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Abstract: In this paper we introduce and study the concepts of strohgtpnvergence and statisticall-convergence for interval
numbers. We give some relations related to these concepts. The resutisre general than the Mursaleen’s result$]n [
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1 Introduction 2 Preliminaries

Interval arithmetic was first suggested by Dwy@&t [n A set consisting of a closed interval of real numbers x
1951. Development of interval arithmetic as a formal Such thata < x < b is called an interval number. A real
system and evidence of its value as a computationalnterval can also be considered as a set. Thus we can
device was provided by Moores]in 1959 and Moore investigate some properties of interval numbers, for
and Yang 9] 1962. Furthermore’ Moore and Othe@’[ instance arithmetic propertles or analySI_S propertIeS.We
[9], [10] and [11] have developed applications to denote the set of all real valued closed intervals Ry |
differential equations. Any elements of R is called closed interval and denoted
Chiao in {] introduced sequence of interval numbers By X That is X = {xe R: a<x<bj}. An interval
and defined usual convergence of sequences of intervdlUmberX is a closed subset of real numbe#. Let x
number. Sengnil and Eryilmaz in §] introduced and and x _be first and last points ok interval number,
studied bounded and convergent sequence spaces Hfspectively. FORy,X; €IR, we havex; =Xz < Xy, =Xy,
interval numbers and showed that these spaces arél=Xz-X1+%X2={X€R Xy +X3 <X<Xy, +Xz} and
complete metric space. Recently, E§] [ntroduced and if a >0, thenax = {xeR: ax, <x< axy} and if
studied lacunary sequence spaces of interval numbers. a <0, thenax= {x eR: ax, <x<axy, } ,
The idea of statistical convergence for single _
sequences was introduced by Fas?] [in 1951. %4 %o = {XGR:m'”gxh-inxh X\ X1, Xoy X1, X, } SX}.
Schoenberg 3 studied statistical convergence as a < Max{Xy Xgp, Xty X X1, X X1, X2, §
summability method and listed some of elemantary  The set of all interval number&lis a complete metric
properties of statistical convergence. Both of thesespace defined by
authors noted that if bounded sequence is statistically
convergent, then it is Cesaro summable. In 2000, d(Xq,%2) = max{|xy, —xg |, X, — X, |} [6].
Mursaleen p] defined and studied by -statistically
convergent sequences. The notion was furthern the special casg = [a,a andX; = [b,b], we obtain
investigated and different properties in the field of usual metric ofR.
summability theory has been investigated by Rath and Letus define transformatioh: N — R by k — f (k) =
Tripathy [12], Tripathy [13], Tripathy and SenJ4] and X, X = (X«). ThenX = (X«) is called sequence of interval
many others. numbers. The is calledk" term of sequence = ().
w' denotes the set of all interval numbers with real terms
and the algebric properties wf can be found ing].
Now we give the definition of convergence of interval
numbers:
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Definition 2.1. [4] A sequenceX = (%) of interval In this case we writs, —limX, = X,. If A, = n, then
numbers is said to be convergent to the interval nurkper statistically A-convergence reduces to statistically
if for each & > 0 there exists a positive integkg such  convergence as follows:
that d (X, %) < € for all k > k, and we denote it by
limyc X = Xo. _ _ lim — \{k<n d (%, %) > €}| =
Thus, limX, = X, < lim X, = Xo, and limexy, = Xo, .

In this case we writs— lim X, = X,.

Theorem 3.1.LetX = (%) andy = (V) be sequences
3 Main Results of interval numbers.

() If 55, —limX =%, anda € R, thens, —limaxx =
In this paper, we introduce and study the concepts ofdXo.
strongly A-convergence and statistically-convergence (i) If 5 —limXc =X, ands, —limyy, =Y, thens, —
for interval numbers and these concepts will generalizdim (X +Yx) = Xo +Vo-
A-convergence for single sequences defined by Mursaleen Proof. (i) Let a € R. We have

[5] earlier. d(axg, a%,) = |a|d(X,%o) . For a givens > 0
Definition 3.1. Let A = (A,) be a non-decreasing 1

sequence of  positve  numbers such that —{kely: d(ax,aX,) > €}

Anir < An+ LA = 1A, - © as n — o and n

Ih = [n—An+1,n]. The sequenc& = (X) of interval

numbers is said to be stronghsummable if there is an < 1 {k €ln: d(Xe,%o) > SH
interval numbek, such that An la|
Hence, —lim ax = aXo.
I|m - z d (X, %) = (il) Suppose thag, —limxx = X, andsy — limy, =Y,

N An & We have

d (X + Yi: Xo + Yo)
In which case we say that the sequeixce (%) of < d(%. % S
interval numbers is said to be stronghysummable to < d (% %) +d (Vo)
interval numbei,. If A, = n, then stronglyA-summable  Therefore givere > 0, we have
reduces to strongly Cesaro summable defined as follows:

n
z (Rk, Xo

Example 3.1.Let A, = n for all n € N. Consider the
sequence of interval numbets= (X,) defined by

1
= {keln:d X+ Vi %o + o) > €}
n

D\H

1
< 5 ke a2 d(XoXo) +d (¥ Yo) = €}

1 £
<= kel d®x >7H
o[£ <y ket dm) 2 5
K2 < A (Vo) > < ‘
by {keln- d (V- Yo) = 2} :
Let X, be defined b .
y Thus,s), — lim (X + Vi) = %o + Yo-
%o =[—-1,0]. In the following theorems, we exhibit some
' connections  between stronglyA-summable and
Then we have statistically A-convergence of sequences of interval
numbers.
1r ., Theorem 3.2. If an interval sequenc& = (Xi) is
Mlon Z d (R, %o _rl,'ﬂl,n k=0 strongly A-summable to interval numbet,, then it is
k=1 statisticallyA -convergent to interval numbag.
sincezﬂzlk‘2 is convergent. Proof. Lete > 0. Since
Definition 3.2. A sequencexX = (X) of interval d(Re. %) > d (. %
numbers is said to be statisticallyconvergent to interval & (o %o) 2 k;n (i %o)
numberx, if for everye >0 d(Xy%0)>E

> [{keln: d(R,%) > €} €

if X = (X) is strongly A-summable tox,, then it is
statisticallyA -convergent t&.

1
Ilnm—|{k€ In: d(X, %) > €} =
n
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Theorem 3.3. If X = (%) € m and X = (X) is
statisticallyA -convergent to interval numbeg, then it is
stronglyA-summable tX, and henc& = (%) is strongly
Cesaro summable to Xo, where
m={X=(X): supdXk,%Xo) < o}.

Proof. Suppose that = (%) € mand statisticallyA -
convergent to interval numb@&g. Sincex = (X) € m, we
write d (X, Xo) < Afor all k € N. Givene > 0, we have

An keTn
LY AR Y AR
=3 ks 3 ks
N 2 2
d(X.X0)>€ d(X.Xo) <€

A
S)T|{k€|ni d(RX.%o) > €} +€
n

which implies thai = (%) is stronglyA-summable tX,.
Further we have

Hencex = (Xx) is strongly Cesaro summablexg.
Theorem 3.4. If a interval sequenc& = (X) Is

statistically convergent to interval numbex, and

liminf, ’\—n" > 0 then it is statisticallyA -convergent tX,.
Proof. For givene > 0, we have

{k<n: d(X.%)>¢e}D{kely: dX.,%) > €}.
Therefore
1 o 1 oo
ﬁ Hk<n: d(X.X) > €} > o Hkeln: d(X,%Xo) > €}
An 1

> —.— Dd (X, Xo) > €Y.
Z An\{keln d (X, %o) > €}
Taking limit asn — o and using Iimimﬁ%” > 0, we get
thatx = (%) is statisticallyA -convergent t&o.

Finally we conclude this paper by stating a definition

of interval numbers is said to be stronglyp-summable if
there is an interval numb&g such that

In which case we say that the sequeice (%) of
interval numbers is said to be stronglyp-summable to
interval numbek,. If A, = n, then stronglyA p-summable
reduces to stronglyp-Cesaro summable defined as

follows: |
1

. v w. )P —

I|mn nkzl[d(xk,xo)] =0.

The following theorems is similar to that of Theorem
3.2. and Theorem 3.3, so the proofs omitted.

Theorem 3.5.If an interval sequenc& = (%) Is
strongly A p-summable to interval numbeég, then it is
statisticallyA -convergent to interval numbag.

Theorem 3.6. If X = (%) € m and X = (X) is
statisticallyA -convergent to interval numbe&g, then it is
strongly A p-summable toX, and hencex = (%) is
strongly p-Cesaro summablexg.
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