2, 2kx)>

k=n

© 2014 NSP
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= u(f(2"%) —T(2"%),t.§ (2", 2"X) ) *
H(S(2"X) — f(2"X),t.P(2"%,2"X)) > 1—¢

and similarly

forall x,,x,y € Xand 0< q< 1. Then

< o 291X + Iyl 9)
n n n _
¢(X7y) H;Z ¢(2 X72 y) - 21_q _ 1 )

for all x,y € X. For each intuitionistic fuzzy norrfyu, v),

on we have

v <S(x) — f(;r:x) ,c/2)

<v (f(Z”x) —T(2"), 2", g 27K (2%, 2kx)> o
k=n

V(S(x) —T(x),c) < V(f(z"x) —T(x),c/2><>
p(f(x+y) = f(x) = f(y),td(xy))

= (B (XY= IXIT = lIvlID), (X1 + [yl )
and

v(f(x+y)—f(x) = f(y),to(xy))
= V(B (IX+ Y= IX[T = [IyI9), (IXIT+ Iy D)),
for all x,y € X andt € R. Thus
p(f(x+y) = F(x) = f(y),td(xy)) > U(Bx,t/2)
and
v(f(x+y) = f(x) = f(y),td(xy)) < v(BX.,t/2),

for all x,y € X andt € R. Hence

lim p(f(x+y) — 1(x) — (y).t9(x.y)) =1

v <5(2"x) — £(2"), 2", anz—kqb (2%, 2kx)>

=v(f(2"%)
V(S(2"%) -
It follows that
H(S(X) —T(x),c) =1 and v(S(x) — T(x),c) =0
for all c > 0. HenceT (x) = §(x) for all x e X. OJ

—T(2"%),t.¢(2"%,2"X))
f(2"%),t.(2"%,2"X)) < €.

In the next result, we consider the control function and
¢ (x.y) = 0(|[x|[*+ [y]|9) for somef > 0. fim v(f(x+y) = f(x) = f(y),t¢(xy)) =0
Corollary 2.3. Let X be a normed linear space and uniformly in X x X. Therefore the condition of Corollary
(Y,u,v) be an intuitionistic fuzzy Banach space. Let 2.3 are fulfilled.O
f : X =Y be a function such that foral > 0,0<qg<1

Now, we are giving our second intuitionistic fuzzy
lim pa(f(x+y) = £(x) - f(y), to([x|9+[lyl|%) =1 Hyers-Ulam-Rassias type theorem (non-uniform version).

and Theorem 2.5.Let X be a linear space and, i/, v’) be an
intuitionistic fuzzy normed space. Lgt: X x X — Z be a
function such that for some@ a < 2,

H(Y(2x,2y),t) > p'(ay(xy),t)

fim v(f(x+y) = F(x) = £ (y),t0([Ix|| T+ [Iyl|*)) = O,

uniformly in X x X. Then there exists a unique additive
mappingT : X — Y such that and

2et||x||q>

Jmu(T(x) — (0, T a1 (25.1)

Vi(g(2x.2y),1) < V'(ag(xy).t),

for all x,y € X andt > 0. Let (Y, u,v) be an intuitionistic
and fuzzy Banach space and lef : X — Y be a
26t||x||9 W-approximately additive mapping in the sense that

limv( T(x) —f(x), — |=0,
toe < 1-21 1) H(F(x+y) = 100 = f(y),t) > W' (Y(xy),1)
uniformly in X.

and

v(f(x4y) = F(x) = f(y),t) <V'(@(xy),1),

for all x,y € X andt > 0. Then there exists a unique
additive mappind : X — Y such that

20083,

2—a

Example 2.4.Let X be a Banach space amdand 3 be (25.2)
real numbers. Write o

f(x) = ax+ Bx]|*

and

¢xy) = IXIT+ Iyl H(TO) =T(x),1) = “/(

© 2014 NSP
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and 2% and
/ X, X
V(f(x)_T(X)’t)<V< 2—a ’t> V(f(Z”x)f(me) 5 (a)kt)

for all x e X andt > 0. 2" 2m ’k:m+1 2
Proof. Puty = xin (2.5.2), we get nof(2%) (2 1) nora\K

=vi > K =uall DY R R

2 2 2
k=m+1 k=mt+1

H(F(20 = 26(x),) > 1 (W X),1)
and
v(f(2x) —2f(x),t) < V' (P(xX),1), (2.5.3)

for all x € X andt > 0. Using (2.5.1) and induction am
we obtain

H(W(2'%,27%),1) > [ (a (% x),1)
and
V(P (2"%,2"x),t) < V' (a"P(x,x),t), (2.5.4)

for all x € X andt > 0. Replacing by 2"~1xin (2.5.3) and
using (2.5.4), we get

u(f(2"x) —2f(2"1x),t) > p'(a"1@(x,x),t) and
v(f(2"%) —2f (2" 1x),t) < v/ (a"1@(x,x),t).

(2.5.5)
It follows that

f(2n f(2"1x) t 1 t
IJ( (2nX) - (anX)’2n>> H'(aw(xm),m)
and
f(2%) f(2"1x) t (1 t
V( on - 2n_1 a2n>§ v <aLIJ(X7X)’an>'
Thus
f(2" f(2n1 " (1
/-1( (2nX) - (Zn—l)()v (g) t>> M (aw(X,X),t>

and

(120120, (9)' )< (Buiwos).

forall x e X,t > 0 andn > 1. Therefore

(15360

=M1
(3051, (9)
1

> N/<O,‘/J(X»X)at>

< v’(iw(x7x)7t>7

forall xe X,t > 0andn > m2> 0. Hence

u < f(;:x) - f%::x) ,t) > IJ/<;§U(X7X)» zn—t(a)R>

k=m+1

(2.5.6)
for all x e X, t >0 and n > m > 0. Since
liMs o0 ' (2 P(x,%),5) = 1 and
liMs o0 V' (2(x,X),5) = 0; also i o($)" < . This
shows that(%:x)) is a Cauchy sequence in the
intuitionistic fuzzy Banach spacg, u,v), therefore it is

convergent to someT (x) € Y. So we can define a

mappingT : X =Y by T(X) = (14, V)-liMp e %:X) For

X,y € X andt > 0, it follows from (2.5.2) that

H(F (2 (x+y)) = 1(2%) — £(2"),1) > 1 (Y(2'%, 2),1)

> o0 > i (wixy). (£) 1)
and similarly

V(f(2'(x+y)) = F(2%) = £(2),1) < V'(@(2%,2"),1)

< v’(tﬂ(x,y% (i)nt)

Thus
a2 1212y )
> u’(tﬂ(x,y), (02,>nt>
and

2n 2" 2n

v (2)%)

for all n. Furthermore,

HT(X+Y) =TX)=T(y),t)

v<f<2”<x+y>> @ f<2”y>’t>

(25.7)
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f(2"(x+y)) t r(29(x%)
> — — =
_I-‘(T(X+Y) on ) * v 2—a )
f(2"x) t f(2"y) t for all x € X andt > 0. The uniqueness of can be
T(X) - on 4 *U( T(y)— on a)* proved on the same lines as in Theorem 2.2.
U f(2'(x+y) (2% f(2Y) t Example 2.6.Let X be a normed space. Suppose that
2n n 2n 74 (u,v) and(p’,v’") be intuitionistic fuzzy norms o and

R respectively, defined in Example 1.4 and
T ST T ¢ : (0,0) — (0,0) be a function such that
VT4 =TE) =T, Y ¢(2r) <a@(r)forallr > 0anda € (0,2). Define
f(2"(x+y)) t><>

<V(T<X+V>‘zn ¥ wxy) = S (X1 + S (lyll) + S (Ix-+yl)

f(2"%) t f(2y) t for eachx,y € X. Letx, € X be a unit vector. Defind :
V(W)_ (2) )OV(W)_ (2") ) y .

and

n 4 on 4 X = X by f(x) =X+ ¢(||IX||)%. Then for eactx,y € X
dt >0,weh
ov f(2"(x+y)) B f(ZnX) B f(2ny) E (258) andt > 0, we have
on n n 4 ~ p(f(x+y)—f(x) —f(y),t)
Lettingn — = in (2.5.7) and (2.5.8), we get t
HTOY) =T =T(y).1) =1 10D + @Iy + ¢ (het-yD I
t
> = IJ/ LIJ X,Y),t
and B+ 8D+ ex ]~ K WOV
V(T(X+y) =T(})=T(y),t) =0, -
and similarly,
for all x,y € X andt > 0. ThusT(x+Yy) = T(x) + T(y).
This means that satisfies the Cauchy equation and so it v(f(x+y)—f(x)— f(y),t)
is additive. Using (2.5.6) witim= 0, and for allx € X and ¢ ,
= <
t>0, we get ET Ty a (] = v (WY) ).
F(o) t F&lrthermore, . . )
(T = F(x),1) > u(T(X) - ,2)* u <dw<2x, 29).0) = sy = ey = M (WX Y)Y
an
f(ZnX) t V/(([I(ZX, Zy)vt) = t+L,U(t2X,2y) < t+a(}1(x,y) = V/(W(va)7t>7
on (X)7§ for all x,y € X andt > 0. Therefore, by Theorem 2.5,

there exists a unique additive mappiig. X — Y such

- <T(x) B f(s:x) ’ ;) . (iw(xﬂo, 22Et1(g)k> that for eachx € X andt2> (()X .
and u(f(x)—T(x),t)gu’(f_;},t) and v(()—T(x),1)
T - 1.0 <v (T - 129 1Yo (20,
- 2—a )

(120 ) <ofr 120

1 t
<>v’< X, X ,)
all-’( ) 233 1(5)"
Lettingn — « in (2.5.9), we get

HT0— F(0.1) > u'(z‘“x’x) ! )

a 23 4(5)K
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