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Abstract: We study the dynamics of a two-qubit system coupled through time depeadisotropicXY Z Heisenberg interaction

in presence of a time varying non-uniform external magnetic field. Exsults are presented for the time evolution of the system
under certain integrability conditions. Furthermore, the corresponditanglement of the system is studied for different values of
the involved parameters. We found that the time evolution and differepepties of entanglement such as amplitude, frequency and
profile can be finely tuned by the interplay of the characteristics of the teperttient magnetic field and exchange coupling. Also we
show how the discrete symmetries of the system Hamiltonian, which splits itsrtsliece into two distinct subspaces, can be utilized
to deduce the dynamics in one of its two distinct subspaces from the oteeMameover, approximate results for the time evolution
are provided utilizing the rotating wave as well as the perturbation apprtirinsafor the special case of either static magnetic field
or exchange coupling. We compare the range of validity of the two appetion methods and their effectiveness in treating the
considered system and determine their critical parameters.
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1 Introduction information processing814]. The main task in each one
of these systems is to define certain quantum degree of

Quantum entanglement is considered as the corner storfg€€dom tol serve as a qubit, ShUCh as the charge, o;.bital or
of the quantum theory and one of its historic puzzles.SPin angular momentum. The next step is to find a

Nowadays it is considered as a well established concepfontrollable mechanism for forming an entanglement
and experimentally verified phenomenon in modernPEWeeN a two-qubit system in such a way to produce a

physics []. Quantum entanglement is a nonlocal fundamental quantum computing gate..ln addition, we
correlation between two (or more) quantum systems suc/i€ed to be able to coherently manipulate such as
that the description of their states has to be done wittent@ngled state to provide an efficient computational
reference to each other even if they are spatially wellPrOC€SS. Such coherent manipulation of entangled state
separated. Particular fields where entanglement plays 42 been observed in systems such as isolated trapped
crucial role are quantum teleportation, quantum!©nS [19] and superconducting junctionslq. The
cryptography and  quantum  computing 2-8§]. coherent control of a tw_o—electron spin state in a coupled
Entanglement is considered as the physical basis fopuantum dot was achieved experimentally, where the
manipulating linear superposition of quantum states toCOUPIiNg mechanism is the Heisenberg exchange
implement the different proposed quantum computing'Nteraction between the electron spidg{19].

algorithms p, 7]. Different physical systems have been Solid state systems have been in focus of interest as
proposed as reliable candidates for the underlyingthey can be utilized to build up integrated networks that
technology of quantum computing and quantumcan perform quantum computing algorithms at large
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scale. Particularly, the semiconductor quantum dot isthe two different subspaces is illustrated. Also we applied
considered as one of the most promising candidates fotwo different approximation methods namely the rotated
playing the role of a qubit40-23], where the spirS of  wave and perturbation and compared their results and
the valence electron on a single quantum dot is used as their range of validity for the special cases of the
two-state quantum system, which gives rise to atime-independence of either the magnetic field or the
well-defined qubit. As a result of this especial interest, soexchange interaction. This paper is organized as follows.
much efforts has been devoted to investigating theln Sec.2 we introduce our model and the underlying
interacting Heisenberg spin chain as it represents a vergymmetries of the system. In Sec. 3 we discuss the time
reliable model for constructing quantum computing evolution and the two integrability conditions of the
schemes in different solid state systems, as well as fosystem and the approximation approaches. In Sec. 4 we
being a very rich model for studying the novel physics of present the entanglement formula in the cases of
localized spin system@p-25]. integrability and approximations and discuss the results.
Recently there has been much of literature focusingWe close with our conclusions in Sec 5.
on entanglement and decoherence in Heisenberg spin
systems in presence and absence of an external magnetic
field [26-39 Particularly, the thermal entanglement of an 2 The model and its underlying symmetry
isotropic two-qubit HeisenberngY model under the effect
of a non-uniform static magnetic field was studied, with We consider two Coup|ed qub|ts through time dependent
an emphasis on the critical role of non-uniformity of the anisotropic Heisenber§Y Z interaction in presence of a
field on the entanglement4@]. The entanglement of time dependent non-uniform magnetic field applied in the
anisotropic two-qubit HeisenbeXjY Zmodel in presence  z_direction. The Hamiltonian of the system is given by
of a non-uniform static magnetic field was investigated. It
was demonstrated that the combined effect of ther (t) = A«(t)SuSux + Ay (t)SySy + A2(t) S5, + @ (t)Siz + wa () S,
anisotropic coupling and the non-uniformity of the field (2.1)
has a significant impact on manipulating the details of thewhereS;, (i = 1,2; j = x,y,z) are the spin half-operators,
transition between the entangled and the disentangledvhile Ay(t), Ay(t) and A,(t) are the time dependent
states of the systen#]]. Furthermore the anisotropic strengths of the Heisenberg interactions in xhg andz
two-qubit HeisenbergXYZ model was studied in directions respectivelyw (t) and w;(t) are the external
presence of time-dependent magnetic fields, however, théme-dependent magnetic fields. The Hamiltonian can be
magnetic field was assumed to be unifor@2][ In written in a more convenient form in terms of the
previous works we have studied the dynamics ofoperatorsSy = Sx+iSy andS = S, +S,. As aresult,
entanglement and thermal entanglement of a two-qubithe Hamiltonian acquires the form
Heisenberg<Y Zmodel, where we employed a complete . A A A A
static anisg(;(tropic coupling between pthé/ two qubﬁs in H(t) = 0. (S +@- (S, +X(1)S- S

presence of an external sinusoidal time-dependent Am(t) (5484 +5-5)

non-uniform magnetic field43]. Motivated by one of the AN o L

most interesting proposals to create a fundamental + ()\p(t)— 22 ) (S14S-+5-S4), (22
guantum computing gate by applying a time-dependent

exchange interaction between two quantum dé# [we where

studied the dynamics of two-coupled two-level atomsAp(t) = (Ax(t) +Ay(t)) /4, Am(t) = (Ax(t) — Ay(t))/4,
(can be considered as two quantum dots) represented by, (t) = (e (t) £ axn(t))/2 and

HeisenbergXY Z model. The interaction between the S-S, = SixSx + SySy + S12%2-
atoms was considered isotropic time-dependent coupling It is convenient to study the matrix representation of
and the entire system is under the effect of an externathe Hamiltonian of this system in the uncoupled basis,
non-uniform static magnetic fiel@§). namely{|++),|——),|+ —),| —+)}, where in terms of

In this paper we study the dynamics of entanglementthese states the Hamiltonian reads
of a two qubit Heisenberg XYZ model for which we

employ a complete anisotropic coupling between the two w () +20 An(t) 0 0

qubits in presence of an external non-uniform magnetic, _ Am(t) —w+(t)+“f) 0 0

field. We apply both time-dependent magnetic field and 0 0 w_(t)— 24U Ap(t
time-dependent Heisenberg coupling and present two 0 0 Ap(t) —w_(t)— Aﬁt)
exact solutions corresponding to two particular (2.3)

integrability conditions possessed by the system. We In fact many of the characteristic features and
demonstrate how the dynamics of the system and itgproperties possessed bl can be understood and
entanglement evolution can be controlled using theattributed to the role of discrete symmetries enjoyed by
different parameters of the time-dependent magnetic fieldhe Hamiltonian. It turns out that there are three discrete
and Heisenberg interaction. The discrete symmetriesymmetries plying important roles in understanding the
possessed by the system and its effect on the dynamics idynamics generated by.
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The first discrete symmetry is found to be, and consequently all dynamics of the time evolution
contained in the subspace spanned by—) and| — +)
Sx = —Sx, or Sy = —Sy. (2.4)  can be obtained from those pf- +) and| — —) by just

) o ~ the following replacement
The block diagonal structure of the Hamiltonian matrix

can be understood as a consequence this discrete Aym «— Ap, Az— —Ag, w +—w_ (2.11)
symmetry. The symmetry defined in e®.4) keeps the

Hamiltonian in eq. 2.1) invariant and then the spin states It is clear that the two block in the Hamiltonian given in
can be classified according to their parities under spired.@.3 can be obtained from each other by the
reflection ofx or y components. It turns out that the states replacement given in e@(11). The manifestation of the

of positive parity aré -+ -+) and| — —) while those having ~ symmetry described in eQ.©) would be obscured having
negative parity arel + —) and | — +). The parity is used as a basis the states of definite total spin and total

conserved as a consequence of the symmetry and thus tBecomponent| + +), | — —), \% (|+=)+[—+)) and
states of opposite parities never get mixed under timei(|+,>,‘,+>), and the Hamiltonian matrix turns
evolution generated bil. As a result, the spin state space c\)ﬁt to be

of the system is splitted into two subspaces and the '

Hamiltonian is block diagonal as explicitly shown in w, (t)+ 20 Am(t) 0 0

eq. @.3. Each block ofH is controlled by different Amt) 4 o, (t) + 22 0 0
independent set of parameters excépft), which is H= " " 0 4 A Ma(t)

present in both blocks. The eigenstates of the system and P~ "% -0 A(t)

the corresponding energy spectrum can be readily 0 0 @-(t) *Ap(t)fglz)

obtained by diagonalizing the two blocks in the mattix

The first subspace is spanned by Of course, the last symmetry can be equivalently

achieved by the reflection df,. Regarding the third
discrete symmetry, which is rather obvious and amounts

|@L(t)) = cosBy|+ +) +sinby| — —) to be reflecting all spins and inverting the signcaf and
|@2()) = COSBL| — —) —sindy| + +>’ 2.5) w_. The symmetry operation can be realized as,
where the angl®; = Ztan™ (A(t) /. (t)). S8 2SR @ ey 0o (_201_3’)
The associated energy eigenvalues are and the spin states are affected accordingly to,
() = Azf) +n(t), &)= /\Zflt) —n(t), (2.6) [+H) = =-=) [+ = [-+)  (214)

As a result of this symmetry all the dynamics contained in
wheren (t) = /w? (t) + AZ(t). As to the second subspace, the time evolution of the state- +) can be extracted from

the eigenstates are those off — —) and vice versa. The same applies to the two
states| + —) and| — +). The three symmetries described
|@s(t)) = cosBy| + —) +sinby| — +), above in egs.q.4), (2.9 and @.13 turn out to be very
|u(t)) = cosB| —+) —siny| + —), (2.7) useful in checking the correctness of the calculations and
also in reducing the calculations labour.
where6, = 3tan ! (Ap(t)/w-(t)) and the corresponding It is important to realize that the eigenstates in
energy eigenvalues eg.@.5 and eq. 2.7) are not generally stationary states
and their associated energy eigenvalues are time
83(t):—Az(t)+Z(t)7 54(t):_)‘2(t) —z@t), (2.8) Jependent as shown in e and eq2.§. These
4 4 findings seem natural in accord with the explicit time
dependent Hamiltonian. The time independent
wherel (t) = /w2 (t) +A3(1). Hamiltonian case is more simple to be analysed, since in
As to the second discrete symmetries possessét, by this case the eigenstate are stationary. Further more, the
it can be identified as, time evolution is a straight forward to be handled. The
ground state of the system can be unambiguously
Soa = —Sa, A= —Ayg W = W, A= —Ay determined according to the value of the relevant

(2.9)  parameters in eq26) and @.8). Whenn > % + ¢, the
where a = x,y,z. This symmetry manifests its effect ground state turns out to Hep). On the other hand, for

through the spin reflection d8,, which maps the two < % 1 ¢ the ground state igp). Also it turns out to be
disjoint subspaces in eg2.6) and eq.2.7) into each Ay : .
s degenerate whem = 7 + ¢ and it can be unambiguously
other, explicitly as, 1 raa 3 o
chosen to be [€% |@) + |@u)]. The choice is based on
[++) «—|+-), |-—)+—]—+4), (2.10) maximum entropy principle that dictates equal mixture
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between the two degenerate states but leaving arbitrarwhere the matrix§ diagonalizeH,. After some simple
relative free phase undetermined. These results are in algebraic manipulations, the resulting equation governin
agreement with those found id9). u can be casted in the form,

(1)

Ui (- 61(t) oz + 1

+n(t) 03> u=0, (3.21)
3 Time evolution and integrability conditions
where g, and g3 are 2x 2 Pauli spin matrices given
The time evolution of time dependent Hamiltonian is an respectively as,
intricate problem. Although the time evolution can be
numerically solved for any generic Hamiltonian, however {0 —i O — 10 (3.22)
exact or approximate analytic solutions are interesting to 2=1lio |’ ST lo-1|- '

find. Analytic solutions are important because they can o
provide a wealth of information about the feature of The factorA(t)/4 should be understood as multiplied by
solutions with minimal numerical works, even more they 2 2 identity matrix. The differential equation in e.21)

could serve as a checking benchmark for the validity ofiS Subjected to the initial condition,

numerical solutions. The time evolution of any state ket 1
vector is governed by Scidinger equation in the form, u(0) = {0} (3.23)
H|W) = i@. (3.15) It is worthy to mention some explanation for the used
ot notations. The subscript inddxreveals that the quantity

Knowing the time evolution of the eigenstates enables udS "estricted to the space spanned by first two eigenstates

to determine the time evolution of any arbitrary state. "@Mely|@L(t)) and|g(t)), while using subscript indebt

Starting with time evolution in the subspace spanned by'Vould mean restriction to subspace spanned gayt))

the two eigen state$pi(t)) and |g(t)) as defined in and [gu(t)). The x's, y's, z's and w's coefficients in
eq. 2.5. Assuming an initial state, at 0, in the form investigating time evolution refer to ones starting with

initial - states |@(0)), |@(0)), |@(0)) and |@(0))
|@1(0)) = cosBio| + +) +sinbig| — —), (3.16)  respectively.

wheref;p = 61(0). The initial state specified in ed3.(L) o N -
evolves in time and at later timieoecomesy (t)), which 3.1 The first integrability condition

is described by,
Y A straight forward integrability condition enabling clase

[Wr(t)) = g1(t) cosBio| ++) +0a(t) SinBio| — —), form solutions for eq.3.21) is given by,
(3.17) :
whereg; (t) andgy(t) are unknown functions of to be 6.(t) =0 (3.24)

specified through Schdinger equation supplemented by and the obtained solutions in this case take the form,
the initial conditiong;(0) = 1 = g»(0) = 1. The time

evolution implied by Schidinger equation for the I cosbpl1
functionsg; (t) and go(t) can be expressed as first order ut) = =X(t) = , (3.25)
coupled differential equations. The resulting equations 0 sinBiolq

can be written in a compact matrix form as, . - o ) ]
the integrability condition in eq.3(24) is fulfilled when

X = —i Hx, (3.18)  w(t) O Am(t). Similarly, the initial state/¢,(0)) under
time evolution is described bythat amounts to
where the dot denotes the derivative with respect to time,

while x andH; are, —sinbol2
y(t) = (3.26)
01(t) cosbyg W, (t)+ Az(t) Am(t) cosbyol2
X= {gz(t) Sin910:| ’ Hi = A t4 _ t At) |
m(t) @i (t) + (é 10) The correspondingandw are easily determined to be
the matrixH,, as expected, is the Hamiltonian matrix in cosBypls —sinByly
the subspace generated|igy(t)) and|@(t)). z2(t) = , w(t) = [ ] , (3.27)
A more illuminating form for eq.3.18 can be reached sinBypls cosbxl4
by transforming the variablg into a new oneu through
u= S x, where the matrixg is given by where
t
_ | cosByi(t) sinBi(t) li =ex <|/ gt dt’>, j=1234 (3.28
S = —sinB1(t) cosh1(t) |’ (3.20) : ° 0 i) : (3:28)
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3.2 The second integrability condition

Another simple integrability condition is,

Am(t)

Bu(t) =K N(t) = Ou(t) =K sin26,(t)]’

K #0,
(3.29)

In the second subspace generated |y(t)) and
|gu(t)), the corresponding integrability condition is

Aty Ap(t)
B(t) =X SnR6(0]"

(3.39)
wherey is constant. The condition upon integration leads

Bo(t) = x (1) =

wherek is constant. The condition upon integration leads

to,
cog26,(t)) = —2k /0 A(t') dt +cos261).  (3.30)

which in turn implies

/1 (-2K 5 Am(t') i + cOS(2610))°

tan(26,(t)) = (—2k f3 Am(t7) dt/ + cOS(2610) )
(3.31)

In this case the solutions for e®.21]) are,

u(t):exp{i s { 6(t)( o — ko) — %ﬂ)} dt’}u(o),

(3.32)
which upon using eq3(29 becomes
ut) = A x (coséelm —i 03\/ﬁ sindg, 1) +1 UZK\S;%> u(0),
(3.33)

where,

S = VA (O~ 010) . A =exp(— Jj Malt))lt).
(3.34)
The corresponding column vectgft) in terms of its

componentsx; (t) andxx(t), is given as,

singd,
X1 (t) = A x [cos@l(t) (coséel(t) —j 91“))

1+k2
n \/ﬁsinelsinéelm} , (3.35)
and '
Xa(t) = A % [sin@l(t) <cos691(t) —i SITE}S;)
- \/ﬁiﬂcosﬂl(t)sinégl(t)] . (3.36)

Similary, the initial state|g(0)) evolves in time
according to,

yi(t) = A x [—sin@l(t) (00369 o+ Sinéelm)
V1 k2
K
+ €00 sind, , 337
Vitwe o GM (3.37)
and
ya(t) = A x [cos@l(t) (cosée o+ Sinéel(t))
' 1+k?
K
+ sinBy(t) sind . 3.38
Nrwhahat) em)} (3.39)

cog(265(1)) = —2x /0 Molt) dt +cos26,0).  (3.40)

In a similar way the solutions for time evolution can be
obtained as those of eq8.895-(3.38, which come out to
be

z(t) =A"1x lcos@z(t) (cosé i Sin592(t)>
N o)~
+X
X . .
+ sinB, sind, 3.41
Vs caic 92(”] (3.41)
and
2(t) = A1 x [sin6,(t) (cosc‘iez(t) —ij 3”15972(‘)2>
+X
X .
- cos9,sind 3.42
1+X2 §2 eZ(t)] ( )

also

VTR

sing,
wi(t) = A"tx [— sinBs(t) (coséez(t)H 92(‘>>
X

+ cosH,sind, 3.43
1rx2 - 92(”] (3.43)
and
Wo(t) = At x [cosez(t) (cos(S 0+ Sindg, 1) )
) w0
+X
X . .
* Sin62sindg, ) |, 3.4
Nies 0 em] (3.44)

2
wheredg,q) = Y52 (65(t) — 620) .

Equation 8.30 adds an extra restriction to second
integrability  condition, due to the constrain
|cog264(t))] < 1. Considering the Heisenberg
interactions differenceAm(t) to be a time-dependent

function of the form

Am(t) = Um Sin(But + @n), (3.45)
where um, Bm and @y are the amplitude, frequency and
initial phase ofAn(t), respectively. The restriction in the
second integrability case manifests itself through the
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relation among the system parameters. In the case of To be more specific we consider a weak harmonic

610 # 0, the condition takes the form perturbation in the form,
2K Um 1+ c0s(2610)" 1—cos(2640) . ) .
wherep, is the amplitude anf, is the frequency ol (t)
while in the case 0819 = 0, it becomes .The solutiorx,(t) in eq.@.51) becomes
K Um 1 Xo(t) = i’IJ gt [ei(ﬁm 20t gi(Ami2ot 1 -~ 1 }
=0. —_ —. 3.47 2 2Km (Brn—2w.) T (Bnt2w;)  (Bn—2w:)  (Bwt2wp) ]’
o Bm | — 4 (3.47) (3.52)

Considering the near resonance cgd&g+ 2w, ), and
after keeping only the dominant terms proportional to

3.3 Perturbation versus rotated wave ﬁ , We get

approximations

In this section we apply and compare two of the widely |x2|2 ~ “7"20 sinz((Bm—2w+)t/2). (3.53)
used methods of approximations namely the perturbation (Bm— 2w, )?

theory and the rotated wave approximation (RWA). We . . . . .
seek to explore their range of validity in treating our 't 1S important to emphasize that consistency with
system and compare their results. We start with theperturbation requiremeﬂigw)‘ <1

perturbation theory, where we consider eds1§ and Now let us turn our attention to the rotated wave
(3.19 and assume thab, andA; are constants wheén  approximation, which is widely used in quantum optics
is small to be a considered as perturbation. Therefdre, and magnetic resonance. In this approximation, terms in

represents two levels system where the system Hamiltonian that oscillate rapidly are
A 3 neglected 47]. The time evolution in egs.3(18 and
Ei=—w, + ZZ’ Es = wy + ZZ (3.48)  (3.19 can be rewritten as
X = —i H/X, (3.54)

The difference between the two levels is giverEy-
E; = 2w, . The evolution due td, can be factored out, so
H, takes the form

Hi = {()J‘Jr:(t) A_“;f)ﬂ : (3.49) X =A"1 Kﬂ . Hi= {‘;’;((tt)) _’\g)‘f()t)] (3.55)

wherex’ andH| are,

Considering a constanb., while assuming a sinusoidal

Then the time evolution is controlled by a system of time varyingAm(t) in the form

two coupled differential equations which can be written in
a matrix for as,

{Xl} = [;"*t )‘m(t)] [Xl] , (3.50)  where i, is the amplitude By, is the frequency and,
X2 m(t) —a: | [X is the initial phase of\n,. Rotating the coordinates of the

system K, — €Pm'x], X, — x,) and then dropping the high

Assuming the system is initially in the stdte +) and frequency terms, we obtain

suffering a weak transition due to the small perturbation
Am(t). The weak transition demands that| > [x,| and d s B CHm acign o
Ix1| ~ 1 to be fulfilled. Employing perturbation technique it &1} =i [—[igﬂje'% : 2_2) } &1} . (3.57)
to solve the system in e®.60, taking into account that 2 2 + 2

Am(t) small, one obtains the following solution, . i . , -
m(t) g where x; = x;€Pmt and %, = x,. Diagonalizing the

—iwyt Hermitian matrix of coefficients in eq3(57) and after

e some lengthy algebraic calculations we obtain
x1 = Ae Prt/2 5 {[cog Yt /2) +iSin(yit /2) cOS Bm] cOSB10
t .
o ; + Sin28msin(ymt /2) sinBg e ' L 3.58
Xo &0 —i @ @+t /)\m(r) e dwiTgr (3.51) msin(¥nt/2) sinbio } (3.58)
0 and

which is clearly consistent to represent a weak transition. X2 = AEPT/2 5 { —sin(yit /2) Sin 26mcosBro €9
+ [coq ymt/2) —isin(ymt/2) cos By sinbio} (3.59)
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whereyn, and 6, are given as, 4 Time evolution of entanglement of two

ubits
Yin= 1/ M2+ (Bn—20,)%,  Bm=3tan *[tm/(Bn— 2w, )] a

(3.60)  The amount of entanglement between two quantum
Alternatively, one can consider a sinusoidal time system is a monotonic function of what is called the
varying w (t) in the form concurrence 46]. The concurrence varies from a
- minimum value of zero to a maximum of one coincidin
@ (t) = pesin(Bit+ @), (3.61) with the entanglement function range. Therefore, tr?e
while keepingAn, as a constant. In this case the solutionsconcurrence itself is considered as a measure of
are easily found to be: entanglement. To calculate the concurrence one needs to
evaluate the matrix

o XX XX (3.62)

RV R 2T 2 ' R=p(oy®ay)p*(0y® ay), (4.68)
wherex™ andx™ take the form wherep is the density matrix of the system evaluated in
xt(t) = A B2 the coupled representation basis mentioned beforgpand

V2 is its complex conjugate. The concurrence is defined as

x {[cos(y4t/2) +isin(yyt/2) cos D] (cosbip+ Sinbio)

: C=maxA; — A2 — A3 —A4,0}, 4.69
+ sin20, sin(y:t/2) (cos@lofsinelo)e"@} (3.63) A =Ao = Aa =24, 0} ( )

where Ay, A2, A3, A4 are the positive square roots of the

and A eigenvalues oR in the descending order. The evaluation
X (t) = ﬁe'ﬁﬁ/z of the concurrence for the pure state
x {fsin26+sin(y+t/2) (cosBig+ sinByg) &P W) =fis [+H) +f—[——) + T [+—) + f—+|(; ;‘35
+ [cos(y;t/2) —isin(y;t/2) cos B, ] (cosbyo — sinbyo) } is straightforward, where in this cage= |) (Y| and
(3.64) yields
wherey, and6. are given as, C=2[f f_—f f [ (4.71)

Having used the state expanded in terms of coupled

Vi = \/ IJ-%— + (B+ - 2Am)27 9+ = %tan*l[u+/(ﬁ+ - ZAm)}) representaﬁon basis as,

(3.65)
The time evolution of the second orthogonal state in|y) = fil +4) + fol = =) + fa 5 (| + =)+ [ =)+ fa s (| + =) = [ = +)
subspace |} can be done by applying the replacement (4.72)

cosfg = —sinBp and sibg = cosB. The we get the concurrence as
corresponding time evolution in the second subspéde (
can be found by utilizing the symmetry described in C=|2f1f,— (f7—£2)], (4.73)
egs.2.9-(2.11. It is worthy to mention that all our L . . .
results for the time evolution (exact or approximate) canWNich is, of course, equivalent for the one obtained in
be easily shown to be consistent with the constrainecd- @73 but not enough transparent to cope with the
imposed by the symmetries as explained in section 2.~ Symmetry explained in eqs2.9)-(2.11). .
Now let us compare our obtained results using RWA To reduce the computational labor we can restrict
and perturbation. In order to get faithful comparison, oneourself to the subspace)in computing the concurrence.
should seBip = 0 in egs. 8.58 and B.59 and substitute The result of the other subspacH)(can be in turn
for ym andum their values according to e§.60. Thus, we ~ derived just by applying the symmetry elaborated in

obtain, egs. 2.9-(2.11. In fact, as clear from the formula in
) 12 _ eq. @.7)), the two subspaces produce interfering
x2(t)] :W"lzwsmz (\/H%+(Bm—2w+)2t/2) contributions to entanglement, that means they can
m

(3.66) reinforce or cancel each other in the sense of constructive
) ' and destructive interference.
which for a smalluy, leads to, Any generic initial state of the system living in the
12 subspacel] can be written as
o (t)? ~ ——— i (Bm— 20, )t/2)  (3.67)

(Bm— 2w,) @(0)) = al++)+bj——), [a*+b=1,
This result correspond to what we got in e8.53, - (acosl(elo) +Dbsin(610)) |@1(0))
which shows that the rotating wave approximation goes + (—asin(B10) +bcog 610))|@(0)) (4.74)

beyond perturbation result. In fact, by using rotating wave  then the initial state evolves in time, through to
approximation we get rid of the pole Bt, = 2w, , which

is an artefact of perturbation. p) =f | ++)+f | ——), (4.75)
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It is easy to read the appropriate coefficiehts and
f__ determining the evolved state to be,

fi1 = (acosBip+ bsinbBig) X1 + (bcosbip— asinbio) yi,
f__ = (acosbio+ bsinBig) X2 + (bcosbio— asinbip) y2
(4.76)

The concurrence in eq4(71) can be calculated and
this leads to,

C=2 ’ (acosbBip+ bsin910)2x1X2 + (bcosb1o— asin910)2y1y2

+ (acosbip+ bsinByp) (bcosbig — asinbig) (X1y2 + Xoy1)|
(4.77)

Having a more generic state living in all subspaces like,
|@(0)) =a|++)+b|——)+c|+—)+d|—+) (4.78)

and|aj?+ [b|> +[c|>+|d|> = 1.
The concurrence can be straight forwardly calculated
to be,

c=2 ‘ (acosbyo + bsinBig)® xaxz + (hcosBio — asinBig)y1ys
+ (acosbyg + bsinByg) (bcosbyp — asinbig) (X1y2 + Xay1)
— (ccosB0+ dsinBa)? 212, — (d oSO — CSINBa) > Wiy

— (ccosByg -+ dsinByg) (—d cosbry — €Sinbag) (21 Wy + ZoWy ) |
(4.79)

Although we can compute the concurrence for time
evolved state starting from any generic initial state. It is
more instructive to restrict ourself to initial specialtss
like disentangled or maximally entangled one. More
specifically we consider the initial state+ +) and
% (|++)+|—-)), and studying their time evolutions

and their associated concurrences in the different regime
of exact and approximate solution. This is seen in section
3.

4.1 Entanglement formula for the first
integrability condition

We devote this section to consider different initial states
for the systems and investigate the time evolution of them
at different parameter values. Applying the first
integrability condition we sei(t) = kw, (t), wherek is
a constant.

We consider the average magnetic field(t) to be a
time-dependent function of the form

w (t) = Yy sin(Bit+ @y ), (4.80)

whereu,, B, and @, are the amplitude, the frequency
and the initial phase ab; (t), respictively.

Starting with the staté + +) as an initial state, it

-0.5 1

-1

(b)

0.8 1

0.6 1

0.4 1

0.2 1

0.8 1

0.6 1

0.4 1

0.2

—

0.8 1

0.6 1

0.4

0.2

Fig. 1: First integrability condition: (a) The average magnetic
field as a function of time. The time evolution of the concurrence
of the state| + +) for fixed average magnetic field amplitude
[+ ) "2 (4 cOSB10— y1 SINB10) |+ +) + (% COSBro— Yo sinyg) [~ —),  H+ = 2, frequencyB, = 50 and initial phasep;. = 71/50 at (b)
(4.81) k=0.5; (c)k=1; (d)k= 2.

evolves in time, when applying the first integrability
condition, into
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where the coefficients’s andy's can be inferred using @) (b)
egs. 2.6), (3.25 and @.26 and the the corresponding
concurrence is found to be, o l‘ﬂ

C!E, = |-2sin My cos Byosin? J(t) — i sin W10sin 2(t)| " "

t
where It) — / n(t)dt. (4.82)
JO 0.6 1 0.6

We study the time evolution of the concurrence in C C
fig.(1) for fixed values ofpu, = 2, By = 50 and n 041
@ = /50 atk = 0.5, 1 and 2. In fig.(1a) we plot the
applied magnetic fieldw,/u, against time. The
concurrence exhibits an oscillation behavior which starts
from zero magnitude as expected since the initial state it
disentangled. In fig.(1b) wherek = 0.5, i.e. 0 — e
Am(t) < wy (1), the concurrence oscillation assumes an
amplitude 08, but ask increases the value of the

0.2 0.2

amplitude increases too as can be seen in fig.(1c). The ©

amplitude reaches the maximum value lkat 1, see i

fig.(1c), but ask increases any further the oscillations n ﬂ ﬂ ﬂ ﬂ ﬂ ﬂ
becomes distorted as shown in fig.(1d), which ﬂ ﬂ ﬂ n ﬂ

significantly increases akn(t) > . (t). We didn't find 081

any noticeable change as a result of examining other
different initial phases. By comparison with fig.(1a) one 0.6
can see that the frequency of the concurrence is much
smaller than the frequency of the applied field for small
values ofk but get closer ak increases.

In fig.(2), also we study the concurrence for fixed

0.4

average magnetic field frequen@. = 100,k = 1 and 021
initial phaseg, = /50 for different values ofi,. =2, 6
and 10. Interestingly, the concurrence exhibits an 0 . . . . .

oscillation behavior where the frequency of the oscillatio
increases agu. increases. The time evolution of the
concurrence for fixed average magnetic field amplitude
My =2, k=1 and initial phasep; = 11/2 at different  Fig 2. First integrability condition: Time evolution of
frequencies has been explored. We didn't notice anyconcurrence of the state+ +) for fixed average magnetic field
change in the concurrence profile as a result of changingrequency 8, = 100k = 1 and initial phasep, = /50 at
the frequency. different amplitude (a); = 2; (b) p; = 6; (c) py = 10.

We investigate the time evolution of the concurrence
versus average magnetic field amplityde for frequency
B+ =50 and initial phase,. = 11/50 at different values of
the parametek = 0.5, 1 and 2 in figs.(3a), (3b) and (3c) _
respectively. The amplitude of the concurrence oscillatio K+ = 2, frequencyB, = 50 and initial phasep, = 11/50
increases as the parameteincreases and its frequency at k = 0.1,0.5,1 and 10 As can be noticed, the
increases also with the average magnetic field amplitudeconcurrence exhibits an oscillatory behavior startindghwit
Upon starting with entangled sta% (|[++)+|—-))as an initial value of 1 as expected for a maximally
an initial state it evolves in time according to, entangled initial state. At=0.1 (Am(t) < . (t)), shown
in fig.(4a), the concurrence amplitude is very small but as
k increases the amplitude increases too reaching its
1 . ' maximum value of 1 ak = 1, as shown in fig.(4c). The
7 [(cosB10+ Sinb10) Xa + (COSB10 — SiNB10) Y1 | + +) amplitude gets damped again and the frequency increases

time evol
)=

1
5+l

L {(cosBio-+ Sinug) Yo + (cosBho— sindio) v | — =) (.89 as k increases any further as can be concluded from

Vo TR 1o SNFoyal == ' fig.(4d). The same state was considered at different initial

while the corresponding entanglement is phases and frequencies with no significant change in the
concurrence behavior.

Cf__g= |—isin 261 sin 2)(t) +sin?2610cos (1) +cos”-2910\ The effect of the average magnetic field amplitude has

(4.84) been examined. The concurrence exhibits an oscillatory
In fig.(4), we study the time evolution of the behavior with a frequency that increasesiasincreases
concurrence for fixed average magnetic field amplitudesimilar to the disentangled case. The concurrences
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Fig. 3: First integrability condition: Time evolution of ] {\ ﬂ ﬂ H {\ ﬂ q
concurrence of the state+ +) vs. average magnetic field
0.995

amplitude u;., for frequencyB; = 50 and initial phasep, =
/50 at (a)k =0.5; (b)k=1; (c)k= 2.

0.990 -

0.985 -

corresponding to a system which is initially in the state
| ——) or1/v/2(]4++) — | — —)) can be straightforwardly R H 3 3 : :
calculated leading respectively to,

Fig. 4: First integrability condition: Time evolution of

C'° = |2sin Mg cos PyosirPI(t) —isin2010sin2J(t)|,  concurrence of the sta%q +4) +|——)) for fixed average
(4.85) magnetic field amplitudgr, = 2, frequencyB;. = 50 and initial
and phasep, = 11/50 at (a)k =0.1; (b)k=0.5; (c)k=1; (d)k= 10
CC,_a = |-isin2Bysin2(t) — sin? 2619cos 2(t) — coS 26|
(4.86)

4.2 Entanglement formula for the second
integrability condition
egs. B8.395-(3.44. However, the expressions can be

The formulae for time evolution using the second written in a simple manner if they are broken up into
integrability condition are little bit complicated see sub-expressions that have simpler structures. The relevan
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sub-expressions are, respectively to be

Cii = 2|X1X2 COS2 910 +Yy1y2 sm2 910 — Siﬂej_o COSelo (lez + y;[Xz) |.

Ksir? & cos®,  sgnk)sin20; sin
o 1o 9nK) E 259 = |2c0s Py Re(x1Xz) + 21 Im (X1X2) — Sin 2610 (X1Y2 + Y1X2) |,

14k2 2V1+k2

Im(xxz) = Im(y1y2) =

) C'® = | —2c0osPio Re(X1X2) + 21 Im (X1%2) +Sin 2810 (Xay2 + Y1X2) |
Re(xixe) = —Re(y1yz) = %sin 261 cos B — %< (4.88)
Xays +yi%e — G021 C0S By + i_Kz COS D SIP 5, + \K\sin291$i2n261 The .resulting entanglement alssociated with the initially
K Ttk won maximally entangled states> (| ++)+|-—)) and
' 75 (| ++) —| = —)) as functions of time are given by,

where Re and Im denote respectively the real and

imaginary part Cl%__s = |XaXe (14sin2610) + y1y2 (1 —Sin 2610) 4+ cos Big (XaY2 + Y1%2) |,

= [2sinDy9 Re(X1X2) + 21 IM (X1X2) + €0S Big (X1Y2 + YiXe) |,
Cl%__a = |—2sinBig Re(xaXz) + 21 Im (x1X2) — €0S B1o (XaY2 + Y1Xo) |.
(4.89)

Note that the entanglement for state evolving initiallynfro

1 | — —) can be obtained from that of+ +) by using the
“ ” ﬂ W ﬂ ” ﬂ q ﬂ ﬂ ﬂ n ﬂ ﬂ ﬂ symmetry prescribed in eq.(3 2.14). This means that,
031 08 910 — TT/ 2— 910, 91 — TT/ 2— 91
X1 <— X2, Y1 4$— —Yo, K — —K, (4.90)
b6 while the result in eq4.89), reveals that the entanglement
™ C of state evolving initially form2 (| ++) —| ——)), can
I be obtained from that of 5 (| ++) +|~—)), by the
o following replacement
0.2
U U U U u U U u “ u U “ €0SB10 = —sinb, sinByp = cosbyy,  (4.91)
0 A e which is the appropriate replacement to transform a state

to its orthogonal counterpart in the same subspace. The
same rule in eg4.91) can be applied to the states +)
© and| — —).

Again, suppose we conside# +) as an initial state,
we investigate the time evolution of the concurrence in
0.8 1 fig.(5) for a fixed Heisenberg interaction frequency
Bm =10,k = 0.1, 610 = 1/4 and initial phases, = 17/50
at different amplitudesi, = 1, 4 and 6. The concurrence
shows an oscillatory behavior, where jag increases the
C oscillation amplitude increases, but becomes distorted fo

0.4 large values ofum. The effect of the frequenc§, on the
concurrence has been examined. Increagjpgauses the
concurrence frequency to increase whereas the amplitude
decreases. For fixed parameters, there is no effectarf
U u the concurrence.

0 . - - - - The impact of the angléo = 0 and initial phase

@n = 0 has been investigated for a fixed Heisenberg

interaction frequencyBn = 10, k = 0.1 at different

amplitudesum = 1, 4 and 6. We got the same results as in

Fig. 5 Second integrability condition: Time evolution of the case oBig= /4 and initial phases, = 11/50. The

concurrence of the stater +) for fixed Heisenberg interaction time evolution of the concurrence is depicted for fixed

(Am(t)) frequencyBm = 10,k = 0.1, 819 = 1/4 and initial phase  parameter valuegi, = 4, k = 0.1, 61,0 = 0 and initial

@n = 11/50 at different amplitude (a)im = 1; (b) Um = 4; (C) phase@, = 0 at different frequenciegy, = 10, 50 and

Hm = 6. 100 in figs.(6a, 6b, 6c), respectively. The concurrence
shows an oscillatory behavior with a frequency that
increases and a decresing amplitudg8asncreases. For

With the aid of egs. 477 and @.87), the fixed parameters, we have tested the effeckoivhich
entanglement associated with time evolved state startingvhen increases the amplitude of the concurrence
from the disentangled statés+ +) and | — —) amount increases.

0.6

0.2
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n 005 |

0 02 04 06 08 1 0 02 04 06 08 1

0.14 h N

0.12

n ﬂ H Fig. 7: Second integrability condition: Time evolution of

concurrence of the state+ +) (a) as a function ofuy, for
fixed frequencyBm = 10, k = 0.1, 610 = 17/4 and initial phase
@n = 1/50. (b) as a function of3y, for fixed amplitudeuy, =
4,k = 0.1, 610 = 11/4 and initial phasegy, = 17/50. Notice that
0.08 - Am(t) = Hmsin(Bmt + ¢).

0.10 -

0.06 -

0.04 - initial phaseqy, = /50 at different amplitudegy, = 25,
10 and 4. As um decreases the amplitude of the
concurrence oscillation decreases as well.

Examining the effect of different applied frequencies
0 0.2 0.4 0.6 0.8 1 on the time evolution of the concurrence showed the same

t behavior as in the disentangled state. The frequency of the

concurrence oscillation increases while its amplitude
decreases g5, increases. In fig.(9) we examine the time
evolution of concurrence for fixed average magnetic field
amplitudeum, = 4, frequencyBy, = 50, 610 = 0 and initial
phaseg, = 0 at Kk = 0.1 and 2. As one can notice,
increasing the magnitude of the parameteteads to a
smaller amplitude of the concurrence oscillation.

As to the investigation concerning the concurrence
corresponding to the RWA we refer t84 where a
detailed investigation and study were carried out.

0.02 -

Fig. 6: Second integrability condition: Time evolution of
concurrence of the state- +) for fixed amplitude of Heisenberg
interaction,(Am(t)), Um = 4,k = 0.1, 610 = 0 and initial phase
@m = 0 at different frequencies (&8m = 10; (b) Bm = 50; (c)
Bm = 100

The time evolution of concurrence versus the
Heisenberg interaction amplitude,, is depicted in
fig.(7a) for fixed frequencyy, = 10,k = 0.1, 610 = 11/4
and initial phasen,, = 11/50. The concurrence exhibits an
oscillatory behavior, which gets distorted as the
magnitudeu, increases. In fig.(7b) The time evolution of
concurrence versus the Heisenberg interaction frequenc
B is investigated for fixed amplitudgy = 4, k = 0.1,
610 = /4 and initial phase@, = m/50. Clearly the

5 conclusion

In this paper we have investigated a system of two qubits
coupled through a time-dependeitY Z Heisenberg
¥xchange interaction. The dynamics of the system subject
to an external non-uniform time-varying magnetic field is
I ; .. studied. Exact solutions are provided for two different
concurrence oscillation frequency increases and it§nieqranility conditions satisfied by the Hamiltonian. The
amplitude decreases A increases. _ discrete symmetries of the Hamiltonian which is
Now we consider the time evolution of the responsible for dividing its Hilbert space into two
concurrence for the maximally entangled stateijndependent subspaces can be utilized to map the
73 ([ ++) +[——)). We study the time evolution of the ' dynamics of the system from one subspace to the other.
concurrence in fig.(8) for fixed Heisenberg interaction, The time evolution of the entanglement of the system
(Am(t)), frequencyf, = 10, k = 0.1, 610 = /4 and  starting from different initial states, disentangled and
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