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Abstract: In the present investigation we have studied the peristaltic flow of a couple stress fluid in a non-uniform rectangular duct.
The flow is investigated in a wave frame of reference moving with the velocityc away from the fixed frame. The peristaltic waves
propagating on the horizontal side walls of a non-uniform rectangular duct is studied under lubrication approach. The exact solutions
of velocity and pressure gradient have been found under lubrication approach. The pumping characteristics, axial pressure gradient,
velocity field and trapping phenomena have been discussed to highlight thephysical features of emerging parameters of couple stress
fluid.
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1 Introduction

The peristaltic flows of Newtonian and non-Newtonian
fluids have achieved special status due to its wide range of
applications in physiology, industry and biomedical
sciences [1,2,3]. The authors have taken various kind of
geometries in peristaltic flows such as uniform and
nonuniform channels and tubes, peristaltic flows in
endoscope, planner channel, symmetric and asymmetric
channels. De Vries et al [4] and Chalubinski et al [5],
experimentally shared that the flow due to myometrial
contractions, intrauterine fluid is peristaltic type motion
and myometrial contractions may occurs in both
symmetric and asymmetric channel. Later on , Eytan and
Elad [6] have made a mathematical model which
discussed the peristaltic fluid flow in a two dimensional
channel with wave trains having a phase difference
moving independently on the upper and lower walls to
simulate intra-uterine fluid motion in a sagital cross
section of the uterus. Only a limited attention have been
focused to the study of peristaltic flows of non-Newtonian
fluids in asymmetric channel. Mention may be made to
the interesting works of [7,8,9,10,11,12]. Recently,
Reddy et al [13] have examined the peristaltic flows in a

rectangular duct. According to them [13], the sagittal
cross section of the uterus may be better approximated by
a tube of rectangular cross section than a two dimensional
flow. They [13] have considered a viscous fluid in a
rectangular channel and found the exact solution with the
help of separation of variables under the long wavelength
approximation. The idea of [13] have been extended by
Mandviwalla and Archer [14] and considered the
influence of slip boundary condition on peristaltic
pumping in a rectangular channel. Nadeem and Akram
[15] has examined the peristaltic flow of Jeffrey fluid in a
rectangular channel. Very recently, Mekheimer et al [16]
have examined the effect of lateral walls on peristaltic
flow through an asymmetric rectangular duct.

The objective of the present investigation is to discuss
the peristaltic flow of couple stress fluid model in a
non-uniform rectangular duct by introducing the lateral
walls separated by a distance 2h in a channel of height 2a.
The closed form solutions of the modelled equations of
couple stress fluid in a non-uniform rectangular channel
has been presented under the long wave length
approximation. The physical features of various
parameters have been discussed through graphs. A
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comparison of our solution and the available results are
presented. Finally, the stream lines are also shown.

Nomenclature
U,V velocity components in X and Y directions in fixed frame
u,v velocity components in x and y directions in wave frame
ρ constant velocity
Re Reynolds number
β aspect ratio
λ wave length
c velocity of propagation
Q volume flow rate
δ long wave length
Ψ stream function
S extra stress tensor
γ couple stress parameter

2 Mathematical Formulation

Let us consider the peristaltic flow of an incompressible
couple stress fluid in a duct of rectangular cross section
having the channel width 2d and height 2a. We are
considering the Cartesian coordinates system in such a
way that X − axis is taken along the axial direction,
Y−axis is taken along the lateral direction andZ−axis is
along the vertical direction of a rectangular duct.

Fig. 1: Geometry of the problem

The peristaltic waves on the walls are represented as

Z = H (X, t) =±a±kx±bsin

[

2π
λ

(X−ct)

]

, (1)

wherea andb are the amplitudes of the waves,λ is the
wave length,c is the velocity of propagation,t is the time
and X is the direction of wave propagation. The walls
parallel to XZ plane remain undisturbed and are not
subject to any peristaltic wave motion. We assume that
the lateral velocity is zero as there is no change in lateral
direction of the duct cross section. Let(U,0,W) be the
velocity for a rectangular duct. The governing equations
for the flow problem are
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, (5)

in whichρ is the density,P is the pressure andt is the time.
Let us define a wave frame(x,y) moving with the

velocity c away from the fixed frame(X,Y) by the
transformation

x= X−ct,y=Y, z= Z, u=U −c, w=W, p(x,z) = P(X,Z, t) ·
(6)

Defining the following non-dimensional quantities

x̄ =
x
λ
, ȳ=

y
d
, z̄=

z
a
, ū=

u
c
, w̄=

w
cδ

, t̄ =
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λ
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H
a
, p̄=

a2p
µcλ

, ℜe=
ρacδ

µ
,
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a
d
, δ =

a
λ
, γ =

√

µ
η

a. (7)

Using the above non-dimensional quantities in Eqs.(2) to
(5) , the resulting equations after dropping the bars can be
written as
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= 0, (8)
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Under the assumption of long wave lengthδ ≤ 1 and
low Reynolds, neglecting the terms of orderδ and higher,
Eqs. (8) to (12) take the form

dp
dx

= β 2 ∂ 2u
∂y2 +

∂ 2u
∂z2 −

1
γ2

(
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, (12)

∂u
∂x

+
∂w
∂z

= 0· (13)

The corresponding boundary conditions are

u = −1 aty=±1,
∂ 2u
∂y2 = 0 aty=±1, (14)

u = −1 atz=±h(x) =±1±Kx±φ sin2πx,
∂ 2u
∂z2 = 0 atz=±h(x), (15)

where 0≤ φ ≤ 1, φ = 0 for straight duct,φ = 1
corresponds to total occlusion andK = λk

a(k<<1) .

3 Expressions for different wave shape

The expression for the triangular, square and trapezoidal
wave are derived from the Fourier series. In this analysis
total number of terms in the series that are incorporated are
50.

c© 2014 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.8, No. 3, 1127-1133 (2014) /www.naturalspublishing.com/Journals.asp 1129

1.Triangular wave

h(x) = 1+Kx+φ
[

8
π3

∞
∑

m=1

(−1)m+1

(2m−1)2
sin(2π (2m−1)x)

]

,

2.Trapezoidal wave

h(x) = 1+Kx+φ
[

32
π2

∞
∑

m=1

sin π
8 (2m−1)

(2m−1)2
sin(2π (2m−1)x)

]

,

3.Square wave

h1(x) = 1+Kx+φ
[

4
π

∞
∑

m=1

(−1)m+1

(2m−1) cos(2(2m−1)πx)

]

,

4 Solution of the problem

The closed form solution of Eq.(12) satisfying the
boundary conditions(14) and(15) can be directly written
as

u = −1+
1
2
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(

−h2(x)+z2+
2
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)

−
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(
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)

+2
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∞

∑
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α3
n cosh(αn/βh(x))

,(16)

whereαn = (2n−1)π/2
The volumetric flow rate is given by
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∫ 1

0
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The instantaneous flux is defined as

Q̄=
∫ 1

0

∫ h(x)

0
(u+1)dydz= q+h(x) · (18)

The average volume flow rate over one period
(

T = λ
c

)

of

the peristaltic wave is defined as

Q=
1
T

∫ T

0
Q̄dt= q+1· (19)

The pressure gradient is obtained from Eq.(17) and(19)
as
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(20)
Integration of Eq.(20) over one wavelength yields

∆ p=
∫ 1

0

dp
dx

dx. (21)

Special Case
It is noticed here that whenK −→ 0 andγ → ∞ the

solutions of Reddy et al [13] u = −1 −

h2(x)
2
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}

,

is recovered as a special case of our problem.

5 Numerical Results and Discussion

This section deals with the graphical results of the
problem under consideration. The expression for the
pressure rise and pressure gradient is calculated using a
mathematics soft ware Mathematica because expression
20 and 21 are not integrable in closed form. So numerical
integrations are performed and the graphical results are
presented. Fig. 2 depicts the variation of pressure rise
with volume flow rateQ for different values of aspect
ratio β . It is scrutinized from Fig. 2 that any two pumping
curves interconnect at a point in the 3rd quadrant. As long
as this point remain in the 3rd quadrant, to the left of this
point both peristaltic pumping and retrograde pumping
increases and to the right both pumping and free pumping
decreases with an increase inβ . The variation of pressure
rise ∆ p with volume flow rateQ for different values of
couple stress parametersγ andK is demonstrated in Figs.
3 and 4. It is depicted from Fig. 3 and 4 that the behavior
of pressure rise in case ofγ and K is quite opposite as
compared withβ .

In order to see the bahvior of pressure gradient for
different values of aspect ratioβ , couple stress parameter
γ, volume flow rate Q and non-uniform channel
parameterK againstx, Figs. 5 to 8 is presented. It is
observed that pressure gradient decreases with an increase
in β andK and increases with an increase inγ andQ. The
velocity profile for different values ofQ, γ and β are
shown in Figs. 9 to 11. It is observed that the velocity
profile increases with an increases in volume flow rateQ
and aspect ratioβ and decreases with an increase in
couple stress parameterγ .

Trapping Phenomena
The stream lines in general in the wave frame have a

contour similar to the walls as the walls are immobile. To
enclose a bolus of fluid particles in closed stream lines,
some streamlines split due to the subsistence of a
stagnation point under certain conditions. Figs. 12 to 15
show the stream lines for different values ofβ , γ , Q and
K. It is observed from Fig. 12 and 13 that the size of the
trapping bolus decreases with an increase in aspect ratio
β and couple stress parameterγ. From Fig. 14 it is
observed that the size and number of the trapping bolus
increases with an increase in volume flow rateQ. Stram
lines for different values ofK are shown in Fig. 15. It is
depicted that the number of the trapping bolus reduces
with an increase inK. Fig. 16 shows the stream lines for
different wave forms.

The results of pressure rise for different values of
aspect ratioβ , and amplitude ratioφ are tabulated in
tables 1 to 2. It is observed from the tables 1 and 2 that
with an increase in aspect ratioβ and amplitude ratioφ
the pressure rise increases. The results of velocity field
against different values of volume flow rateQ and aspect
ratio β are tabulated in tables 3 and 4. It is observed from
the tables that the velocity profile increases with an
increases in volume flow rateQ and aspect ratioβ .
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Fig. 2: Variation of∆ p with Q for different values ofβ atφ = 0.6
andγ = 5, K = 0.005.
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Fig. 3: Variation of∆ p with Q for different values ofγ atφ = 0.6
andβ = 2, K = 0.005.

Fig. 4: Variation of∆ p with Q for different values ofK atφ = 0.6
andβ = 2, γ = 5.

Fig. 5: Variation of dp/dx with x for different values ofβ at
Q= 2, γ = 2.5 andφ = 0.6, K = 0.005.

Fig. 6: Variation ofdp/dxwith x for different values ofγ atQ=
2, β = 2 andφ = 0.6, K = 0.005.
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Fig. 7: Variation of dp/dx with x for different values ofQ at
β = 2, γ = 2 andφ = 0.6, K = 0.005.
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Fig. 8: Variation of dp/dx with x for different values ofK at
β = 2, γ = 2 andφ = 0.6, Q= 2.
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Fig. 9: Velocity profile for different values ofQ for fixed y =
0.5,x= 0, β = 0.5, φ = 0.6, γ = 8, K = 0.005.

Fig. 10: Velocity profile for different values ofβ for fixed y =
0.5,x= 0, Q= 0.5, φ = 0.6, γ = 8, K = 0.005.
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Fig. 11: Velocity profile for different values ofγ for fixed y =
0.5,x= 0, Q= 0.5, φ = 0.6, β = 0.5, K = 0.005.

Fig. 12: Stream lines for different values ofβ . Fig. a (forβ = 5),
Fig. b (for β = 3) . The other parameters areQ = 0.8, y = 0.5,
φ = 0.6, γ = 3.0, K = 0.005.

Fig. 13: Stream lines for different values ofγ. Fig. a (forγ = 5),
Fig. b (for γ = 10) , The other parameters areβ = 2, y = 0.5,
φ = 0.6, Q= 0.6, K = 0.005.
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Fig. 14: Stream lines for different values ofQ. Fig. a (forQ =
0.8), Fig. b(for Q= 1.0) , The other parameters areβ = 1, y=
0.5, φ = 0.6, γ = 3.0, K = 0.005.

Fig. 15: Stream lines for different values ofK. Fig. a (forK =
0.0), Fig. b for (K = 0.2), The other parameters areβ = 0.5,
y= 0.5, φ = 0.6, γ = 3.0, Q= 2.

a b c

Fig. 16: Stream lines for wave forms Fig. (a) triangular wave,
Fig. (b) trapezoidal wave, Fig. (c) sqaure wave. The other
parameters areβ = 1, y = 0.5, φ = 0.6, Q = 3, K = 0.005,
γ = 3.0.

Table 1: Variation of pressure rise for various values ofβ
(aspect ratio) for fixed φ = 0.6 andγ = 5

Q ∆ p for β = 0 ∆ p for β = 0.5 ∆ p for β = 1 ∆ p for β = 2
(2-dimensional channel) (rectangular duct

becomes square duct)
-0.1 8.78166 11.1436 15.1987 43.981
0 7.25912 9.15148 12.3207 34.7449
0.1 5.73658 7.15934 9.44269 25.5087
0.2 4.21404 5.1672 6.56466 16.2726
0.3 2.6915 3.17505 3.68664 7.03645
0.4 1.16896 1.18291 0.808621 -2.1997
0.5 -0.353583 -0.809236 -2.0694 -11.4359

Table 2: Variation of pressure rise for various values ofφ for
fixed β = 2 andγ = 6.

Q ∆ p for φ = 0 ∆ p for φ = 0.2 ∆ p for φ = 0.4 ∆ p for φ = 0.6 ∆ p for φ = 0.8
(Poiseuille flow)

-0.1 3.8575 5.51272 12.722 43.981 764.346
0 -0.0987672 1.32261 7.53677 34.7449 673.927
0.1 -4.05503 -2.86749 2.35157 25.5087 583.507
0.2 -8.01129 -7.05759 -2.83362 16.2726 493.088
0.3 -11.9676 -11.2477 -8.01882 7.03645 402.669
0.4 -15.9238 -15.4378 -13.204 -2.1997 312.25
0.5 -19.8801 -19.6279 -18.3892 -11.4359 221.831

Table 3: Velocity for various values ofQ for fixedy= 0.5,x= 0,
β = 2, φ = 0.6, γ = 8.

z u(x,y,z) for Q= 0.0 u(x,y,z) for Q= 0.5 u(x,y,z) for Q= 1.0 u(x,y,z) for Q= 1.5
-1 -1 -1 -1 -1
-0.8 -0.811928 -0.52982 -0.0596394 0.410541
-0.6 -0.655058 -0.137645 0.72471 1.58707
-0.4 -0.53963 0.150926 1.30185 2.45278
-0.2 -0.469297 0.326759 1.65352 2.98028,
0 -0.445687 0.385782 1.77156 3.15735
0.2 -0.469297 0.326759 1.65352 2.98028
0.4 -0.53963 0.150926 1.30185 2.45278
0.6 -0.655058 -0.137645 0.72471 1.58707
0.8 -0.811928 -0.52982 -0.0596394 0.410541
1 -1 -1 -1 -1

Table 4: Velocity for various values ofβ for fixed
y= 0.5,x= 0, Q= 0.5, φ = 0.6, γ = 8.

Q u(x,y,z) for β = 0 u(x,y,z) for β = 0.5 u(x,y,z) for β = 1 u(x,y,z) for β = 2
(2-dimensional channel) (rectangular duct

becomes square duct)
-1 -1 -1 -1 -1
-0.8 -0.737958 -0.52982 -0.00211011 2.48466
-0.6 -0.522914 -0.137645 0.83942 5.41223
-0.4 -0.367293 0.150926 1.46395 7.57172
-0.2 -0.273603, 0.326759 1.84626 8.88682
0 -0.242346 0.385782 1.97484 9.32804
0.2 -0.273603 0.326759 1.84626 8.88682
0.4 -0.367293 0.150926 1.46395 7.57172
0.6 -0.522914 -0.137645 0.83942 5.41223
0.8 -0.737958 -0.52982 -0.00211011 2.48466
1 -1 -1 -1 -1
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