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1 Introduction and Preliminaries

The notion of fuzzy sets was first introduced by Zadeh
[40] in 1965 which is a powerful hand set for modeling
uncertainty and vagueness in various problems arising in
the field of science and engineering. Among various
developments of this new theory, a progressive
development has been made to find the fuzzy analogues
of the classical set theory. In fact the fuzzy theory has
become an area of active researches for the last four
decades. It has a wide range of applications in the field of
science and engineering, e.g. population dynamics [4],
chaos control [6], computer programming [7], nonlinear
dynamical systems [9], fuzzy physics [15], etc. The fuzzy
topology [11] proves to be a very useful tool to deal with
such situations where the use of classical theories breaks
down.

Stability problem of a functional equation was first
posed by Ulam [37] which was answered by Hyers [10]
and then generalized by Aoki [3] and Rassias [35] for
additive mappings and linear mappings, respectively.
Since then several stability problems for various
functional equations have been investigated in [12], [13],
[14], [16], [20], [22], [23], [33], [34] and [35]. Recently,
the stability problem for mixed type quadratic-additive
functional equation, Jensen functional equation, additive
functional equation, Pexiderized quadratic functional
equation, cubic functional equation and mixed type
additive cubic functional equations have been considered

in [1], [17], [19], [25], [27] [30] and [38] in the
intuitionistic fuzzy normed spaces. Note that the idea of
intuitionistic fuzzy normed space was introduced in [36]
and further studied in [24], [28] [29], [31], [32] and [39].
Quite recently, Chang [5] has established the stability of
higher ring derivation in intuitionistic fuzzy Banach
algebras associated to the Jensen type functional
equation. In the recent past, Alotaibi and Mohiuddine [2]
established the Ulam stability of a cubic functional
equation in random 2-normed spaces, while the notion of
random 2-normed spaces was introduced by Goleţ [8] and
further studied in [18,26,21].

Now, we recall some notations and basic definitions
which will be used throughout the paper.

Definition 1.1. A binary operation
∗ : [0,1]× [0,1]→ [0,1] is said to be acontinuous t-norm
if it satisfies the following conditions:
(a) ∗ is associative and commutative,(b) ∗ is continuous,
(c) a ∗1 = a for all a ∈ [0,1], (d) a ∗ b ≤ c ∗ d whenever
a ≤ c andb ≤ d for eacha,b,c,d ∈ [0,1].

Definition 1.2. A binary operation
♦ : [0,1] × [0,1] → [0,1] is said to be acontinuous
t-conorm if it satisfies the following conditions:
(a′) ♦ is associative and commutative,(b′) ♦ is
continuous, (c′) a♦0 = a for all a ∈ [0,1],
(d′) a♦b ≤ c♦d whenevera ≤ c and b ≤ d for each
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a,b,c,d ∈ [0,1].

Using the notions of continuoust-norm and
t-conorm, Saadati and Park [36] introduced the concept of
intuitionistic fuzzy normed space as follows:
Definition 1.3. The five-tuple(X ,µ ,ν ,∗,♦) is said to be
an intuitionistic fuzzy normed spaces (for short, IFNS) if
X is a vector space,∗ is a continuoust-norm, ♦ is a
continuous t-conorm, and µ ,ν are fuzzy sets on
X × (0,∞) satisfying the following conditions for each
x,y ∈ X ands, t > 0
(i) µ(x, t)+ν(x, t)≤ 1, (ii) µ(x, t)> 0, (iii) µ(x, t) = 1 if
and only if x = 0, (iv) µ(αx, t) = µ(x, t

|α | ) for each
α 6= 0, (v) µ(x, t) ∗ µ(y,s) ≤ µ(x + y, t + s),
(vi) µ(x, ·) : (0,∞) → [0,1] is continuous,
(vii) lim

t→∞
µ(x, t) = 1 and lim

t→0
µ(x, t) = 0, (viii) ν(x, t)< 1,

(ix) ν(x, t) = 0 if and only if x = 0,
(x) ν(αx, t) = ν(x, t

|α | ) for each α 6= 0, (xi)

ν(x, t)♦ν(y,s) ≥ ν(x + y, t + s), (xii)
ν(x, ·) : (0,∞)→ [0,1] is continuous,(xiii) lim

t→∞
ν(x, t) = 0

and lim
t→0

ν(x, t) = 1.

In this case (µ ,ν) is called an
intuitionistic f uzzy norm.

Example 1.4.Let (X ,‖.‖) be a normed space,a ∗ b = ab
anda♦b = min{a+b,1} for all a,b ∈ [0,1]. For allx ∈ X
and everyt > 0, consider

µ(x, t) =
{ t

t+‖x‖ if t > 0
0 if t ≤ 0;

and ν(x, t) =

{

‖x‖
t+‖x‖ if t > 0
0 if t ≤ 0;

Then(X ,µ ,ν ,∗,♦) is an IFNS.

The concepts of convergence and Cauchy sequences
in intuitionistic fuzzy normed space are studied in [36].

Let (X ,µ ,ν ,∗,♦) be an IFNS. A sequencex = (xk)
is said to beintuitionistic fuzzy convergent to L ∈ X if, for
everyε>0 , there existsk0 ∈N such thatµ(xk−L, t)>1−ε
and ν(xk − L, t)<ε for all k ≥ k0. In this case we write

(µ ,ν)− limxk = L or xk
(µ ,ν)
−→ L ask → ∞

Let (X ,µ ,ν ,∗,♦) be an IFNS. Ax = (xk) is said to
be intuitionistic fuzzy Cauchy sequence if, for every ε>0
andt>0, there existsk0 ∈ N such thatµ(xk − xl , t)>1− ε
andν(xk − xl , t)<ε for all k, l ≥ k0

An IFNS (X ,µ ,ν ,∗,♦) is said to becomplete if
every intuitionistic fuzzy Cauchy sequence is
intuitionistic fuzzy convergent in(X ,µ ,ν ,∗,♦). In this
case(X ,µ ,ν) is called intuitionistic fuzzy Banach space.

2 Main Results

We start our work with an intuitionistic fuzzy version of
the Hyers-Ulam-Rassias stability in which we uniformly
approximate a ‘uniform’ approximate additive mapping.

Theorem 2.1.Let X be a linear space and(Y,µ ,ν) be an
intuitionistic fuzzy Banach space. Letϕ : X ×X → [0,∞)
be a control function such that

ϕ̃(x,y) =
∞

∑
n=0

2−nϕ(2nx,2ny)< ∞, (2.1.1)

for all x,y ∈ X . Let f : X → Y be a uniformly
approximately additive function with respect toϕ in the
sense that

lim
t→∞

µ( f (x+ y)− f (x)− f (y), tϕ(x,y)) = 1

and

lim
t→∞

ν( f (x+ y)− f (x)− f (y), tϕ(x,y)) = 0 (2.1.2)

uniformly in X ×X . ThenT (x) = (µ ,ν)- limn→∞
f (2nx)

2n for
eachx ∈ X exists and defines an additive mappingT : X →
Y such that if for someδ > 0,α > 0 and allx,y ∈ X ,

µ( f (x+ y)− f (x)− f (y),δϕ(x,y))> α

and

ν( f (x+ y)− f (x)− f (y),δϕ(x,y))< 1−α, (2.1.3)

then

µ
(

T (x)− f (x),
δ
2

ϕ̃(x,x)
)

> α

and

ν
(

T (x)− f (x),
δ
2

ϕ̃(x,x)
)

< 1−α.

Proof. Given ε > 0. By (2.1.2), we can find somet◦ > 0
such that

µ( f (x+ y)− f (x)− f (y), tϕ(x,y))≥ 1− ε

and

ν( f (x+ y)− f (x)− f (y), tϕ(x,y))≤ ε (2.1.4)

for all x,y ∈ X and allt ≥ t◦. By induction onn, we shall
show that

µ
(

f (2nx)−2n f (x), t
n−1
∑

k=0
2n−k−1ϕ(2kx,2kx)

)

≥ 1− ε

and

ν
(

f (2nx)−2n f (x), t
n−1
∑

k=0
2n−k−1ϕ(2kx,2kx)

)

≤ ε ,



































(2.1.5)
for all x∈ X , t ≥ t◦ and all positive integersn. Puttingy= x
in (2.1.4), we get (2.1.5) forn = 1. Let (2.1.5) hold for
some positive integern. Then

µ
(

f (2n+1x)−2n+1 f (x), t
n

∑
k=0

2n−kϕ(2kx,2kx)

)
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≥ µ
(

f (2n+1x)−2 f (2nx), t◦ϕ(2nx,2nx)

)

∗

µ
(

2 f (2nx)−2n+1 f (x), t◦
n−1

∑
k=0

2n−kϕ(2kx,2kx)

)

≥ (1− ε)∗ (1− ε) = 1− ε

and

ν
(

f (2n+1x)−2n+1 f (x), t
n

∑
k=0

2n−kϕ(2kx,2kx)

)

≤ ν
(

f (2n+1x)−2 f (2nx), t◦ϕ(2nx,2nx)

)

♦

ν
(

2 f (2nx)−2n+1 f (x), t◦
n−1

∑
k=0

2n−kϕ(2kx,2kx)

)

≤ ε♦ε = ε .

This completes the induction argument. Lett = t◦ and put
n = p then by replacingx with 2nx in (2.1.5), we obtain

µ
(

f (2n+px)
2n+p −

f (2nx)
2n ,

t◦
2n+p

p−1

∑
k=0

2p−k−1ϕ(2n+kx,2n+kx)

)

≥ 1− ε

and

ν
(

f (2n+px)
2n+p −

f (2nx)
2n ,

t◦
2n+p

p−1

∑
k=0

2p−k−1ϕ(2n+kx,2n+kx)

)

≤ ε , (2.1.6)

for all integersn≥ 0 andp> 0. The convergence of (2.1.1)
and

p−1

∑
k=0

2−n−k−1ϕ(2n+kx,2n+kx) =
1
2

n+p−1

∑
k=n

2−kϕ(2kx,2kx)

imply that for givenδ > 0 there isn◦ ∈ N such that

t◦
2

n+p−1

∑
k=n

2−kϕ(2kx,2kx)< δ ,

for all n ≥ n◦ and all p > 0. Now we deduce that from
(2.1.6) that

µ
(

f (2n+px)
2n+p −

f (2nx)
2n ,δ

)

≥

µ
(

f (2n+px)
2n+p )− f (2nx)

2n , t◦
2n+p ∑p−1

k=0 2p−k−1ϕ(2n+kx,2n+kx)

)

≥ 1− ε

and

ν
(

f (2n+px)
2n+p −

f (2nx)
2n ,δ

)

≤ ν
(

f (2n+px)
2n+p )− f (2nx)

2n , t◦
2n+p ∑p−1

k=0 2p−k−1ϕ(2n+kx,2n+kx)

)

≤ ε ,

for all n ≥ n◦ and all p > 0. Hence( f (2nx)
2n ) is a Cauchy

sequence inY . SinceY is an intuitionistic fuzzy Banach
space,( f (2nx)

2n ) converges to someT (x) ∈ Y . Hence, we
can define a mappingT : X → Y such that
T (x) = (µ ,ν)- limn→∞

f (2nx)
2n , namely, for eacht > 0, and

x ∈ X ,

µ
(

T (x)−
f (2nx)

2n , t

)

= 1 and ν
(

T (x)−
f (2nx)

2n , t

)

= 0.

Now, let x,y ∈ X . Choose any fix value oft > 0, andε ∈
(0,1). Since limn→∞ 2−nϕ(2nx,2ny) = 0, there existsn1 >

n◦ such thatt◦ϕ(2nx,2ny) < 2nt
4 for all n ≥ n1. Hence for

eachn ≥ n1, we have

µ(T (x+ y)−T (x)−T (y), t)

≥ µ
(

T (x+ y)−
f (2n(x+ y))

2n ,
t
4

)

∗

µ
(

T (x)−
f (2n(x))

2n ,
t
4

)

∗

µ
(

T (y)−
f (2n(y))

2n ,
t
4

)

∗

µ
(

f (2n(x+ y))− f (2nx)− f (2ny),
2nt
4

)

(2.1.7)

and also

µ( f (2n(x+ y))− f (2nx)− f (2ny),2nt/4)

≥ µ( f (2n(x+ y))− f (2nx)− f (2ny), t◦ϕ(2nx,2ny)).
(2.1.8)

Letting n → ∞ in (2.1.7) and using (2.1.4), (2.1.8), we get

µ(T (x+ y)−T (x)−T (y), t)≥ 1− ε

for all t > 0 and ε ∈ (0,1). Similarly, we obtain
ν(T (x + y) − T (x) − T (y), t) ≤ ε for all t > 0 and
ε ∈ (0,1). It follows that

µ(T (x+ y)−T (x)−T (y), t) = 1

and
ν(T (x+ y)−T (x)−T (y), t) = 0,

for all t > 0. ThereforeT (x+ y) = T (x)+T (y).
Lastly, suppose that for some positiveδ and α,

(2.1.3) holds and

ϕn(x,y) =
n−1

∑
k=0

2−k−1ϕ(2kx,2ky),

for all x,y ∈ X . By a similar argument as in the beginning
of the proof one can deduce from (2.1.3)
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Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1138 A. Alotaibi et. al. : On the Ulam Stability of Cauchy Functional Equation...

µ
(

f (2nx)−2n f (x),δ ∑n−1
k=0 2n−k−1ϕ(2kx,2kx)

)

≥ α

and

ν
(

f (2nx)−2n f (x),δ ∑n−1
k=0 2n−k−1ϕ(2kx,2kx)

)

≤ 1−α ,







































(2.1.9)
for all positive integersn. Fors > 0, we have

µ( f (x)−T (x),δϕn(x,x)+ s)

≥ µ
(

f (x)−
f (2nx)

2n ,δϕn(x,x)

)

∗

µ
(

f (2nx)
2n −T (x),s

)

and
ν( f (x)−T (x),δϕn(x,x)+ s)

≤ ν
(

f (x)−
f (2nx)

2n ,δϕn(x,x)

)

♦

ν
(

f (2nx)
2n −T (x),s

)

(2.1.10)

Combining (2.1.9), (2.1.10) and using the fact that

lim
n→∞

µ
(

f (2nx)
2n −T (x),s

)

= 1

and

lim
n→∞

ν
(

f (2nx)
2n −T (x),s

)

= 0,

we obtain

µ( f (x)−T (x),δϕn(x,x)+ s)≥ α

and
ν( f (x)−T (x),δϕn(x,x)+ s)≤ 1−α,

for sufficiently largen. From the (upper semi) continuity
of real functionsµ( f (x)− T (x), .) andν( f (x)− T (x), .),
we see that

µ
(

f (x)−T (x),
δ
2

ϕ̃(x,x)+ s

)

≥ α

and

ν
(

f (x)−T (x),
δ
2

ϕ̃(x,x)+ s

)

≤ 1−α.

Taking the limits → ∞, we get

µ
(

f (x)−T (x),
δ
2

ϕ̃(x,x)
)

≥ α

and

ν
(

f (x)−T (x),
δ
2

ϕ̃(x,x)
)

≤ 1−α. �

Theorem 2.2.Let X be a linear space and(Y,µ ,ν) be an
intuitionistic fuzzy Banach space. Letϕ : X ×X → [0,∞)
be a control function satisfying (2.1.1). Letf : X → Y be
an uniformly approximately additive function with respect
to ϕ. Then there is a unique additive mappingT : X → Y
such that

lim
n→∞

µ( f (x)−T (x), tϕ̃(x,x)) = 1

and
lim
n→∞

ν( f (x)−T (x), tϕ̃(x,x)) = 0 (2.2.1)

uniformly in X .

Proof. The existence of uniform limit (2.2.1) immediately
follows from Theorem 2.1. It remains to prove the
uniqueness assertion. LetS be another additive mapping
satisfying (2.2.1). Choose any fix value ofc > 0. Given
ε > 0, there is somet◦ > 0 such that (2.2.1) forT andS

µ( f (x)−T (x),
t
2

ϕ̃(x,x))≥ 1−ε , µ( f (x)−S(x),
t
2

ϕ̃(x,x))

≥ 1− ε and

ν( f (x)−T (x),
t
2

ϕ̃(x,x))≤ ε , ν( f (x)−S(x),
t
2

ϕ̃(x,x))≤ ε

for all x ∈ X and allt ≥ t◦. For somex ∈ X , we can find
some integern◦ such that

t◦
∞

∑
k=n

2−kϕ(2kx,2kx)<
c
2
,

for all n ≥ n◦. Since

∞

∑
k=n

2−kϕ(2kx,2kx)

=
1
2n

∞

∑
k=n

2−(k−n)ϕ(2(k−n)(2nx),2(k−n)(2nx))

=
1
2n

∞

∑
m=0

2−mϕ(2m(2nx),2m(2nx)) =
1
2n ϕ̃(2nx,2nx),

we have

µ(S(x)−T (x),c)≥ µ
(

f (2nx)
2n −T (x),c/2

)

∗

µ
(

S(x)−
f (2nx)

2n ,c/2

)

= µ( f (2nx)−T (2nx),2n−1c)∗µ(S(2nx)− f (2nx),2n−1c)

≥ µ
(

f (2nx)−T (2nx),2nt◦
∞

∑
k=n

2−kϕ(2kx,2kx)

)

∗

µ
(

S(2nx)− f (2nx),2nt◦
∞

∑
k=n

2−kϕ(2kx,2kx)

)

c© 2014 NSP
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= µ( f (2nx)−T (2nx), t◦ϕ̃(2nx,2nx))∗

µ(S(2nx)− f (2nx), t◦ϕ̃(2nx,2nx))≥ 1− ε

and similarly

ν(S(x)−T (x),c)≤ ν
(

f (2nx)
2n −T (x),c/2

)

♦

ν
(

S(x)−
f (2nx)

2n ,c/2

)

≤ ν
(

f (2nx)−T (2nx),2nt◦
∞

∑
k=n

2−kϕ(2kx,2kx)

)

♦

ν
(

S(2nx)− f (2nx),2nt◦
∞

∑
k=n

2−kϕ(2kx,2kx)

)

= ν( f (2nx)−T (2nx), t◦ϕ̃(2nx,2nx))♦

ν(S(2nx)− f (2nx), t◦ϕ̃(2nx,2nx))≤ ε .

It follows that

µ(S(x)−T (x),c) = 1 and ν(S(x)−T (x),c) = 0

for all c > 0. HenceT (x) = S(x) for all x ∈ X . �

In the next result, we consider the control function
ϕ(x,y) = θ(‖x‖q +‖y‖q) for someθ > 0.

Corollary 2.3. Let X be a normed linear space and
(Y,µ ,ν) be an intuitionistic fuzzy Banach space. Let
f : X → Y be a function such that for allθ ≥ 0, 0≤ q ≤ 1

lim
t→∞

µ( f (x+ y)− f (x)− f (y), tθ(‖x‖q +‖y‖q)) = 1

and

lim
t→∞

ν( f (x+ y)− f (x)− f (y), tθ(‖x‖q +‖y‖q)) = 0,

uniformly in X × X . Then there exists a unique additive
mappingT : X → Y such that

lim
t→∞

µ
(

T (x)− f (x),
2θ t‖x‖q

1−2q−1

)

= 1

and

lim
t→∞

ν
(

T (x)− f (x),
2θ t‖x‖q

1−2q−1

)

= 0,

uniformly in X .

Example 2.4.Let X be a Banach space andα andβ be
real numbers. Write

f (x) = αx+β‖x‖qx◦

and
ϕ(x,y) = ‖x‖q +‖y‖q,

for all x◦,x,y ∈ X and 0≤ q ≤ 1. Then

ϕ̃(x,y)
∞

∑
n=0

2−nϕ(2nx,2ny) =
21−q(‖x‖q +‖y‖q)

21−q −1
,

for all x,y ∈ X . For each intuitionistic fuzzy norm(µ ,ν),
we have

µ( f (x+ y)− f (x)− f (y), tϕ(x,y))

= µ(βx◦(‖x+ y‖q −‖x‖q −‖y‖q),(‖x‖q +‖y‖q)t)

and
ν( f (x+ y)− f (x)− f (y), tϕ(x,y))

= ν(βx◦(‖x+ y‖q −‖x‖q −‖y‖q),(‖x‖q +‖y‖q)t),

for all x,y ∈ X andt ∈ R. Thus

µ( f (x+ y)− f (x)− f (y), tϕ(x,y))≥ µ(βx◦, t/2)

and

ν( f (x+ y)− f (x)− f (y), tϕ(x,y))≤ ν(βx◦, t/2),

for all x,y ∈ X andt ∈ R. Hence

lim
t→∞

µ( f (x+ y)− f (x)− f (y), tϕ(x,y)) = 1

and

lim
t→∞

ν( f (x+ y)− f (x)− f (y), tϕ(x,y)) = 0

uniformly in X ×X . Therefore the condition of Corollary
2.3 are fulfilled.�

Now, we are giving our second intuitionistic fuzzy
Hyers-Ulam-Rassias type theorem (non-uniform version).

Theorem 2.5.Let X be a linear space and(Z,µ ′,ν ′) be an
intuitionistic fuzzy normed space. Letψ : X ×X → Z be a
function such that for some 0< α < 2,

µ ′(ψ(2x,2y), t)≥ µ ′(αψ(x,y), t)

and

ν ′(ψ(2x,2y), t)≤ ν ′(αψ(x,y), t), (2.5.1)

for all x,y ∈ X andt > 0. Let (Y,µ ,ν) be an intuitionistic
fuzzy Banach space and letf : X → Y be a
ψ-approximately additive mapping in the sense that

µ( f (x+ y)− f (x)− f (y), t)≥ µ ′(ψ(x,y), t)

and

ν( f (x+ y)− f (x)− f (y), t)≤ ν ′(ψ(x,y), t), (2.5.2)

for all x,y ∈ X and t > 0. Then there exists a unique
additive mappingT : X → Y such that

µ( f (x)−T (x), t)≥ µ ′

(

2ψ(x,x)
2−α

, t

)
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and

ν( f (x)−T (x), t)≤ ν ′

(

2ψ(x,x)
2−α

, t

)

.

for all x ∈ X andt > 0.

Proof. Puty = x in (2.5.2), we get

µ( f (2x)−2 f (x), t)≥ µ ′(ψ(x,x), t)

and

ν( f (2x)−2 f (x), t)≤ ν ′(ψ(x,x), t), (2.5.3)

for all x ∈ X andt > 0. Using (2.5.1) and induction onn,
we obtain

µ ′(ψ(2nx,2nx), t)≥ µ ′(αnψ(x,x), t)

and

ν ′(ψ(2nx,2nx), t)≤ ν ′(αnψ(x,x), t), (2.5.4)

for all x ∈ X andt > 0. Replacingx by 2n−1x in (2.5.3) and
using (2.5.4), we get

µ( f (2nx)−2 f (2n−1x), t)≥ µ ′(αn−1ψ(x,x), t) and

ν( f (2nx)−2 f (2n−1x), t)≤ ν ′(αn−1ψ(x,x), t).







(2.5.5)
It follows that

µ
(

f (2nx)
2n −

f (2n−1x)
2n−1 ,

t
2n

)

≥ µ ′

(

1
α

ψ(x,x),
t

αn

)

and

ν
(

f (2nx)
2n −

f (2n−1x)
2n−1 ,

t
2n

)

≤ ν ′

(

1
α

ψ(x,x),
t

αn

)

.

Thus

µ
(

f (2nx)
2n −

f (2n−1x)
2n−1 ,

(

α
2

)n

t

)

≥ µ ′

(

1
α

ψ(x,x), t

)

and

ν
(

f (2nx)
2n −

f (2n−1x)
2n−1 ,

(

α
2

)n

t

)

≤ ν ′

(

1
α

ψ(x,x), t

)

,

for all x ∈ X , t > 0 andn ≥ 1. Therefore

µ
(

f (2nx)
2n −

f (2mx)
2m ,

n

∑
k=m+1

(

α
2

)k

t

)

= µ
( n

∑
k=m+1

(

f (2kx)
2k −

f (2k−1x)
2k−1

)

,
n

∑
k=m+1

(

α
2

)k

t

)

≥ µ ′

(

1
α

ψ(x,x), t

)

and

ν
(

f (2nx)
2n −

f (2mx)
2m ,

n

∑
k=m+1

(

α
2

)k

t

)

= ν
( n

∑
k=m+1

(

f (2kx)
2k −

f (2k−1x)
2k−1

)

,
n

∑
k=m+1

(

α
2

)k

t

)

≤ ν ′

(

1
α

ψ(x,x), t

)

,

for all x ∈ X , t > 0 andn > m ≥ 0. Hence

µ
(

f (2nx)
2n − f (2mx)

2m , t

)

≥ µ ′

(

1
α ψ(x,x), t

∑n
k=m+1(

α
2 )

k

)

and

ν
(

f (2nx)
2n − f (2mx)

2m , t

)

≤ ν ′

(

1
α ψ(x,x), t

∑n
k=m+1(

α
2 )

k

)

,



































(2.5.6)
for all x ∈ X , t > 0 and n > m ≥ 0. Since
lims→∞ µ ′( 1

α ψ(x,x),s) = 1 and
lims→∞ ν ′( 1

α ψ(x,x),s) = 0; also ∑∞
n=0(

α
2 )

n < ∞. This

shows that ( f (2nx)
2n ) is a Cauchy sequence in the

intuitionistic fuzzy Banach space(Y,µ ,ν), therefore it is
convergent to someT (x) ∈ Y . So we can define a

mappingT : X → Y by T (x) = (µ ,ν)- limn→∞
f (2nx)

2n . For
x,y ∈ X andt > 0, it follows from (2.5.2) that

µ( f (2n(x+y))− f (2nx)− f (2ny), t)≥ µ ′(ψ(2nx,2ny), t)

≥ µ ′(αnψ(x,y), t)≥ µ ′

(

ψ(x,y),

(

1
α

)n

t

)

and similarly

ν( f (2n(x+ y))− f (2nx)− f (2ny), t)≤ ν ′(ψ(2nx,2ny), t)

≤ ν ′

(

ψ(x,y),

(

1
α

)n

t

)

.

Thus

µ
(

f (2n(x+ y))
2n −

f (2nx)
2n −

f (2ny)
2n , t

)

≥ µ ′

(

ψ(x,y),

(

2
α

)n

t

)

and

ν
(

f (2n(x+ y))
2n −

f (2nx)
2n −

f (2ny)
2n , t

)

≤ ν ′

(

ψ(x,y),

(

2
α

)n

t

)

(2.5.7)

for all n. Furthermore,

µ(T (x+ y)−T (x)−T (y), t)
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≥ µ
(

T (x+ y)−
f (2n(x+ y))

2n ,
t
4

)

∗

µ
(

T (x)−
f (2nx)

2n ,
t
4

)

∗µ
(

T (y)−
f (2ny)

2n ,
t
4

)

∗

µ
(

f (2n(x+ y))
2n −

f (2nx)
2n −

f (2ny)
2n ,

t
4

)

and
ν(T (x+ y)−T (x)−T (y), t)

≤ ν
(

T (x+ y)−
f (2n(x+ y))

2n ,
t
4

)

♦

ν
(

T (x)−
f (2nx)

2n ,
t
4

)

♦ν
(

T (y)−
f (2ny)

2n ,
t
4

)

♦ν
(

f (2n(x+ y))
2n −

f (2nx)
2n −

f (2ny)
2n ,

t
4

)

(2.5.8)

Letting n → ∞ in (2.5.7) and (2.5.8), we get

µ(T (x+ y)−T (x)−T (y), t) = 1

and
ν(T (x+ y)−T (x)−T (y), t) = 0,

for all x,y ∈ X and t > 0. ThusT (x+ y) = T (x)+ T (y).
This means thatT satisfies the Cauchy equation and so it
is additive. Using (2.5.6) withm = 0, and for allx ∈ X and
t > 0, we get

µ(T (x)− f (x), t)≥ µ
(

T (x)−
f (2nx)

2n ,
t
2

)

∗

µ
(

f (2nx)
2n − f (x),

t
2

)

≥ µ
(

T (x)−
f (2nx)

2n ,
t
2

)

∗µ ′

(

1
α

ψ(x,x),
t

2∑n
k=1(

α
2 )

k

)

and

ν(T (x)− f (x), t)≤ ν
(

T (x)−
f (2nx)

2n ,
t
2

)

♦

ν
(

f (2nx)
2n − f (x),

t
2

)

≤ ν
(

T (x)−
f (2nx)

2n ,
t
2

)

♦ν ′

(

1
α

ψ(x,x),
t

2∑n
k=1(

α
2 )

k

)

(2.5.9)

Letting n → ∞ in (2.5.9), we get

µ(T (x)− f (x), t)≥ µ ′

(

2ψ(x,x)
α

,
t

2∑∞
k=1(

α
2 )

k

)

= µ ′

(

2ψ(x,x)
2−α

, t

)

and

ν(T (x)− f (x), t)≤ ν ′

(

2ψ(x,x)
α

,
t

2∑∞
k=1(

α
2 )

k

)

= ν ′

(

2ψ(x,x)
2−α

, t

)

,

for all x ∈ X and t > 0. The uniqueness ofT can be
proved on the same lines as in Theorem 2.2.

Example 2.6. Let X be a normed space. Suppose that
(µ ,ν) and(µ ′,ν ′) be intuitionistic fuzzy norms onX and
R respectively, defined in Example 1.4 and
ϕ : (0,∞) → (0,∞) be a function such that
ϕ(2r)< αϕ(r) for all r > 0 andα ∈ (0,2). Define

ψ(x,y) = ϕ(‖x‖)+ϕ(‖y‖)+ϕ(‖x+ y‖)

for eachx,y ∈ X . Let x◦ ∈ X be a unit vector. Definef :
X → X by f (x) = x+ ϕ(‖x‖)x◦. Then for eachx,y ∈ X
andt > 0, we have

µ( f (x+ y)− f (x)− f (y), t)

=
t

t + |ϕ(‖x‖)+ϕ(‖y‖)+ϕ(‖x+ y‖)|.‖x◦‖

≥
t

t + |ϕ(‖x‖)+ϕ(‖y‖)+ϕ(‖x+ y‖)|
= µ ′(ψ(x,y), t)

and similarly,

ν( f (x+ y)− f (x)− f (y), t)

= t
t+|ϕ(‖x‖)+ϕ(‖y‖)+ϕ(‖x+y‖)|.‖x◦‖

≤ ν ′(ψ(x,y), t).
Furthermore,
µ ′(ψ(2x,2y), t) = t

t+ψ(2x,2y) ≥
t

t+αψ(x,y) = µ ′(ψ(x,y), t)
and
ν ′(ψ(2x,2y), t) = t

t+ψ(2x,2y) ≤
t

t+αψ(x,y) = ν ′(ψ(x,y), t),
for all x,y ∈ X and t > 0. Therefore, by Theorem 2.5,
there exists a unique additive mappingT : X → Y such
that for eachx ∈ X andt > 0

µ( f (x)−T (x), t)≥ µ ′

(

2ψ(x,x)
2−α

, t

)

and ν( f (x)−T (x), t)

≤ ν ′

(

2ψ(x,x)
2−α

, t

)

.

Acknowledgment

The authors gratefully acknowledge the financial support
from King Abdulaziz University, Jeddah, Saudi Arabia.

References

[1] A. S. Al-Fhaid and S. A. Mohiuddine, On the Ulam stability
of mixed type QA mappings in IFN-spaces, Adv. Difference
Equ.,2013, (2013).

[2] A. Alotaibi and S. A. Mohiuddine, On the stability of a
cubic functional equation in random 2-normed spaces, Adv.
Difference Equ.,2012, (2012).

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1142 A. Alotaibi et. al. : On the Ulam Stability of Cauchy Functional Equation...

[3] T. Aoki, On the stability of the linear transformation in
Banach spaces, J. Math. Soc. Japan,2, 64–66 (1950).

[4] L. C. Barros, R. C. Bassanezi and P. A. Tonelli, Fuzzy
modelling in population dynamics, Ecol. Model,128, 27–33
(2000).

[5] I. -S. Chang, Higher ring derivation and intuitionistic fuzzy
stability, Abstr. Appl. Analy. Article ID 503671, 16 pages
(2012).

[6] A. L. Fradkov and R. J. Evans, Control of chaos: methods
and applications in engineering, Chaos, Solitons & Fractals,
29, 33–56 (2005).

[7] R. Giles, A computer program for fuzzy reasoning, Fuzzy
Sets Syst.,4, 221–234 (1980).
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