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Abstract: The steady state response of a micropolar liquid saturated porous solidmwiberlying elastic half space to a moving
point load along the interface has been investigated. The transformgzboents of displacement, microrotation, force stress (in solid
and liquid parts) and couple stress are obtained by using Fourier traragfon. These components are then inverted and the results
are obtained in the physical domain by applying a numerical inversiomigaad. The numerical results are depicted graphically for a
particular model. Some particular results are also deduced from thenpiesestigation and these deduced results are compared with
the already established results by previous researchers.
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1 Introduction Physically, solids that are composed of dumbbell
molecules may be adequately represented by the model of
micropolar elasticity. Fibrous materials and some
granular and porous bodies may also fall in the category
special case of their work on micro-elastic solid, and WasOf this theory (Eringen 7). It is believed that “porous

’ granular” material can be best approximated to soil

renamed couple stress theory. Lafer, Eringen] [ (Deresiewicz 2]). Thus, a peculiar type of soil/rocks

rgcqpitulated and renamed it as micro_polar theory. Awhose molecules are granular, e.g., polycrystalline
similar theory appeared_ to be devel_oped !ndepend_ently b¥naterial aluminum-epoxy, concrete, may be examples of
Palmov P9 for the linear elastic solid. Physically micropoiar solids ' ’

speaking, the theory of micropolar elasticity is concerned , . , )
with those materials whose constituents are dumbbell —The dynamical response of solid material subjected to
molecules. These elements are allowed to rotatdMoving loads is of great interest to a number of
independently without stretch. The basic difference€ngineering fields, such as civil engineering, ocean
between the theory of micropolar elasticity and that of €ngineering, earthquake engineering and tribology. For
classical elasticity is the introduction of an independent€xample ground motion and stresses are induced in
microrotation vector. In classical elasticity, all other Saturated soils by fast moving vehicular loads or surface
quantities can be obtained from the knowledge of threddlast waves due to explosives.

components of the displacement vector. In micropolar  Various researchers investigated the dynamic response
elasticity, we must also have knowledge of the threeof half space subjected to a moving point load.
components of microrotation vector. In micropolar elastic Sneddon 33] was the first to discuss the two dimensional
bodies, the force at a point of a surface element isproblem of a line load moving with constant sub-sonic
completely characterized by a stress vector and a couplspeed over the surface of a homogenous elastic half space.
stress vector at that point, while in classical elastictihieo Some of the similar problems of the sub-sonic, transonic
the effect of couple stress is neglected. and supersonic were discussed by other researchers (Cole

The theory of micropolar continua was initiated by
Eringen and Suhubig] and Suhubi and Eringeré] as a
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and Huth []; Fung [11]; Fryba [10]. A homogenous three
dimensional elastic half space subjected to forces moving
with a constant speed was studied by Eagfjruing the
double Fourier transformation method. PaytoB0][

considered the transient problem for a line load applied E(';’Asgi;:;'f”jp“eu . .
suddenly and then moving with a constant speed on the R

surface of an elastic half space. In micropolar theory of 'V'i°f°P°'ar;igrl;ijsf::frzteadce
elasticity the steady state response to moving loads in a (Medium1)p

semi-infinite medium has been investigated by Sengupta

and Ghosh 32]. Ghosh [L3] discussed the steady state

response to the applied load moving with constant speed

for infinitely long time over the free surface of semi-space z
composed of a homogenous micropolar elastic solid layer

on the top of a micropolar elastic solid medium of infinite

extent. Kumar and his coworkers (Kumar and Godi@;[  Fig. 1 Moving load along the interface.

Kumar and Deswall[8,20]; Kumar and Ailawalia 21,22,

23,24,25 studied different types of moving load

problems in the theory of micropolar elasticity.

It is believed that some soils whose molecules areconstant magnitude and move with a constant speed, after
granular, are very close to micropolar elastic porous@ sufficiently long time the solid response may become
medium. Hence, the present model is the motivation ofStationary in the reference SyStem that is fixed to the load.
the situation, when an elastic half space is resting onn this paper we study possible pattern of this stationary
micropolar liquid-saturated porous foundation. Kumar '¢Sponse.
and Miglani [L7] studied the effect of pore alignment on
surface wave propagation in a liquid-saturated porous
layer lying on a liquid-saturated porous half-space with3 Basic Equations
loosely bonded interface. Murad and Cushm&g] [
studied thermomechanical theories for swelling porousgg|iowing Eringen 7] and Konczak 14,15 the field
media with microstructure. Deswal et &8 discussed the  equations and constitutive relations in micropolar liquid

effect of fluid viscosity on wave propagation in a satyrated porous solid(Medium 1) in the presence of
cylindrical bore in micropolar elastic medium. Kumar and gjssipation are given by,

Deswal [L9 studied wave propagation in micropolar

liquid-saturated porous solid. Kumar and Barak6|[ A+ 20+ KWV (V-U) - (n+ K)V
studied the reflection and transmission of plane waves at N
an interface between homogenous invisicid liquid half x (Vx W)+ K(Vx ¢)+QV(V-u)
space and micropolar liquid saturated porous solid half 92
space. = ﬁ(0117 + p120)
In the present investigation we have derived the 9
expressions of displacement, microrotation, force stress + ba(ﬁ — W), Q)

and couple stress in micropolar liquid saturated porous )

medium with an overlying elastic half-space due to a y(Qe + Re) = i(p127+p225?)
moving point load along the interface by using Fourier ot?
transformation. Such types of moving load problems are B bﬁ(ﬁ B W) @)
quite important in many dynamical systems. Some of the ot ’

results established by earlier researchers have also been el =

deduced from the present investigation. (@+B+7) VIV ¢) =7V x (VX ¢)

- 62$

+K(Vx W) =2K6 =p)55 ()
2 Formulation and Solution of Problem et = Nty + Qi )0p1 + p( wny + uir)
We consider a normal point load along the interface of + K (g — epirdr), )
elastic half space (Medium 1) /micropolar liquid Mg = r Ok + Bor1 + Y1 ks (5)
saturated porous half space(Medium ). A rectangular o =Qe+ Re (6)
coordinate systemz,y, 2’ having origin on the surface
z = 0 and z-axis pointing vertically into the medium is where\, i, K, o, 3, are material constantg, is the

considered as shown in figufie We assume a pressure density of micropolar elastic solig, is microintertia, @
pulse P(z + Ut) which is moving with a constant and @ are displacement vectors in solid and liquid parts
velocity U in the negative direction. Since the load has arespectively ande = divd, ¢ = dividd are the

© 2014 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.8, No. 3, 1117-1125 (2014)www.naturalspublishing.com/Journals.asp NS P 1119

corresponding dilatation?;s> is microrotation vectorg) is -

a measure of coupling between the volume change of the Qot  Q ot

solid and of the liquid R is a measure of the pressure that {sz b o n p22 02 ] b=0 (13)
must be exerted on the fluid to force a given volume of it Q Qot Q ot? -

{szrba P12 32}

into the aggregate while total volume remains constant.

2
P11, P12, p22 are dynamical co-efficients and is a {V2 b p1132] H
dissipation functionV is the gradient operatot;,; and Qot (n+ K)ot
my,; are respectively force stress tensor and couple stress K by = (14)
tensor in medium . (n+K) >
The equation of motion and stress- strain relation for oK py &
an elastic medium are given by Ewing, Jardetzky and {VZ -— = 8t2] P2 + VQH =0, (15)
Press §] as, v
Following Fung [L1], a Galllean transformation
827 f=x+Ut, "=z {"=1, (16)
(X + u)V(V - )+ p VT = pf o2 (7) s introduced, then the boundary conditions would be

C \O5; + 2uCe;; independent oft* and assuming the dimensionless
by = X005 + 2p ey, (8) variables defined by,

where, x* z 7
gj/:%’ Z/:F7 ¢é_ﬁ¢27
0= vp s+ vmatvsa, e = U T g 4 g H Y
3 ) 39 ) 2 ’ q = ﬁ7 - ﬁ? - ﬁ?
. . . r_ ti LT 1_c
A€, u€ are Lame’s constant in elastic medium. i = S m;; = VR o = %
E L
El:ﬁ’ LI:ﬁ, (17)
4 Solution of Equations where h is a parameter having dimension of length, in

equations 12)-(15) and applying the Fourier transform
For two dimensional problem, all quantities depend onlydefined by,

on space coordinates and time and we take the N oo '
displacement vector and microrotation vector in medium | / flx,2)e "dx (18)
as,
we get (after suppressing the primes),
7 - (ula 0, U3), |: d? 52 )\2:|
%
¢ = (07 ¢2u 0)7 (10) dz? 0
W = (wy,0,ws). Q, & AT -
(wla aw3) + )\Q(ﬁ_ 2)_*_)\72 ZZJ:Oa (19)
The displacement components,us (solid part) and d2 A2
wi,ws (liquid part) in medium | are related by potential [ — &+ ]
functionsg, ) and H as, Q
R d? oy AT -
_0q 9H _ 9q_ 0H tlotaz - ”a v=0 20
“NEer T e BT e aa 2 A2
+ H-"24,=0, 21
wy = ai’ wy = aiw (11) |:d22 5 /\2:| ¢2 ( )
dx 0z e v e
—_ _— 2 7 —
Using 10)-(11) in equations 1)-(3), we obtain, [dz2 &+ ] o2 + P (sz ) A =0, (22)
h
\v&d b 9 P11 o2 " en: 2 242
TOrmiK) ol Dromik)or)f N=At2ut K, A= U +1EbhU,
{ Q o b B A = U?Ep1a — 1€ AU, UPE2 pas + 1€ DU,
- -z + .
K 2
(A+2p+ K) (A +2u+ K) Ot N h 7 N = U2 — 2K,
S B (12) ’
A+2u+K)ot2| " 7 N =p+ K. (23)
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Eliminating ¢» from equations (19) and (20) ang from
(21) and (22) respectively, we get

d4 d?
[M + Alw + Bl} Gg=0, (24)
d4 d? N
|:d2’4+A2d2’2 +BQ:| H =0, (25)
where,
)\2
A1:—7—2§27
A3
A2 Ky A
A2_71 774"" 5_2627
oY N
A2 (A2 =)
B, =4 _ 227 113 2
DY ¢ DV ERDY: A2 A2
B, —¢t g2 BIM  A5 A A5
S (Af YR TY)TRy
A= RAT 4+ A3N2 — 2)30,
A3 = RA) — Q7 (26)

The solutions of equations 24 and @5
withA;, Ao, By, Bo defined by equation 26) and
satisfying the radiation conditions th@ty, H, ¢» — 0 as
z — oo are,

G = Die~ 1% + Dye~®? @7)
1; =a1D1e 1% 4+ ay Doe™ 27, (28)
H = Dge 9% 4 Dye—7, (29)
¢2 = agD3e” "% + agDye 47, (30)

where,qi2 and q§74 are the roots of equation24) and
(25) respectively given by

2 —A + (A% —4By)
412 = 9 )
»  —Ay /(A2 —4By)
q3 4 = 9 )

(1)

Adopting the same approach, we find the solutions for the

elastic medium (Medium 1) as,

= D56q527

— q6=
- Dﬁe )

(32)
(33)

~ 0

whereFE andL are potential functions in medium Il related
to the displacement componentsandv, as,

OFE 0L OFE 0L

N ge Tar BT ga Y
and
eU2 peUQ
2 _e2(1__F 2 _¢2(q_
a5 =¢ ( X+ ) % =< e
(35)
5 Boundary Conditions
For a concentrated point force, we take

P(xz+Ut) = F§(z*) whered(z*) is Dirac-delta function
and F' is the magnitude of force applied along the
interface of two media. Therefore in moving coordinates
the boundary conditions at the interface- 0 are,

(i) taz =t55 — Fo(x"),

(4i1) uy = vy,
(iv)  us = vs,
(’U) mszo = 0,
(vi) o=0. (36)

Using equations 4)-(6), (8), (11), (16), (17) and @4)
inthe boundary conditions36), we obtain the boundary
conditions in the dimensionless form. On suppressing the
primes and applying the Fourier transform defined by
(18) in the dimensionless boundary conditions and using
(27)-(30), (32 and @3) in the resulting transformed
boundary conditions, we obtain the transformed
expressions for displacement, microrotation, force stres
and couple stress in micropolar liquid-saturated porous
medium as,

Uy = é VAT S PYAVYOR s
Hlslge™ 8% 4 [ Ae~4%] . (37)

U3 = % [P1A1e™ T+ polrge™
+psAge” B% 4 pyANge” 7] (38)
bo = % l[asAge™ % + agAge™947] (39)

31 = % [slﬁleﬂ“’z + 59 N\ge™ 127
+s3/3e” B + s, Nge” 7] (40)

ty3 = i [rlAle_'“Z + roNge™ 927
+r3fge” B 4 ryANge” 7] (41)
Figy = % [b3 g% + byAge—97] (42)
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0=— |niAre” % + ngNge™ 27| | 43 Ailawalia [22]). The transformed expressions for
A
displacement, microrotation, force stress, couple siress
where micropolar elastic medium in this case are given by,
A= — filo + falfig1 — fs94 + fags] 1o
_ 2
— f3lf192 — f294 + fags] U= 1y [11A1 e
/
. F+ Ji[flgsA— f29;+ ngL AN e 4 ZZLAEE)@_‘“Z} . (49)
1= — I'h24no, 2 = I'nita,
1 /
N3 = — Fb4A/O, Ny = FbgAé, U3 = A [pllﬁgl)eiqlz
A0:.70291_f3.g2"i‘félg?n /A(l) e /A(l) —q'z 46
3 4
By = fia1 = Figa + Figs. Fpae Ao, e
rio = (Ag + Qa1,2> q%Z _ (1 + Qa1,2> 52 QEQ = — j)\lﬁ |:a5Agl)e_qéZ + CL6A4(11)6_Q4/12:| ,
) A ) A ’
(47)
T34 = — 1§ 90g3.4, _ 1 [, )
— —q;z
rs = (1+2f0)q3 — &, tar = A _SlAl ¢
v iff o +shaflehs 4 g ADee] | (4g)
fo= e’ 533 _ 1 'T,IA(l)e_q;Z
- 1
2u+ K AL
g0 = ) IAD —dhz 0 AD) —dyz
A +ryAgle BE LN em N ] , (49)
s1,2 =€ 9oq1,2,
7 ’ - Lo A —ahz 0 A =
53,4 = )‘%qu ng _ )\ia4 sz = m _bSA?’ emR + babiyve ! } ’ (50)
' A A A
s5 = — 21§ fogs, where,
S6 = fO q2 + 52 )
=1 (:615 = zzﬁ AW = 5 (Mgy — Msgs + Mags)
’ I (Mygy — M M.
lss= — G4, Is = s, + 11 (Ma2ga 192 + Mags) N
= - =4qs VAN
P12 4.2, §p5 0 + Py (Migs — Mags + Mzgs) — Fl ;
P3 = P4 =DP5 =16,
__ A = — Fby(Mygs — Magi + Mags),
b3 4 = 1 03:443.4; ,
7 AW b
Q"’RGI,Q 2 2 3 bg 47
ni2 = N ((J172—§ ) 1 L , ,
Ay’ = — Fby(s191 — 1192 + p1g3),
J1 = byrg — bary, Ja = bysg — bssy, o1 U2
2
J3 = balz — b3ly, Ja = baps — bapa, ¢ =¢ <1 BEDY: ) ;
r - I -
f% =n17Ty — N2y, /f2 n1Sy — N281, , —Ay+JAZ — 1B}
fz = 1la — naly, fa = nip2 — nap1, 93,4 = 2 )
g1 = lsps — psle, g2 = S5P6 — D556, A2(qh , — €2) + k2
g3 = ssle — l556, ga = T5P6 — D576, 45,6 = 7 \2 ’
g5 = r5le — l576, g6 = 586 — S5T6- (44)
Al _ﬁ_Qj)‘?l_i_kj_‘r@)ﬁl_Q 2
R VA
6 Particular Cases By =gt gay - DKM | KRS
A
6.1 Neglecting Porous effect in Medium | (i.e. 2 242 2 242
Q = R = b = 0in equations 1), (2), (4) and @), the h _”121[/] & k=pU,
problem reduces to moving load at the interface of elastic ~, _ AN ¢2 rl = —1€ godl
half space and micropolar elastic half space (Kumar & DY ’ 3.4 053,42
@© 2014 NSP
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r ’ =1 = - 1 /A(?)) —q}z
51 =18 9041, 1 =15 =, U3 = 273y [p1 057 e
l/ — / , / — /’
3,4 434> P1 a0 o + p3A() —a3z + A(S) —q4z ], (58)
ro_ ; 5,693,4 -
P3 =Py = Zg, 3.4 — j)\ ) ¢2 = — ])\Z(:g) [a5Aé )e*Q3Z + a6A4(13)67q4Z}’ (59)
~ 1 : /
My = byry — byrh, My = bysly — b)ysh, l31 = NG [S1A§d>€_qlz
g/ /
M3z = byly — byly, My = baply — byps. (51) + SSA(g)e q3z+8 A )e qﬁ;zL (60)
6.2 Neglecting both micropolarity effect and porous Ton — 1 & A(?})efqlz
effect in medium | len = =K =) =Q = R = BT A
b = 0 in equations 1)-(6), the problem reduces to steady I AB) —glz 0 AB) —qz
state response at the interface of two elastic half spaces + rgAg e Ay e, (61)
with different properties. The transformed expressioms fo Fiay = 1 [bgAg‘”’)e*qéz 1 bﬁlAz(LS)eiin}v (62)
displacements and force stress in elastic medium (Medium AB)
) reduce to, where,
1 ,
i = AP AR, (52) AD = S| pEM, + (pyrh — i ph) My — s My,
(3)
~ Lo a@ gz 11 A(2) —qf = AP = Fpl M. AP = bi
=A@ [ZAS IR o 2 VA S P (53) 1 P52 3 by
. 1 " U?
fgy = A(2) [8/1/A(2) —qyz + s//A(Q)efq?, z]7 (54) Af) _ Fbés/lpg, qé _ §2 (1 _ p)\e ) ,
- 1 /I _ g2 r_
fa3 = =@ [T/1/A§2 e —q)z + TNA (2) _q ] (55) Ty = £, ps=¢s. (63)
Kumar and Ailawalia®3] have obtained these expressions
where, for subsonic, supersonic and transonic load velocities.
AD _ LQ’A(Q) . " ge] 6.4 Neglecting_ porous effect in Medium (i.e.
D 594 = 1591 — P95 Q = R = b = 0in equations 1), (2), (4) and 6)) and
1 _ letting A, pe — 01in Medium Il,i.e.in equaﬂo_ns?(), (8),
i 1”[{3/?2 +ll)igﬁ Sf’/gﬂ we obtain the expressions for displacement,
— P1lr393 T l396 — S395); microrotation, force stress and couple stress in micrapola
A(2) = — F[sllgy — llgs + pllgs), elastic solid due to a moving load at the free surface
A(2) Fislar — Vgt plgs] (Sengupta and GhosBZ)) as,
’ . @), ~d;2
) 2 p11U? @) 2 p11U? = A(4) [l = .
q :f(l_A+2'u)7 E! _5(1_T)7 , ,
i AM e APz (64)
7n// _ A + M 52 7”" — 72%& "’
1=\ 3 = )\% ) 1 ’A(4) —q|z
L uz = A(4) pl 1 €
51 - 215 ql ’ S/I - X(q +£ ) (4) ’ (4) ’
5 " +ppafle s 4 paPeis| o (65)
= —1 ) )
1 3 T Y A(4) —qkz A(4) —q4z (66)
pi=—d, p3=1% (56) $2 = PG 503 7€ tasy e )
6.3 Neglecting porous effect in Medium | (ie. 7, = b [83A§4>6—q1z
Q = R = b = 0in equations ), (2), (4) and 6)), and AW
letting p.© —=0 in Medium Il i.e: in equations?(_) and @), i SéAgx)e_qg,z n SQA‘(;L)B_,;;LZ} : (67)
we obtain the expressions for displacement,
microrotation, force stress, couple stress in micropolar - 1 [r’A(4)e‘qiz
medium (medium 1) at non-viscous fluid/micropolar solid "33 — A®@ [[171
interface as, / /
o, + réAg4)e_q3Z + TLAff)e_q‘lz] , (68)
~ 3 -_— 4
up = A(3) [l A i
(3) —q ®)_—d 2 = < [rafVe s 1o aVeie] (69)
+ LAY e 9% L N em 17 (BT) 27 A@ 474 ’
@© 2014 NSP
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16

where,
AW = —(s\ My + 7 M), A =FMy,
—by ALY
A = Fsiy, A = - (70)
4

7 Inversion of the Transform

To obtain the solution of the problem in the physical
domain, we invert the transform ir87)-(43), (45)-(50),
(52)-(55), (56)-(62) and ©4)-(69). These expressions are
functions ofz and the parameter of Fourier transfofm
hence are of the fornfi(¢, z). To get the functiorf (x, z)

in the physical domain we invert the Fourier transform
using,

fas) =g [ R e
1 o)

[ ostens, —ssinea oz (1)

(i) Water-Saturated Sandstone

p11 = 1.9032 gmicnt,
Q = 0.013 x 10" dyne/cnt,
p12 = 0 gm/ent,
R =0.0637 x 10*! dyne/cnt,
paz = 0.268 gm/cnt,
A = 0.306 x 10" dyne/cnd,
©=0.922 x 10! dyne/cn?.
The Lame’s constant§\®, 1) and densityp® for elastic
medium (Medium Il) are given by Love[],
A = 2.4 x 10" dyne/cnt,
p¢ = 1.2 x 10! dyne/cnd,
p¢ = 1.2 gm/cn?.
The variations of normal displacememns, normal force

stresstss, tangential couple stresass and normal stress
in fluid o with horizontal distance at the plane= 0.1 and

wheref. and f, are respectively even and odd parts of the z = 1.0 andh = 1.0 cm for

function f (¢, z).The method for evaluating this integral is
described by Press et al.[30] which involves the use o

Rhomberg’s integration with adaptive step size. This also

uses the results from successive refinements of th

extended trapezoidal rule followed by extrapolation of the

results to the limit when the step size tends to zero.

8 Numerical Results and Discussions

Following Gauthier 12], we take following values of the
relevant micropolar constants as
p = 2.19 gm/cn?,
v =0.268 x 10! dyne
9 =0.196 cn?,
K =0.0149 x 10" dyne/cnt,
Following Yew and Jogi34] and Fatt P], the following
values of relevant parameters have been taken for
(i) Kerosene-Saturated Sandstone

p11 = 1.926137 gm/cn?,

Q = 0.07635 x 10'! dyne/cnt,
p12 = — 0.002137 gm/cn?,

R =0.0326 x 10! dyne/cnd,
paz = 0.215337 gm/cn?,

A\ =0.4339 x 10! dyne/cnt,

1 =0.2765 x 10! dyne/cnt.

(i) Micropolar liquid-saturated porous medium (MPES)
are shown by solid line at = 0.1 and dashed line at
z=1.0.

?ii) Micropolar elastic solid (MES) are shown by centered
symbol (*) atz = 0.1 and dashed line with centered
symbol (*) atz = 1.0.

(iii) Elastic solid (ES) are shown by solid line with centdre

symbol () atz = 0.1 and dashed line with centered

symbol () atz = 1.0.

f

These variations are shown in figures (2)-(5)

9 Discussions for Various Cases

The values of normal displacement for micropolar theory
of elasticity i.e. MPES and MES lie in a very short range.
These values for a particular medium are quite close to
each other at both the planes= 0.1 andz = 1.0. As far
as classical theory of elasticity is concerned, the valdies o
normal displacement are more as compared to the values
obtained for micropolar theory. In this case also the values
are close at both the planes. These variations of normal
displacement are shown in figure 2.

It is observed from figure 3, that the values of normal
force stress increase sharply in the rage = < 2.0
and oscillate in the remaining range. Similar to the case
discussed for normal displacement, the values of normal
force stress obtained for micropolar theory of elasticity
(MPES and MES) are of comparable magnitude in
comparison to the classical theory. Also there is not much
difference in the values obtained at two different planes
i.e.z=0.1andz = 1.0.
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©.40 4
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