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Abstract: We study the dynamics of a two-qubit system coupled through time dependent anisotropicXYZ Heisenberg interaction
in presence of a time varying non-uniform external magnetic field. Exact results are presented for the time evolution of the system
under certain integrability conditions. Furthermore, the corresponding entanglement of the system is studied for different values of
the involved parameters. We found that the time evolution and different properties of entanglement such as amplitude, frequency and
profile can be finely tuned by the interplay of the characteristics of the time-dependent magnetic field and exchange coupling. Also we
show how the discrete symmetries of the system Hamiltonian, which splits its Hilbert space into two distinct subspaces, can be utilized
to deduce the dynamics in one of its two distinct subspaces from the other one. Moreover, approximate results for the time evolution
are provided utilizing the rotating wave as well as the perturbation approximations for the special case of either static magnetic field
or exchange coupling. We compare the range of validity of the two approximation methods and their effectiveness in treating the
considered system and determine their critical parameters.
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1 Introduction

Quantum entanglement is considered as the corner stone
of the quantum theory and one of its historic puzzles.
Nowadays it is considered as a well established concept
and experimentally verified phenomenon in modern
physics [1]. Quantum entanglement is a nonlocal
correlation between two (or more) quantum systems such
that the description of their states has to be done with
reference to each other even if they are spatially well
separated. Particular fields where entanglement plays a
crucial role are quantum teleportation, quantum
cryptography and quantum computing [2–5].
Entanglement is considered as the physical basis for
manipulating linear superposition of quantum states to
implement the different proposed quantum computing
algorithms [6, 7]. Different physical systems have been
proposed as reliable candidates for the underlying
technology of quantum computing and quantum

information processing [8–14]. The main task in each one
of these systems is to define certain quantum degree of
freedom to serve as a qubit, such as the charge, orbital or
spin angular momentum. The next step is to find a
controllable mechanism for forming an entanglement
between a two-qubit system in such a way to produce a
fundamental quantum computing gate. In addition, we
need to be able to coherently manipulate such as
entangled state to provide an efficient computational
process. Such coherent manipulation of entangled state
has been observed in systems such as isolated trapped
ions [15] and superconducting junctions [16]. The
coherent control of a two-electron spin state in a coupled
quantum dot was achieved experimentally, where the
coupling mechanism is the Heisenberg exchange
interaction between the electron spins [17–19].

Solid state systems have been in focus of interest as
they can be utilized to build up integrated networks that
can perform quantum computing algorithms at large
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scale. Particularly, the semiconductor quantum dot is
considered as one of the most promising candidates for
playing the role of a qubit [20–23], where the spinS of
the valence electron on a single quantum dot is used as a
two-state quantum system, which gives rise to a
well-defined qubit. As a result of this especial interest, so
much efforts has been devoted to investigating the
interacting Heisenberg spin chain as it represents a very
reliable model for constructing quantum computing
schemes in different solid state systems, as well as for
being a very rich model for studying the novel physics of
localized spin systems [22–25].

Recently there has been much of literature focusing
on entanglement and decoherence in Heisenberg spin
systems in presence and absence of an external magnetic
field [26–39] Particularly, the thermal entanglement of an
isotropic two-qubit HeisenbergXY model under the effect
of a non-uniform static magnetic field was studied, with
an emphasis on the critical role of non-uniformity of the
field on the entanglement [40]. The entanglement of
anisotropic two-qubit HeisenbergXYZmodel in presence
of a non-uniform static magnetic field was investigated. It
was demonstrated that the combined effect of the
anisotropic coupling and the non-uniformity of the field
has a significant impact on manipulating the details of the
transition between the entangled and the disentangled
states of the system [41]. Furthermore the anisotropic
two-qubit HeisenbergXYZ model was studied in
presence of time-dependent magnetic fields, however, the
magnetic field was assumed to be uniform [42]. In
previous works we have studied the dynamics of
entanglement and thermal entanglement of a two-qubit
HeisenbergXYZ model, where we employed a complete
static anisotropic coupling between the two qubits in
presence of an external sinusoidal time-dependent
non-uniform magnetic field [43]. Motivated by one of the
most interesting proposals to create a fundamental
quantum computing gate by applying a time-dependent
exchange interaction between two quantum dots [44] , we
studied the dynamics of two-coupled two-level atoms
(can be considered as two quantum dots) represented by
HeisenbergXYZ model. The interaction between the
atoms was considered isotropic time-dependent coupling
and the entire system is under the effect of an external
non-uniform static magnetic field [35].

In this paper we study the dynamics of entanglement
of a two qubit Heisenberg XYZ model for which we
employ a complete anisotropic coupling between the two
qubits in presence of an external non-uniform magnetic
field. We apply both time-dependent magnetic field and
time-dependent Heisenberg coupling and present two
exact solutions corresponding to two particular
integrability conditions possessed by the system. We
demonstrate how the dynamics of the system and its
entanglement evolution can be controlled using the
different parameters of the time-dependent magnetic field
and Heisenberg interaction. The discrete symmetries
possessed by the system and its effect on the dynamics in

the two different subspaces is illustrated. Also we applied
two different approximation methods namely the rotated
wave and perturbation and compared their results and
their range of validity for the special cases of the
time-independence of either the magnetic field or the
exchange interaction. This paper is organized as follows.
In Sec.2 we introduce our model and the underlying
symmetries of the system. In Sec. 3 we discuss the time
evolution and the two integrability conditions of the
system and the approximation approaches. In Sec. 4 we
present the entanglement formula in the cases of
integrability and approximations and discuss the results.
We close with our conclusions in Sec 5.

2 The model and its underlying symmetry

We consider two coupled qubits through time dependent
anisotropic HeisenbergXYZ interaction in presence of a
time dependent non-uniform magnetic field applied in the
z-direction. The Hamiltonian of the system is given by

Ĥ(t) = λx(t)Ŝ1xŜ2x+λy(t)Ŝ1yŜ2y+λz(t)Ŝ1zŜ2z+ω1(t)Ŝ1z+ω2(t)Ŝ2z

(2.1)
whereSi j ,(i = 1,2; j = x,y,z) are the spin half-operators,
while λx(t), λy(t) and λz(t) are the time dependent
strengths of the Heisenberg interactions in thex, y andz
directions respectively.ω1(t) and ω2(t) are the external
time-dependent magnetic fields. The Hamiltonian can be
written in a more convenient form in terms of the
operatorsSi± = Six± iSiy andS±z = S1z±S2z. As a result,
the Hamiltonian acquires the form

Ĥ(t) = ω+(t)Ŝ
+
z +ω−(t)Ŝ−z +λz(t)Ŝ1 · Ŝ2

+λm(t)
(

Ŝ1+Ŝ2++ Ŝ1−Ŝ2−
)

+

(

λp(t)−
λz(t)

2

)

(

Ŝ1+Ŝ2−+ Ŝ1−Ŝ2+
)

, (2.2)

where
λp(t) = (λx(t)+λy(t))/4,λm(t) = (λx(t) − λy(t))/4,
ω±(t) = (ω1(t)±ω2(t))/2 and
S1 ·S2 = S1xS2x+S1yS2y +S1zS2z.

It is convenient to study the matrix representation of
the Hamiltonian of this system in the uncoupled basis,
namely{|++〉, |−−〉, |+−〉, |−+〉}, where in terms of
these states the Hamiltonian reads

H =











ω+(t)+
λz(t)

4 λm(t) 0 0
λm(t) −ω+(t)+

λz(t)
4 0 0

0 0 ω−(t)− λz(t)
4 λp(t)

0 0 λp(t) −ω−(t)− λz(t)
4











(2.3)
In fact many of the characteristic features and

properties possessed byH can be understood and
attributed to the role of discrete symmetries enjoyed by
the Hamiltonian. It turns out that there are three discrete
symmetries plying important roles in understanding the
dynamics generated byH.
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The first discrete symmetry is found to be,

Six→−Six, or Siy→−Siy. (2.4)

The block diagonal structure of the Hamiltonian matrix
can be understood as a consequence this discrete
symmetry. The symmetry defined in eq. (2.4) keeps the
Hamiltonian in eq. (2.1) invariant and then the spin states
can be classified according to their parities under spin
reflection ofx or y components. It turns out that the states
of positive parity are|++〉 and|−−〉 while those having
negative parity are| + −〉 and | − +〉. The parity is
conserved as a consequence of the symmetry and thus the
states of opposite parities never get mixed under time
evolution generated byH. As a result, the spin state space
of the system is splitted into two subspaces and the
Hamiltonian is block diagonal as explicitly shown in
eq. (2.3). Each block ofH is controlled by different
independent set of parameters exceptλz(t), which is
present in both blocks. The eigenstates of the system and
the corresponding energy spectrum can be readily
obtained by diagonalizing the two blocks in the matrixH.
The first subspace is spanned by

|φ1(t)〉 = cosθ1|++〉+sinθ1|−−〉,
|φ2(t)〉 = cosθ1|−−〉−sinθ1|++〉, (2.5)

where the angleθ1 =
1
2 tan−1 (λm(t)/ω+(t)) .

The associated energy eigenvalues are

ε1(t) =
λz(t)

4
+η(t), ε2(t) =

λz(t)
4
−η(t), (2.6)

whereη(t)=
√

ω2
+(t)+λ 2

m(t).As to the second subspace,
the eigenstates are

|φ3(t)〉 = cosθ2|+−〉+sinθ2|−+〉,
|φ4(t)〉 = cosθ2|−+〉−sinθ2|+−〉, (2.7)

whereθ2 = 1
2 tan−1 (λp(t)/ω−(t)) and the corresponding

energy eigenvalues

ε3(t) =−
λz(t)

4
+ζ (t), ε4(t) =−

λz(t)
4
−ζ (t), (2.8)

whereζ (t) =
√

ω2
−(t)+λ 2

p(t).

As to the second discrete symmetries possessed byH,
it can be identified as,

S2α →−S2α , λx→−λx, ω+→ ω−, λz→−λz
(2.9)

where α ≡ x,y,z. This symmetry manifests its effect
through the spin reflection ofS2, which maps the two
disjoint subspaces in eq. (2.5) and eq.(2.7) into each
other, explicitly as,

|++〉 ←→ |+−〉, |−−〉←→ |−+〉, (2.10)

and consequently all dynamics of the time evolution
contained in the subspace spanned by|+−〉 and | −+〉
can be obtained from those of|++〉 and | −−〉 by just
the following replacement

λm←→ λp, λz←→−λz, ω+←→ ω− (2.11)

It is clear that the two block in the Hamiltonian given in
eq.(2.3) can be obtained from each other by the
replacement given in eq.(2.11). The manifestation of the
symmetry described in eq.(2.9) would be obscured having
used as a basis the states of definite total spin and total
z-component | + +〉, | − −〉, 1√

2
(|+−〉+ |−+〉) and

1√
2
(|+−〉−|−+〉), and the Hamiltonian matrix turns

out to be,

H =











ω+(t)+
λz(t)

4 λm(t) 0 0
λm(t) −ω+(t)+

λz(t)
4 0 0

0 0 λp(t)− λz(t)
4 ω−(t)

0 0 ω−(t) −λp(t)− λz(t)
4











.

(2.12)
Of course, the last symmetry can be equivalently

achieved by the reflection ofS1α . Regarding the third
discrete symmetry, which is rather obvious and amounts
to be reflecting all spins and inverting the sign ofω+ and
ω−. The symmetry operation can be realized as,

S1→−S1, S2→−S2, ω+→−ω+, ω−→−ω−,
(2.13)

and the spin states are affected accordingly to,

|++〉 ←→ |−−〉, |+−〉←→ |−+〉 (2.14)

As a result of this symmetry all the dynamics contained in
the time evolution of the state|++〉 can be extracted from
those of|−−〉 and vice versa. The same applies to the two
states|+−〉 and | −+〉. The three symmetries described
above in eqs. (2.4), (2.9) and (2.13) turn out to be very
useful in checking the correctness of the calculations and
also in reducing the calculations labour.

It is important to realize that the eigenstates in
eq.(2.5) and eq. (2.7) are not generally stationary states
and their associated energy eigenvalues are time
dependent as shown in eq.(2.6) and eq.(2.8). These
findings seem natural in accord with the explicit time
dependent Hamiltonian. The time independent
Hamiltonian case is more simple to be analysed, since in
this case the eigenstate are stationary. Further more, the
time evolution is a straight forward to be handled. The
ground state of the system can be unambiguously
determined according to the value of the relevant
parameters in eqs.(2.6) and (2.8). Whenη > λz

4 + ζ , the
ground state turns out to be|φ2〉. On the other hand, for
η < λz

4 +ζ the ground state is|φ4〉. Also it turns out to be

degenerate whenη = λz
4 +ζ and it can be unambiguously

chosen to be1√
2

[

eiα |φ2〉+ |φ4〉
]

. The choice is based on
maximum entropy principle that dictates equal mixture
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between the two degenerate states but leaving arbitrary
relative free phaseα undetermined. These results are in
agreement with those found in [45].

3 Time evolution and integrability conditions

The time evolution of time dependent Hamiltonian is an
intricate problem. Although the time evolution can be
numerically solved for any generic Hamiltonian, however
exact or approximate analytic solutions are interesting to
find. Analytic solutions are important because they can
provide a wealth of information about the feature of
solutions with minimal numerical works, even more they
could serve as a checking benchmark for the validity of
numerical solutions. The time evolution of any state ket
vector is governed by Schrödinger equation in the form,

H |Ψ〉= i
∂ |Ψ〉

∂ t
. (3.15)

Knowing the time evolution of the eigenstates enables us
to determine the time evolution of any arbitrary state.
Starting with time evolution in the subspace spanned by
the two eigen states|φ1(t)〉 and |φ2(t)〉 as defined in
eq. (2.5). Assuming an initial state, att = 0, in the form,

|φ1(0)〉= cosθ10|++〉+sinθ10|−−〉, (3.16)

whereθ10 = θ1(0). The initial state specified in eq. (3.16)
evolves in time and at later timet becomes|ψ1(t)〉, which
is described by,

|ψ1(t)〉= g1(t) cosθ10|++〉+g2(t) sinθ10|−−〉,
(3.17)

whereg1(t) and g2(t) are unknown functions oft to be
specified through Schrödinger equation supplemented by
the initial condition g1(0) = 1 = g2(0) = 1. The time
evolution implied by Schr̈odinger equation for the
functionsg1(t) and g2(t) can be expressed as first order
coupled differential equations. The resulting equations
can be written in a compact matrix form as,

ẋ=−i HI x, (3.18)

where the dot denotes the derivative with respect to time,
while x andHI are,

x=

[

g1(t) cosθ10
g2(t) sinθ10

]

, HI =

[

ω+(t)+
λz(t)

4 λm(t)

λm(t) −ω+(t)+
λz(t)

4

]

,

(3.19)
the matrixHI , as expected, is the Hamiltonian matrix in
the subspace generated by|φ1(t)〉 and|φ2(t)〉.

A more illuminating form for eq. (3.18) can be reached
by transforming the variablex into a new oneu through
u= SI x, where the matrixSI is given by

SI =

[

cosθ 1(t) sinθ 1(t)
−sinθ 1(t) cosθ 1(t)

]

, (3.20)

where the matrixSI diagonalizeHI . After some simple
algebraic manipulations, the resulting equation governing
u can be casted in the form,

u̇+ i

(

− θ̇1(t)σ2+
λz(t)

4
+η(t)σ3

)

u= 0, (3.21)

where σ2 and σ3 are 2× 2 Pauli spin matrices given
respectively as,

σ2 =

[

0 −i
i 0

]

, σ3 =

[

1 0
0 −1

]

. (3.22)

The factorλ z(t)/4 should be understood as multiplied by
2×2 identity matrix. The differential equation in eq. (3.21)
is subjected to the initial condition,

u(0) =

[

1
0

]

(3.23)

It is worthy to mention some explanation for the used
notations. The subscript indexI reveals that the quantity
is restricted to the space spanned by first two eigenstates
namely|φ1(t)〉 and|φ2(t)〉, while using subscript indexII
would mean restriction to subspace spanned by|φ3(t)〉
and |φ4(t)〉. The x’s, y’s, z’s and w’s coefficients in
investigating time evolution refer to ones starting with
initial states |φ1(0)〉, |φ2(0)〉, |φ3(0)〉 and |φ4(0)〉
respectively.

3.1 The first integrability condition

A straight forward integrability condition enabling closed
form solutions for eq. (3.21) is given by,

θ̇1(t) = 0 (3.24)

and the obtained solutions in this case take the form,

u(t) =





I1

0



⇒ x(t) =





cosθ10I1

sinθ10I1



 , (3.25)

the integrability condition in eq. (3.24) is fulfilled when
ω+(t) ∝ λm(t). Similarly, the initial state|φ2(0)〉 under
time evolution is described byy that amounts to

y(t) =





−sinθ10I2

cosθ10I2



 (3.26)

The correspondingz andw are easily determined to be

z(t) =





cosθ20I3

sinθ20I3



 , w(t) =





−sinθ20I4

cosθ20I4



 , (3.27)

where

I j = exp

(

−i
∫ t

0
ε j(t

′)dt′
)

, j = 1,2,3,4 (3.28)

c© 2014 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.8, No. 3, 1071-1084 (2014) /www.naturalspublishing.com/Journals.asp 1075

3.2 The second integrability condition

Another simple integrability condition is,

θ̇1(t) = κ η(t)⇒ θ̇1(t) = κ
λm(t)

sin[2θ1(t)]
, κ 6= 0,

(3.29)
whereκ is constant. The condition upon integration leads
to,

cos(2θ1(t)) =−2κ
∫ t

0
λm(t

′) dt′+cos(2θ10). (3.30)

which in turn implies

tan(2θ1(t)) =

√

1−
(

−2κ
∫ t

0 λm(t ′)dt′+cos(2θ10)
)2

(

−2κ
∫ t

0 λm(t′)dt′+cos(2θ10)
)

(3.31)
In this case the solutions for eq. (3.21) are,

u(t) = exp
{

i
∫ t

0

[

θ̇1(t ′)
(

σ2 − κ−1 σ3
)

− λz(t ′)
4

]

dt′
}

u(0),

(3.32)
which upon using eq. (3.29) becomes

u(t) = Λ ×
(

cosδθ1(t)− i σ3
κ√

1+κ2
sinδθ1(t)+ i σ2

κ sinδθ1(t)√
1+κ2

)

u(0) ,

(3.33)
where,

δθ1(t) =

√
1+κ2

κ (θ1(t)−θ10) , Λ = exp
(

− i
4

∫ t
0 λz(t ′)dt′

)

.
(3.34)

The corresponding column vectorx(t) in terms of its
components,x1(t) andx2(t), is given as,

x1(t) = Λ ×
[

cosθ1(t)

(

cosδθ1(t)− i
sinδθ1(t)√

1+κ2

)

+
κ√

1+κ2
sinθ1sinδθ1(t)

]

, (3.35)

and

x2(t) = Λ ×
[

sinθ1(t)

(

cosδθ1(t)− i
sinδθ1(t)√

1+κ2

)

− κ√
1+κ2

cosθ1(t)sinδθ1(t)

]

. (3.36)

Similary, the initial state|φ2(0)〉 evolves in time
according to,

y1(t) = Λ ×
[

−sinθ1(t)

(

cosδθ1(t)+i
sinδθ1(t)√

1+κ2

)

+
κ√

1+κ2
cosθ1sinδθ1(t)

]

, (3.37)

and

y2(t) = Λ ×
[

cosθ1(t)

(

cosδθ1(t)+ i
sinδθ1(t)√

1+κ2

)

+
κ√

1+κ2
sinθ1(t)sinδθ1(t)

]

. (3.38)

In the second subspace generated by|φ3(t)〉 and
|φ4(t)〉, the corresponding integrability condition is

θ̇2(t) = χ ζ (t) ⇒ θ̇2(t) = χ
λp(t)

sin[2θ2(t)]
,

(3.39)
whereχ is constant. The condition upon integration leads
to,

cos(2θ2(t)) =−2χ
∫ t

0
λp(t

′) dt′+cos(2θ20). (3.40)

In a similar way the solutions for time evolution can be
obtained as those of eqs. (3.35)-(3.38), which come out to
be

z1(t) = Λ−1×
[

cosθ2(t)

(

cosδθ2(t)− i
sinδθ2(t)
√

1+ χ2

)

+
χ

√

1+ χ2
sinθ2sinδθ2(t)

]

(3.41)

and

z2(t) = Λ−1×
[

sinθ2(t)

(

cosδθ2(t)− i
sinδθ2(t)
√

1+ χ2

)

− χ
√

1+ χ2
cosθ2sinδθ2(t)

]

(3.42)

also

w1(t) = Λ−1×
[

−sinθ2(t)

(

cosδθ2(t)+i
sinδθ2(t)
√

1+ χ2

)

+
χ

√

1+ χ2
cosθ2sinδθ2(t)

]

(3.43)

and

w2(t) = Λ−1×
[

cosθ2(t)

(

cosδθ2(t)+i
sinδθ2(t)
√

1+ χ2

)

+
χ

√

1+ χ2
sinθ2sinδθ2(t)

]

, (3.44)

whereδθ2(t) =

√
1+χ2

χ (θ2(t)−θ20) .
Equation (3.30) adds an extra restriction to second

integrability condition, due to the constrain
|cos(2θ1(t))| ≤ 1. Considering the Heisenberg
interactions differenceλm(t) to be a time-dependent
function of the form

λm(t) = µm sin(βmt +φm), (3.45)

whereµm, βm andφm are the amplitude, frequency and
initial phase ofλm(t), respectively. The restriction in the
second integrability case manifests itself through the
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relation among the system parameters. In the case of
θ10 6= 0, the condition takes the form

βm

2κ µm
≥max

(

2
1+cos(2θ10)

,
2

1−cos(2θ10)

)

, (3.46)

while in the case ofθ10 = 0, it becomes

φm = 0.

∣

∣

∣

∣

κ µm

βm

∣

∣

∣

∣

≤ 1
4
. (3.47)

3.3 Perturbation versus rotated wave
approximations

In this section we apply and compare two of the widely
used methods of approximations namely the perturbation
theory and the rotated wave approximation (RWA). We
seek to explore their range of validity in treating our
system and compare their results. We start with the
perturbation theory, where we consider eqs. (3.18) and
(3.19) and assume thatω+ andλz are constants whereλm
is small to be a considered as perturbation. Therefore,HI
represents two levels system where

E1 =−ω++
λz

4
, E2 = ω++

λz

4
. (3.48)

The difference between the two levels is given byE2−
E1 = 2ω+. The evolution due toλz can be factored out, so
HI takes the form

HI =

[

ω+ λm(t)
λm(t) −ω+

]

. (3.49)

Then the time evolution is controlled by a system of
two coupled differential equations which can be written in
a matrix for as,

[

ẋ1
ẋ2

]

=−i

[

ω+ λm(t)
λm(t) −ω+

] [

x1
x2

]

, (3.50)

Assuming the system is initially in the state|++〉 and
suffering a weak transition due to the small perturbation
λm(t). The weak transition demands that|x1| ≫ |x2| and
|x1| ≈ 1 to be fulfilled. Employing perturbation technique
to solve the system in eq.(3.50), taking into account that
λm(t) small, one obtains the following solution,

x1≈ e−iω+t

x2≈−i ei ω+ t

t
∫

0

λm(τ) e−2i ω+ τ dτ (3.51)

which is clearly consistent to represent a weak transition.

To be more specific we consider a weak harmonic
perturbation in the form,

λm(t) = µmsin(βmt)

whereµm is the amplitude andβm is the frequency ofλm(t)
.The solutionx2(t) in eq.(3.51) becomes

x2(t) = i
2µmeiω+t

[

ei(βm−2ω+)t

(βm−2ω+)
+ e−i(βm+2ω+)t

(βm+2ω+)
− 1

(βm−2ω+)
− 1

(βm+2ω+)

]

,

(3.52)
Considering the near resonance case (βm≈ 2ω+), and

after keeping only the dominant terms proportional to
1

βm−2ω+
, we get

|x2|2≈
µ2

m

(βm−2ω+)2 sin2 ((βm−2ω+) t/2). (3.53)

It is important to emphasize that consistency with

perturbation requires
∣

∣

∣

µm
(βm−2ω+)

∣

∣

∣
≪ 1.

Now let us turn our attention to the rotated wave
approximation, which is widely used in quantum optics
and magnetic resonance. In this approximation, terms in
the system Hamiltonian that oscillate rapidly are
neglected [47]. The time evolution in eqs. (3.18) and
(3.19) can be rewritten as

ẋ′ =−i H ′I x
′, (3.54)

wherex′ andH ′I are,

x′ = Λ−1
[

x1
x2

]

, H ′I =

[

ω+(t) λm(t)
λm(t) −ω+(t)

]

(3.55)

Considering a constantω+, while assuming a sinusoidal
time varyingλm(t) in the form

λm(t) = µmsin(βmt +φm) (3.56)

where µm is the amplitude,βm is the frequency andφm
is the initial phase ofλm. Rotating the coordinates of the
system (x′1→ eiβmtx′1, x′2→ x′2) and then dropping the high
frequency terms, we obtain

d
dt

[

x̃1
x̃2

]

=−i

[

−βm+ω+ i µm
2 e−iφm

−i µm
2 eiφm −ω+

] [

x̃1
x̃2

]

, (3.57)

where x̃1 = x′1eiβmt and x̃2 = x′2. Diagonalizing the
Hermitian matrix of coefficients in eq. (3.57) and after
some lengthy algebraic calculations we obtain

x1 = Λe−iβmt/2×{[cos(γmt/2)+ i sin(γmt/2)cos2θm]cosθ10

+ sin2θmsin(γmt/2)sinθ10 e−iφm

}

, (3.58)

and

x2 = Λeiβmt/2×
{

−sin(γmt/2)sin2θmcosθ10 eiφm

+ [cos(γmt/2)− i sin(γmt/2)cos2θm]sinθ10} (3.59)
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whereγm andθm are given as,

γm =

√

µ2
m+(βm−2ω+)

2, θm = 1
2 tan−1 [µm/(βm−2ω+)] .

(3.60)
Alternatively, one can consider a sinusoidal time

varyingω+(t) in the form

ω+(t) = µ+ sin(β+t +φ+) , (3.61)

while keepingλm as a constant. In this case the solutions
are easily found to be:

x1 =
x++x−√

2
, x2 =

x+−x−√
2

, (3.62)

wherex+ andx− take the form

x+(t) =
Λ√

2
e−iβ+t/2

×{[cos(γ+t/2)+ i sin(γ+t/2)cos2θ+] (cosθ10+sinθ10)

+ sin2θ+ sin(γ+t/2)(cosθ10−sinθ10)e−iφ+

}

(3.63)

and

x−(t) =
Λ√

2
eiβ+t/2

×
{

−sin2θ+ sin(γ+t/2)(cosθ10+sinθ10)eiφ+

+ [cos(γ+t/2)− i sin(γ+t/2)cos2θ+] (cosθ10−sinθ10)}
(3.64)

whereγ+ andθ+ are given as,

γ+ =
√

µ2
++(β+−2λm)

2, θ+ = 1
2 tan−1[µ+/(β+−2λm)]).

(3.65)
The time evolution of the second orthogonal state in

subspace (I ) can be done by applying the replacement
cosθ10 ⇒ −sinθ10 and sinθ10 ⇒ cosθ10. The
corresponding time evolution in the second subspace (II )
can be found by utilizing the symmetry described in
eqs.(2.9)-(2.11). It is worthy to mention that all our
results for the time evolution (exact or approximate) can
be easily shown to be consistent with the constrained
imposed by the symmetries as explained in section 2.

Now let us compare our obtained results using RWA
and perturbation. In order to get faithful comparison, one
should setθ10 = 0 in eqs. (3.58) and (3.59) and substitute
for γm andµm their values according to eq.(3.60). Thus, we
obtain,

|x2(t)|2 =
µ2

m

µ2
m+(βm−2ω+)2

sin2
(

√

µ2
m+(βm−2ω+)2 t/2

)

(3.66)

which for a smallµm leads to,

|x2(t)|2≈
µ2

m

(βm−2ω+)
2 sin2 ((βm−2ω+) t/2) (3.67)

This result correspond to what we got in eq. (3.53),
which shows that the rotating wave approximation goes
beyond perturbation result. In fact, by using rotating wave
approximation we get rid of the pole atβm = 2ω+, which
is an artefact of perturbation.

4 Time evolution of entanglement of two
qubits

The amount of entanglement between two quantum
system is a monotonic function of what is called the
concurrence [46]. The concurrence varies from a
minimum value of zero to a maximum of one coinciding
with the entanglement function range. Therefore, the
concurrence itself is considered as a measure of
entanglement. To calculate the concurrence one needs to
evaluate the matrix

R= ρ(σy⊗σy)ρ∗(σy⊗σy), (4.68)

whereρ is the density matrix of the system evaluated in
the coupled representation basis mentioned before andρ∗
is its complex conjugate. The concurrence is defined as

C= max{λ1−λ2−λ3−λ4,0}, (4.69)

whereλ1, λ2, λ3, λ4 are the positive square roots of the
eigenvalues ofR in the descending order. The evaluation
of the concurrence for the pure state

|ψ〉= f++ |++〉 + f−− |−−〉 + f+−|+−〉 + f−+|−+〉,
(4.70)

is straightforward, where in this caseρ = |ψ〉〈ψ| and
yields

C= 2 | f++ f−−− f+− f−+| . (4.71)

Having used the state expanded in terms of coupled
representation basis as,

|ψ〉= f1|++〉+ f2|−−〉+ f3 1√
2
(|+−〉+ |−+〉)+ f4 1√

2
(|+−〉−|−+〉)

(4.72)
we get the concurrence as

C=
∣

∣2 f1 f2− ( f 2
3 − f 2

4 )
∣

∣ , (4.73)

which is, of course, equivalent for the one obtained in
eq. (4.71) but not enough transparent to cope with the
symmetry explained in eqs. (2.9)-(2.11).

To reduce the computational labor we can restrict
ourself to the subspace (I ) in computing the concurrence.
The result of the other subspace (II ) can be in turn
derived just by applying the symmetry elaborated in
eqs. (2.9)-(2.11). In fact, as clear from the formula in
eq. (4.71), the two subspaces produce interfering
contributions to entanglement, that means they can
reinforce or cancel each other in the sense of constructive
and destructive interference.

Any generic initial state of the system living in the
subspace (I ) can be written as

|ψ(0)〉 = a|++〉+b|−−〉, |a|2+ |b|2 = 1,

= (acos(θ10)+bsin(θ10)) |φ1(0)〉
+ (−asin(θ10)+bcos(θ10))|φ2(0)〉 (4.74)

then the initial state evolves in time, throughH, to

|ψ(t)〉= f++|++〉+ f−−|−−〉, (4.75)
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It is easy to read the appropriate coefficientsf++ and
f−− determining the evolved state to be,

f++ = (acosθ10+bsinθ10)x1+(bcosθ10−asinθ10)y1,

f−− = (acosθ10+bsinθ10)x2+(bcosθ10−asinθ10)y2

(4.76)

The concurrence in eq. (4.71) can be calculated and
this leads to,

C = 2
∣

∣

∣
(acosθ10+bsinθ10)

2x1x2+(bcosθ10−asinθ10)
2 y1y2

+ (acosθ10+bsinθ10)(bcosθ10−asinθ10)(x1y2+x2y1)|
(4.77)

Having a more generic state living in all subspaces like,

|ψ(0)〉= a|++〉+b|−−〉+c|+−〉+d|−+〉 (4.78)

and|a|2+ |b|2+ |c|2+ |d|2 = 1.
The concurrence can be straight forwardly calculated

to be,

C = 2
∣

∣

∣
(acosθ10+bsinθ10)

2 x1x2+(bcosθ10−asinθ10)
2 y1y2

+(acosθ10+bsinθ10)(bcosθ10−asinθ10)(x1y2+x2y1)

−(ccosθ20+dsinθ20)
2 z1z2− (dcosθ20−csinθ20)

2 w1w2

− (ccosθ20+dsinθ20)(−dcosθ20−csinθ20)(z1w2+z2w1)|
(4.79)

Although we can compute the concurrence for time
evolved state starting from any generic initial state. It is
more instructive to restrict ourself to initial special states
like disentangled or maximally entangled one. More
specifically we consider the initial state| + +〉 and

1√
2
(|++〉+ |−−〉) , and studying their time evolutions

and their associated concurrences in the different regime
of exact and approximate solution. This is seen in section
3.

4.1 Entanglement formula for the first
integrability condition

We devote this section to consider different initial states
for the systems and investigate the time evolution of them
at different parameter values. Applying the first
integrability condition we setλm(t) = kω+(t), wherek is
a constant.

We consider the average magnetic fieldω+(t) to be a
time-dependent function of the form

ω+(t) = µ+ sin(β+t +φ+), (4.80)

whereµ+, β+ and φ+ are the amplitude, the frequency
and the initial phase ofω+(t), respictively.

Starting with the state|++〉 as an initial state, it
evolves in time, when applying the first integrability
condition, into

|++〉 timeevol.
=⇒ (x1 cosθ 10−y1 sinθ 10) |++〉+(x2 cosθ 10−y2 sinθ 10) |−−〉,

(4.81)

Fig. 1: First integrability condition: (a) The average magnetic
field as a function of time. The time evolution of the concurrence
of the state|++〉 for fixed average magnetic field amplitude
µ+ = 2, frequencyβ+ = 50 and initial phaseφ+ = π/50 at (b)
k= 0.5; (c)k= 1; (d)k= 2.
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where the coefficientsx′s and y′s can be inferred using
eqs. (2.6), (3.25) and (3.26) and the the corresponding
concurrence is found to be,

CIC
++ =

∣

∣−2sin2θ10 cos2θ10sin2J(t)− i sin2θ10sin2J(t)
∣

∣

where J(t) =
∫ t

0
η(t ′)dt′. (4.82)

We study the time evolution of the concurrence in
fig.(1) for fixed values of µ+ = 2, β+ = 50 and
φ+ = π/50 at k = 0.5, 1 and 2. In fig.(1a) we plot the
applied magnetic field ω+/µ+ against time. The
concurrence exhibits an oscillation behavior which starts
from zero magnitude as expected since the initial state is
disentangled. In fig.(1b) where k = 0.5, i.e.
λm(t) < ω+(t), the concurrence oscillation assumes an
amplitude 0.8, but as k increases the value of the
amplitude increases too as can be seen in fig.(1c). The
amplitude reaches the maximum value 1 atk = 1, see
fig.(1c), but ask increases any further the oscillations
becomes distorted as shown in fig.(1d), which
significantly increases asλm(t)≫ ω+(t). We didn’t find
any noticeable change as a result of examining other
different initial phases. By comparison with fig.(1a) one
can see that the frequency of the concurrence is much
smaller than the frequency of the applied field for small
values ofk but get closer ask increases.

In fig.(2), also we study the concurrence for fixed
average magnetic field frequencyβ+ = 100, k = 1 and
initial phaseφ+ = π/50 for different values ofµ+ = 2, 6
and 10. Interestingly, the concurrence exhibits an
oscillation behavior where the frequency of the oscillation
increases asµ+ increases. The time evolution of the
concurrence for fixed average magnetic field amplitude
µ+ = 2, k = 1 and initial phaseφ+ = π/2 at different
frequencies has been explored. We didn’t notice any
change in the concurrence profile as a result of changing
the frequency.

We investigate the time evolution of the concurrence
versus average magnetic field amplitudeµ+, for frequency
β+ = 50 and initial phaseφ+ = π/50 at different values of
the parameterk = 0.5, 1 and 2 in figs.(3a), (3b) and (3c)
respectively. The amplitude of the concurrence oscillation
increases as the parameterk increases and its frequency
increases also with the average magnetic field amplitude.
Upon starting with entangled state1√

2
(|++〉+ |−−〉) as

an initial state it evolves in time according to,

1√
2
(|++〉+ |−−〉) time evol.

=⇒

1√
2
[(cosθ10+sinθ10)x1+(cosθ10−sinθ10)y1] |++〉

+
1√
2
[(cosθ10+sinθ10)x2+(cosθ10−sinθ10)y2] |−−〉, (4.83)

while the corresponding entanglement is,

CIC
++−−S =

∣

∣−i sin2θ10 sin2J(t)+sin22θ10cos2J(t)+cos22θ10
∣

∣

(4.84)
In fig.(4), we study the time evolution of the

concurrence for fixed average magnetic field amplitude

Fig. 2: First integrability condition: Time evolution of
concurrence of the state|++〉 for fixed average magnetic field
frequencyβ+ = 100,k = 1 and initial phaseφ+ = π/50 at
different amplitude (a)µ+ = 2; (b) µ+ = 6; (c) µ+ = 10.

µ+ = 2, frequencyβ+ = 50 and initial phaseφ+ = π/50
at k = 0.1,0.5,1 and 10. As can be noticed, the
concurrence exhibits an oscillatory behavior starting with
an initial value of 1 as expected for a maximally
entangled initial state. Atk= 0.1 (λm(t)< ω+(t)), shown
in fig.(4a), the concurrence amplitude is very small but as
k increases the amplitude increases too reaching its
maximum value of 1 atk = 1, as shown in fig.(4c). The
amplitude gets damped again and the frequency increases
as k increases any further as can be concluded from
fig.(4d). The same state was considered at different initial
phases and frequencies with no significant change in the
concurrence behavior.

The effect of the average magnetic field amplitude has
been examined. The concurrence exhibits an oscillatory
behavior with a frequency that increases asµ+ increases
similar to the disentangled case. The concurrences
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Fig. 3: First integrability condition: Time evolution of
concurrence of the state| + +〉 vs. average magnetic field
amplitudeµ+, for frequencyβ+ = 50 and initial phaseφ+ =
π/50 at (a)k= 0.5; (b)k= 1 ; (c)k= 2.

corresponding to a system which is initially in the state
|−−〉 or 1/

√
2(|++〉− |−−〉) can be straightforwardly

calculated leading respectively to,

CIC
−− =

∣

∣2sin2θ10 cos2θ10 sin2J(t)− i sin2θ10 sin2J(t)
∣

∣ ,
(4.85)

and

CIC
++−−A =

∣

∣−i sin2θ10 sin2J(t)−sin22θ10cos2J(t)−cos22θ10
∣

∣

(4.86)

4.2 Entanglement formula for the second
integrability condition

The formulae for time evolution using the second
integrability condition are little bit complicated see

Fig. 4: First integrability condition: Time evolution of
concurrence of the state1√

2
(|++〉+ | −−〉) for fixed average

magnetic field amplitudeµ+ = 2, frequencyβ+ = 50 and initial
phaseφ+ = π/50 at (a)k= 0.1; (b)k= 0.5 ; (c)k= 1; (d)k= 10

eqs. (3.35)-(3.44). However, the expressions can be
written in a simple manner if they are broken up into
sub-expressions that have simpler structures. The relevant
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sub-expressions are,

Im(x1x2) = Im(y1y2) =
κ sin2 δ1 cos2θ1

1+κ2 − sgn(κ)sin2θ1 sin2δ1

2
√

1+κ2
,

Re(x1x2) = −Re(y1y2) =
1
2

sin2θ1 cos2δ1−
|κ|cos2θ1 sin2δ1

2
√

1+κ2
,

x1y2+y1x2 = cos2 δ1 cos2θ1+
1−κ2

1+κ2 cos2θ1 sin2 δ1+
|κ|sin2θ1 sin2δ1√

1+κ2

(4.87)

where Re and Im denote respectively the real and
imaginary part.

Fig. 5: Second integrability condition: Time evolution of
concurrence of the state|++〉 for fixed Heisenberg interaction
(λm(t)) frequencyβm= 10,κ = 0.1, θ10= π/4 and initial phase
φm = π/50 at different amplitude (a)µm = 1; (b) µm = 4; (c)
µm = 6.

With the aid of eqs. (4.77) and (4.87), the
entanglement associated with time evolved state starting
from the disentangled states|++〉 and | − −〉 amount

respectively to be

CIIC
++ = 2|x1x2 cos2 θ10+y1y2 sin2 θ10−sinθ10 cosθ10 (x1y2+y1x2) |,

= |2cos2θ10 Re(x1x2)+2 i Im(x1x2)−sin2θ10(x1y2+y1x2) |,
CIIC
−− = |−2cos2θ10 Re(x1x2)+2 i Im(x1x2)+sin2θ10(x1y2+y1x2) |

(4.88)

The resulting entanglement associated with the initially
maximally entangled states1√

2
(|++〉+ |−−〉) and

1√
2
(|++〉− |−−〉) as functions of time are given by,

CIIC
++−−S = |x1x2 (1+sin2θ10)+y1y2 (1−sin2θ10)+cos2θ10 (x1y2+y1x2) |,

= |2sin2θ10 Re(x1x2)+2 i Im(x1x2)+cos2θ10(x1y2+y1x2) |,
CIIC
++−−A = |−2sin2θ10 Re(x1x2)+2 i Im(x1x2)−cos2θ10(x1y2+y1x2) |.

(4.89)

Note that the entanglement for state evolving initially from
| −−〉 can be obtained from that of|++〉 by using the
symmetry prescribed in eqs. (2.13, 2.14). This means that,

θ10 → π/2−θ10, θ1→ π/2−θ1

x1 ←→ x2, y1←→−y2, κ −→−κ , (4.90)

while the result in eq.(4.89), reveals that the entanglement
of state evolving initially form 1√

2
(|++〉− |−−〉) , can

be obtained from that of 1√
2
(|++〉+ |−−〉) , by the

following replacement

cosθ10 =⇒−sinθ10, sinθ10⇒ cosθ10, (4.91)

which is the appropriate replacement to transform a state
to its orthogonal counterpart in the same subspace. The
same rule in eq.(4.91) can be applied to the states|++〉
and|−−〉.

Again, suppose we consider|++〉 as an initial state,
we investigate the time evolution of the concurrence in
fig.(5) for a fixed Heisenberg interaction frequency
βm = 10,κ = 0.1, θ10 = π/4 and initial phaseφm = π/50
at different amplitudesµm = 1, 4 and 6. The concurrence
shows an oscillatory behavior, where asµm increases the
oscillation amplitude increases, but becomes distorted for
large values ofµm. The effect of the frequencyβm on the
concurrence has been examined. Increasingβm causes the
concurrence frequency to increase whereas the amplitude
decreases. For fixed parameters, there is no effect ofκ on
the concurrence.

The impact of the angleθ10 = 0 and initial phase
φm = 0 has been investigated for a fixed Heisenberg
interaction frequencyβm = 10, κ = 0.1 at different
amplitudesµm = 1, 4 and 6. We got the same results as in
the case ofθ10 = π/4 and initial phaseφm = π/50. The
time evolution of the concurrence is depicted for fixed
parameter valuesµm = 4, κ = 0.1, θ10 = 0 and initial
phaseφm = 0 at different frequenciesβm = 10, 50 and
100 in figs.(6a, 6b, 6c), respectively. The concurrence
shows an oscillatory behavior with a frequency that
increases and a decresing amplitude asβm increases. For
fixed parameters, we have tested the effect ofκ which
when increases the amplitude of the concurrence
increases.
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Fig. 6: Second integrability condition: Time evolution of
concurrence of the state|++〉 for fixed amplitude of Heisenberg
interaction,(λm(t)), µm = 4,κ = 0.1, θ10 = 0 and initial phase
φm = 0 at different frequencies (a)βm = 10; (b) βm = 50; (c)
βm = 100.

The time evolution of concurrence versus the
Heisenberg interaction amplitudeµm is depicted in
fig.(7a) for fixed frequencyβm = 10, κ = 0.1, θ10 = π/4
and initial phaseφm = π/50. The concurrence exhibits an
oscillatory behavior, which gets distorted as the
magnitudeµm increases. In fig.(7b) The time evolution of
concurrence versus the Heisenberg interaction frequency
βm is investigated for fixed amplitudeµm = 4, κ = 0.1,
θ10 = π/4 and initial phaseφm = π/50. Clearly the
concurrence oscillation frequency increases and its
amplitude decreases asβm increases.

Now we consider the time evolution of the
concurrence for the maximally entangled state

1√
2
(|++〉+ |−−〉). We study the time evolution of the

concurrence in fig.(8) for fixed Heisenberg interaction,
(λm(t)), frequencyβm = 10, κ = 0.1, θ10 = π/4 and

Fig. 7: Second integrability condition: Time evolution of
concurrence of the state|++〉 (a) as a function ofµm, for
fixed frequencyβm = 10, κ = 0.1,θ10 = π/4 and initial phase
φm = π/50. (b) as a function ofβm, for fixed amplitudeµm =
4,κ = 0.1, θ10 = π/4 and initial phaseφm = π/50. Notice that
λm(t) = µmsin(βmt +φm).

initial phaseφm = π/50 at different amplitudesµm = 25,
10 and 4. As µm decreases the amplitude of the
concurrence oscillation decreases as well.

Examining the effect of different applied frequencies
on the time evolution of the concurrence showed the same
behavior as in the disentangled state. The frequency of the
concurrence oscillation increases while its amplitude
decreases asβm increases. In fig.(9) we examine the time
evolution of concurrence for fixed average magnetic field
amplitudeµm = 4, frequencyβm = 50 ,θ10 = 0 and initial
phaseφm = 0 at κ = 0.1 and 2. As one can notice,
increasing the magnitude of the parameterκ leads to a
smaller amplitude of the concurrence oscillation.

As to the investigation concerning the concurrence
corresponding to the RWA we refer to [35] where a
detailed investigation and study were carried out.

5 conclusion

In this paper we have investigated a system of two qubits
coupled through a time-dependentXYZ Heisenberg
exchange interaction. The dynamics of the system subject
to an external non-uniform time-varying magnetic field is
studied. Exact solutions are provided for two different
integrability conditions satisfied by the Hamiltonian. The
discrete symmetries of the Hamiltonian which is
responsible for dividing its Hilbert space into two
independent subspaces can be utilized to map the
dynamics of the system from one subspace to the other.
The time evolution of the entanglement of the system
starting from different initial states, disentangled and
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Fig. 8: Second integrability condition: (a) Time evolution of
concurrence of the state1√

2
( |++〉+ |−−〉) for fixed Heisenberg

interaction,(λm(t)), frequencyβm = 10, κ = 0.1,θ10 = π/4 and
initial phaseφm = π/50 at different amplitudes (a)µm = 25; (b)
µm = 10; (c)µm = 4.

maximally entangled, was evaluated and its different
properties were investigated, which were found to be
controllable using the interplay of the different
parameters of the time-varying magnetic field and
Heisenberg exchange interaction such as the amplitudes,
frequencies and initial phases. The special case of a
time-independent magnetic field (or exchange coupling)
was treated using two different approximation methods,
the perturbation and rotated wave approximation, and it
was found that the range of validity of the rotated wave
approximation is wider than that of the perturbation and
they coincide for specific choices of the magnetic field
and coupling parameters.

Fig. 9: Second integrability condition: Time evolution of
concurrence of the state1√

2
( |++〉+ |−−〉) for fixed Heisenberg

interaction, (λm(t)), amplitude µm = 4, frequency βm =
50,θ10 = 0 and initial phaseφm = 0 at (a)κ = 0.1; (b) κ = 2.
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