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Abstract:

In this paper, some new integral inequalities are given for convextitmon the co-ordinates. By using well-known

classical inequalities and a new integral identity (Lemma 1), we obtain senmera results for co-ordinated convex functions.
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1 Introduction

forall (x,y),(z,w) € A andA € [0,1].
In [4], Dragomir established the following inequalities

Let us recall some known definitions and results which Weof Hadamard’s type for co-ordinated convex functions on

will use in this paper. A functiorf : | — R, | C R is an
interval, is said to be a convex function bif

i (1-0y) <tE+1-0fy) O

holds for allx,y € | andt € [0, 1]. If the reversed inequality
in (1) holds, thenf is concave.

Let f : | CR — R be a convex function defined on the
intervall of real numbers and < b. The following double

inequality

b

¢ a+b 1 / +f(b)
2 b 2
a

is well known in the literature as Hadamard’'s
inequality. Both inequalities hold in the reversed direwti
if fis concave.

In [4], Dragomir defined convex functions on the co-
ordinates as following;

Definition 1.Let us consider the bidimensional interval
A = [a,b] x [c,d] in R? with a< b, ¢ < d. A function

f : A — R will be called convex on the co-ordinates if the
partial mappings § : [a,b] = R, fy(u) = f(u,y) and
fx:[c,d] = R, fx(v) = f(x,v) are convex where defined
forally € [c, d] and xe [a,b].

Recall that the mappind : A — R is convex oA if
the following inequality holds,

FAX+ (1= A)ZAy+ (1= )W) < AF(xy)+ (1—A)f(zw)

a rectangle from the plarie?.

Theorem 1Suppose that £ A = [a,b] x [c,d] — R is
convex on the co-ordinates oA. Then one has the
inequalities;

27 2
1 1 b c+d d a+b
< — | —
< [b a/ f(x )ax /cf( 3 ,y)dy}

S CECE) a)d c//fxdedy
j[ /bf(x7d)dx
ta /f(a,y)dy+ /fbydy}

- f( )+f(ad)+f(bc)+f(bd

= 4

The above inequalities are sharp.

In [1], Bakula and Péaric established several Jensen
type inequalities for co-ordinated convex functions and in
[5], Hwang et al. gave a mapping, discussed some
properties of this mapping and proved some
Hadamard-type inequalities for Lipschizian mapping in
two variables. In 2], Ozdemir et al. established new
Hadamard-type inequalities for co-ordinated-convex
and(a,m) —convex functions. Several new results can be
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found related to convex functions on the coordinates inwhere
the papers9J-[13]. In [3], Sarikayaet al. proved some 1 1 b
Hadamard-type inequalities for co-ordinated convexA = - {/ [f(x,c)+ f(x,d)]dx
functions as followings; 2| (b-a)/a

d
Theor.em 2letf:ACR?— ]R be a partial differentiable +%/ [f(a,y)dy+ f(b,y)] dy] .
mapping oM := [a, b] x [c,d] in R? with a < b and c< d. (d—c) Je
If \;i,,;\ is a convex function on the co-ordinates An In [6], Ozdemiret al. proved following inequalities for
then one has the inequalities: co-ordinated convex functions.
‘f<a=c)+f<aﬁd>Xf(b~f°)+f<b=d> @  Theorem5let f: A = [ab] x [c,d] — R be a partial
d differentiable mapping od = [a,b] x [c,d]. If ’m‘ is a
+(b—a>(d—0>/a/c f<X’Y)dXdy_A' convex function on the co- ordmates ah, then the
. (b-a)d-9 following inequality holds;
- 16
b d
) (;’ta;(a O|+| 2L @] +| 2L o]+ 2 o d))) (550 ©
4 1 d_(a+b 1 b c+d
where _(dC)l/c f(i’dy)dy_ (bfa)/a f(x‘7>dx
17 1 b = [ [ txyadyd
A== [ / [ (%, ©) + f (x,d)] dx oaae . 1o
2|(b-a) Ja (b—a)(d—c)
< = T 7
L [l @ydy+ fby)d g
+ / a,y)dy+ f(b,y y]. a2f a2f 9%f 92f
(d,C) Je X [ m(a,c)‘Jr m(a,d)‘Jr m(b,c)‘Jr 0tds(b'd)u

. 2 ; ; ;
Theorem 3Let f: A C R“ — R be a partial differentiable Theorem 6Let f: A = [a,b] x [c,d] — R be a partial

mapping oM := [a,b] x [c,d] in R? with a< b and c< d. _ ) . 02¢ |
. . . differentiable mapping o\ = [a,b] x [c,d]. If |5 ,
If ‘aw , Q> 1, is a convex function on the co-ordinates ) ) s
s . . g > 1, is a convex function on the co-ordinates fHnthen
onA, then one has the inequalities: the following inequality holds;
f(a,c)+ f(a,d)+ f(b,c) + f(b,d)
4) at+b c+d 1 b rd
‘ ) ;b/d ' 'f (TT) Yora@g L, [ fovavex @)
T f(x,y)dxdy—A 1 d_/a+tb 1 b c+d
boade wol () ma L5
< X T 7
< 5 (b—a)(d—c)
He+1)? - a(pt+1)b
1
22f i d) 221 (b, 221 b.d 1
X<Ms(ac)|+m5(a |:‘”“’S C)’ “"‘75( ))) (“;tzdfs(ac|+’§t2;s bc‘ %ad‘ﬂ% bd)|)ﬁ
a .
where
b .
AL [ - 1 / [F(x,€) + f(x,d)] dx Theorem 7Let f: A = [a,b] x [c,d] — R be a pzartaal
(b-a) : differentiable mapping oA = [a,b] x [c,d]. If ’gwfs ,
1 . . .
_s_if f(a,y)dy+ f(b,y)]d ] q> 1, is a convex function on the co-ordinatesfnthen
(d—c) [f(@y)dy+f(b.y)]dy the following inequality holds;
1.1 b
andg+5=1 o _ 'f<%b’#)+7a)l(d7c) /:/Cdf(x.y)dydx ®)
Theorem 4Let f: A c R? — R be a partial differentiable 1 atb 1/ cid
mapping on := [a, b] x [c,d] in R with a< b and c< d. @9 / f( 2 y) R L (X’ 2 )dx
q . . .
If gtz?fs , > 1, is a convex function on the co-ordinates < %

onA, then one has the inequalities:
‘ f(a,c)+ f(a,d)+ f(b,c)+ f(b,d)

@0 +| g b0+ | 25k @]+ | gk (b, g
(©) x 7 .

4
1 b ,d
o f(x,y)dxdy—A . X .
(b“"‘)(d‘C)/a / ' In [7], Ozdemiret al. proved the following Theorem
< % which involves an inequality of Simpson’s type;
| 9o (2.0)| + | Gk (2,0) |+ | S5k (b.0)| +| 3ok (0. )| L Theorem8Let f: A c R? — R be a twice partially
) 4 differentiable mapping o#\ = [a,b] x [c,d]. If gtdfs is a
@© 2014 NSP
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N SS ¥

convex function on the co-ordinates ah, then the A € [0,1]. If ;xdfy € L1(4), then the following equality

following inequality holds: holds:
9
'f(a S8) 4 f (b, &%) +4f (352, &9)
9
atb arb b rd
O FOaA) + o [ [ foxyyduay
(b*&)(d*C) Ja Jc
f(ac)+f(b.c)+ f(ad)+f(bd)
) > ~ o | [ KoM 2L e ypaya
e [ /C"f(x,ymydx_A\ (b—a)(d—c) Ja Je axoy
_ 25(b—a)(d—c)
- 72
|9 (2.0)| + | Jo (2, + | Fok (B.)| +| 5o (0. )|
x 72 where
where
—;/b Fx,0)+4f (%S9 4 7 )| ax x—(a+A%?), xe[a 2P
6(b—a) /a ’ 2 K(x) =
1 d a+b x—(b—Ab53), xe [35L p]
g | [ et (T30 ¢ty ay
The main purpose of this paper is to establish a new
lemma which gives more general results and different typeand
inequalities for special values @f and to prove several
inequalities.
y=(c+A%°), ye[c ]
2 Main Results M) = '
y=(d-2%°), ye[%d]

For the simplicity, we will denote:

F(X,y;A,A)
_(1_p2¢(atbctd
—@ Mf( b )
+)\2f(a,c)+f(a,d)+f(b,c)+f(b,d)
4

Prooflintegrating by parts, we obtain

A(1-2) a+b a+b
f f ,d
+= [ ( 5 ,C>+ ( ) // K(X)M M, 971 y)dydx
c+d c+d oid d—c\\ o92f
f f(b, L I R
A(25) (02 M o01%5))
1 d a+b d—c 92f
_(1_/\)ﬁ/c f(TN)dy + s (y (d AT)) dxdy(x y)dy} dx
1 /b, c+d otd
—(1-A)—— hllihe d af
A -, K(X)K (242%5°)) Guten]
1 b : ol
Y f(x,d)+ f(x,c)]dx ccid
263 J, [100)+fx0)] gy
1 d c 1704
5 [ [flay)+f(by)dy d—c\\af | d gt
2@ ol RSN
(d—c) Je +<y (d A= >) ax Y|, /M S ey)dy| dx
In order to prove our main theorems, we need the :
following lemma: — [k {( ,,\)(d,c)ﬂ (X ﬂ)
a ox \7 2
Lemmallet f: A c R2 — R be a twice partially d—c\ /df of daf
differentiable function omA where a< b, ¢ < d and +(A T) <a(x7c)+5(x,d)) _/C a(xy)dy} dx
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Integrating by parts again, we obtain

2

/ / :5'0x6f (xy)dydx

— (1-A)%(b-a)(d—c) {f (?#
Az(b_a)(d_c)[f(a70)+f(a,d)+f(b,c)+f(b,d)}

A (1—/\)(bz—a)(d—C) |:f (a;b’i) + f (%b,d)
+f <a,¥) +f (b #)}
_(1_,\)(b—a)‘/cdf(%b,Y)dy

—(1—/\)(d—c)/:f(x,ﬂ)dx

2
_A@/:[f(x,d)ﬁ(x,c)}dx

b pd
(b,y)]dy+ / / f(x,y)dxdy

Dividing both sides of the above equality By—
we get the required result.

a)(dic)v

Theorem9Llet f: A = [a,b] x [c,d] = R be a twice

partially differentiable function omA and A € [0,1]. If

(,dxafy‘ is a convex function on the co-ordinatesfinthen

one has the inequality:

[F(XY;A,A) (10)

+Wl(dfd ,/ab _/Cd f<><,y>dxd%

(b—a)(d—c)
16

2 2
| @0+ 5| (@) + | 5

92t
axay | (& axay | (& axay| (B:C) +
x
4

< [222-21 +1)?

S| (b, d>)

Using the change of variabley = sd+ (1-—s)c,
(d—c)ds=dy, we obatin

IF(x,y;4, /\)

+b a) // fxydxd;{

d—c b 5 /A 92%f
< Z _
,bfa/a |K(x)|{/o (2 s)’axay(x,sdJr(l ds
1
2

s)c)

A\ | 9%f
+/% S 2) axdy(X’Sd+(1_s)C) ds
3 A 02t
+ : (17573) axdy (x,sd+(1—s)c)|ds
+/l s—l+A il (x,sd+ (1—s)c)|dspdx
1JE oxdy
Since axay is a convex function on the co-ordinates on
A, we have
X,y)dydx
// K( ’a 0y( ,y)dy
d—c /P 7z (A %t
< — K d)|d
<dc a| <x>|{/0 s<2 5) | oy | 05
2
+/ (1— s(%—s) :X—;y(xc) ds
2
( ) ;xd ds+/ (1- s( /\):X—;y(x?c)ds
-4 A a2t
+/ (75 >0xdde)d
-4 A 92t
+/1 (1- s)(l §7S> ‘M?y(xc) ds
+/ (s 142 )%(x,d) ds

+ ' , (1= s)(s l+)‘>

1,

o°f
Wﬁy(x’ ) ds} dx.

By calculating the above integrals, we obtain
IF(xy:4,2)

+;/b/df x,y)dxd;{
< pa e {22 (

axdy (x.c)

o°f '

Jazal)}

Proof From Lemma 1 and property of the modulus, we canBY a similar argument for other integrals and using the

write

IF(x,y;4,1)

//4
(b—a)( d c//‘

f
‘0 X3y (x,y)dydx

change of vanablex =tb+ (1-t)a, (b—a)dt =dxand

convexity of ‘ axay(x y)’ on the co-ordinates o, we
deduce the result which is the desired.

Remarkldf we chooseA = 1 in (10), we have the inequality

Q).

Remarklf we choosed = 0in (10), we have the inequality

(6).
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Remarklf we choosel = % in (10), we have the inequality Thus, we obtain

9.
IF(xy:4,2)
Theorem 10Let f: A = [ab] x [c,d] — R be a twice 1 /b/df x.y)dxd
partially differentiable function omA and A € [0,1]. If b—a)(d—c
P
gx—zt;y P! is a convex function on the co-ordinates An < (b—a)(d—c) 2A2_92) +1]2
then one has the inequality: 4(p+1)r
de q (92f q
1) Wﬂy’ (a,c)+ Wdy‘ (avd)
F(xy:4,)) x 4
1 b d
Th-a@-o L f<x’y)dXd4 921 |9 925
P IC N YL P aay| (0:0)+ |5y (b d)
(p+1) + 2 ;
(Il ol @ g @0+ [ 00
4 this completes the proof.
for g > 1, where o= pfpl, RemarkUnder the assumptions of Theoreh®, if we

chooseA =1 in (11), we have the inequality}§.

ProofLet p > 1. From Lemma 1 and using theditler

inequality (seeg]) for double integrals, we get RemarkUnder the assumptions of Theoreh®, if we

chooseAr = 0in (11), we have the inequalityrj.

F(xy:4,4) Corollary 1.Under the assumptions of Theordr, if we
1 b d 1 : . L
+7/ / f(x,y)dxd chooset = 1 in (11), we have the inequality:
b—a)(d—c) c ’

1
f (a ﬂ)_'_ f (b ﬂ) +Af (a+b C+d)
< K (x )P ) 2 ) )
b-ad_o (/ / KCOMO dydx) 9
S f(342,0)+ 1 (34.d)
+
. (/al/c axay( dydx) ' 9
+f(a,c)+f(b,c)+f(a,d)+f(b,d)
B 36
Since 0xﬂy’ P! is a convex function on the co-ordinates
. : +7 f(x,y)dydx—A
on A, by taking into account the change of varialle- (b—a)(d—c) Ja Je

th+ (1—t)a7 (b—a)dt =dt andy = sd+ (1—s)c, (d —

c)ds= dy, we have < M

324(p+ 1)

9%f a 921 q 2 [d S0 1@
‘M(thr(lt)a,Y) <t dxdy(by) [ 159 (ac)+ Wy‘ (a,d)
92f q 4
+(1-1) (ay) ;
oxd 2. 19 5
' sor| 0.0+ | 5| 0.0)
and + 7
ot ’ where
’M(tb+(1—t)a,sd+(1—s)c)
2f | 2 | 1 /b{ < c+d)
axdy - A= ———— [ |F(x0)+4f (x 5= ) +f(xd)|dx
<
=1 Ixoy (b.d)+t(1-s) oxay (b.c) 6(b—a) Ja 2
d b
i ot I ;/ {f 4f<a+ ) }d
+s(1- t)‘a X3y (a,d)+(1-t)(1-9) axdy (a,c). +6(d—c) 5 (ay)+ )+ f(b,y)|dy

© 2014 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

1090 N 5SS = M. E. Ozdemir et. al. : On the Co-Ordinated Convex Functions

Remarkin Corollary 1, since%1 < —— <1 for p>1, Proof From Lemma 1 and using the well-known Power-
o . <P+1>'° mean inequality (sees]), we get
we have the following inequality:
[F(Xy:4,2)
d d d b ,d
f(a,%59) + f (b, %9) +4f (252, %9) +¥// f(x,y>dxd>+
9 b—a)(d—-c a Jc
1-1
F(320) + 1 (%52.d) / / K (x ’
A 5 2 (b 3 d S [K( y)| dydx
+f(a,c)+f(b,c)+f(a,d)+f(b,d) 92 3
% ([ [ oomon | 2t avar)
b /d
+(b—a)1(d—c)/ / f(x’y)dde_A‘ q
25(b—a) (d—c) @ e Since‘%‘ is a convex function on the co-ordinates on
ST 32 A, by taking into account the change of variakle- tb+
221 |4 2 |0 (1-t)a, (b—a)dt =dt andy =sd+ (1—s)c, (d—c)ds=
. m‘ (a,c)+ aTay’ (a,d) dy, we have
4 9%t ik 9% f a 9%f d
- 2 . |y B @-vay] <t| 2l by 10| 50 @)
221 921
| 0.0+ |35y “(b, d))
+ and
4
2 q
%(tm( —t)a,sd+(1-s)c)
where 25 92f
<ts aTay' (b,d)+t(1—s) ] 6y’ (b,c)
1 b c+d 92f 921
= — f(x,c)+4f | X, —— f(x,d)|dx Y
e(b—a)/a { (x.c)+ ( > >+ ( )} +s(1 t)‘dxdy (ad)+(1-0(1-9 55 (a,c).
1 d ¢ +b
Ted—0 /C flay) +4f { ——y ) +T(BY)|dY  Hence, it follows that
IF(xy;4,1)
Theorem 11Let f: A = [a,b] x [c,d] — R be a twice 1 /b/df x,y)dxd
partially differentiable function omA and A € [0,1]. If b—a)(d-c
;X—i;y‘q is a convex function on the co-ordinatesdrand ~ _ (b—2a)(d—¢) 22223 + 1)’
> 1, then one has the inequality: - 125 . .
92f 92f
y m‘ (a,c)+ m’ (a,d)
12) 4
|F(X>y1Aa)\) 1
921 |9
1 b 25l .0+ | 2| b.0)
T S— / / F(x, dxd% y y
boa)d—0) Ja Jo 1Y + 3
< b= 12 9y 492
a 126 q be 1 this completes the proof.
Fa| @0+ |5 (@)
4 RemarkUnder the assumptions of Theoreid, if we
chooseh = 1in (12)we have the inequalitys].
q q
Zel e+ 2ol b ¢
4 . RemarkUnder the assumptions of Theorehd, if we
chooseA =0 in (12), we have the inequality8].
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Corollary 2.Under the assumptions of Theord if we [9] M. E. Ozdemir, M. A. Latif and A. O. Akdemir, On some

choose\ = % in (12), we have Hadamard-type inequalities for product of two s-convex
functions on the co-ordinatedpurnal of Inequalities and
fa S8)+f (b S9)+af (252 &5d) 4 f (22 ¢) +f (22 d) Applications 21, (2012),
’ 9 [10]M. E. Ozdemir, A. O. Akdemir and C. Yildiz, On
f(a,c)+ f(b,c)+ f (a,d)+f (b,d) Co-ordinated Quasi-Convex FunctionsCzechoslovak
M 3% Mathematical Journgl62, 889-900 (2012) .
N 1 /b/d x y)dydfo‘ [11] M. E. Ozdemir, C. Yildiz and A.O. Akdemir, On Some New
(b—a)(d-c)Ja Jo Hadamard-type Inequalities for Co-ordinated Quasi-Convex
 25(b-a)(d—¢) Functions Hacettepe Journal of Mathematics and Statistics
- 36 . 41, 697-707 (2012).
921 |9 921 |9 22 |9 22 |9 a [12] M. A. Latif, S. Hussain and S. S. Dragomir, New
( s | (29| 5 <a’d)1‘my| 0.9+ 5] md)) Owstroski type inequalites for co-ordinated convex functions,
Transylvanian Journal of Mathematics and Mechanids
125-136 (2012).
where [13] M. A. Latif and S. S. Dragomir, On some new inequalities
1 b c+d for differentiable co-ordinated convex functiorlgurnal of
A= m/a [f (x,c) +4f (X, ?> +f (X»d)} dx Inequalities and Application£8, (2012).

1 d a+b
+m/c {f(a7y)+4f (T,y)—kf(b,y)} dy. :
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