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Abstract: We have studied numerically the vortex tangle under both counterflow and attending of mutual friction by using local-
induction approximation model (LIA). We find that the vortex lines are grown by the effect of normal fluid velocity in the existence
of mutual friction. Many numerical experiments are performed to calculate the vortex filaments development in superfluid helium II.
We explained how the total length density, the number of vortex points, the velocity, reconnection events and average inverse radius
of curvature are affected by both counterflow and temperature. We find that the vortex rings extend fast and the helical disturbances of
vortex tangle increases as long as the temperature increases. The cubicbox with periodic boundary conditions is employed for all our
numerical simulations.
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1 Introduction

Helium II behaves like an irrotational ideal fluid, which
can be explained by the two-fluid model. However,
superflow becomes superfluid turbulence (dissipative)
above some critical velocity. The conception of superfluid
turbulence was developed by Feynman in his eminent
article on the applications of quantum mechanics to
helium II [1].

The disordered motion of a tangle of quantized
vortices was first observed in a counterflow experiment by
Vinen [2]. This motion can be considered as quantum
turbulence. The properties of this type of vortex motion
have been detected through different experimental,
theoretical, and numerical studies. Most of these studies
were concentrated on statistical values, such as the vortex
line densityL, velocity and the anisotropy of the vortex
line tangle, few studies have regarded to the probability
density function of the superfluid velocity, which is very
important in classical turbulence [3].

In 1985, Schwarz proposed a method for the
numerical simulation of counterflow turbulence. This
method called the vortex filament model. It depends on
either the localized induction approximation (LIA) or The
Biot-Savart law [4,5]. In LIA model, the interaction
between vortices is neglected [6]. The temperature plays

an important role in the vortices dynamics. At a finite
temperature, the fraction of normal fluid was presented in
He II. The effect of this fraction should not be neglected.
It is very known, that the mutual friction makes a decay of
the vortices when the normal fluid in the steady state. The
vortex lines grow if the normal fluid is not stationary and
moves behind the vortex lines. The decay process has
been studied in Refs. [7,8,9].

This paper deals with the growth case of the vortex
tangle. The answer of the very important question ”How
tangled is a tangle?” was discussed in details by Barenghi
et al. [10]. They have tested measures of algebraic,
geometric and topological complexity and quantify
morphological aspects of a generic tangle of vortex
filaments and compare these quantities with measures of
energy and helicity.

In the present of mutual friction, reconnection would
after all dissipate most of the helicity. Finite helicity
dissipation by reconnection could cause changes in
topological linking such as vortex rings reconnection
[11]. The helicity can be given as

H =
∫

V
v ·ωd3X = Γ

∫

τ
v · t̂dξ , (1)

whereω is the superfluid vorticity. The integral over the
tangle’s volumeV simplifies to a line integral becauseω is
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a delta function of strengthΓ in the direction̂t, tangent to
each filament. Helicity measures the screw-like character
of a flow and is a concept which is finding more and more
applications in fluid dynamics [12,13]. The absolute value
of helicity is given by

|H|= Γ
∫

τ
|v · t̂|dξ . (2)

The dynamics of quantized vortices can be described
by using the model of nonlinear Schrödinger equation
(NLSE), also called the Gross-Pitaevsk (GP) model. This
model is applicable at very low temperatures where
normal fluid is absent.

In the present work, we will use the vortex filament
model (VFM) which was produced by Schwarz in 1985
[4,14]. In this treatment, the vortex points move according
to the Biot-Savart law. So the vortex lines are numerically
discretized by a large variable number of points depends
on the local radius of curvature as we will see in the next
section.

The present paper is planned as follows. In Sec.2 a
description of the numerical simulation is presented. The
results are presented and discussed in Sec. 3. The paper is
concluded in Sec. 4.

2 Localized Induction Approximation Model

The vortex points motion can be described by using the
vortex filament model. In this model the equation of
motion contains the self-induced velocityU which
represents the motion of a point on a vortex filament due
to all the vortex filaments present in the fluid. It is known
that this velocity can be calculated from either the full
Biot-Savart law or the Local-Induction Approximation
(LIA).

Here we use the local-induction approximation
model. The self-induced velocityU can be calculated
numerically by neglecting completely the nonlocal
self-induced velocity and keeping the local self-induced
velocity. So the equation of motion of a pointz on a
vortex can be given by

Ulia(ri) =
dz
dt

∼= vsi +αz
′
⊗ (vns −vsi) (3)

−α
′
z
′
⊗ [z

′
⊗ (vns −vsi)],

wherez
′
= dz

dt is the unit tangent vector atz, α, α ′
are

temperature dependent friction coefficients [15,16], vns =
vn − vs, wherevn is the normal fluid’s velocity,vs is the
superfluid’s velocity and,

vsi
∼= βz

′
⊗ z

′′
, (4)

with

β =
Γ
4π

ln

(

gRi

a

)

, (5)

whereg is a constant of order unity,a is the vortex core
radius,r can be a point on the vortex filament or a point

away from the vortex filament andRi is the local radius of
curvature of the vortex line which can be taken as constant,
such as the length scale of the computational box or it can
be taken as a length scale of the filament for more details
see [17,18,19].

The vectorsz
′
, z

′′
and z

′
⊗ z

′′
are perpendicular to

each other and point along the tangent, principal normal
and binormal directions, respectively. The quantized
vortex line is represented as a curvez = z(ξ , t) in three
dimensional space, whereξ is the arc-length andt is the
time [3]. The size of the local region about one order of

Fig. 1 Example reconnection (circulation in same direction).

Fig. 2 Another possible outcome (circulation in opposite
directions).

magnitude smaller than the local radius of curvature in
order to gives accurate results with a reasonable number
of calculations. For more details see Refs. [20,21,22,23].
Vortex lines are discretised in space using variable
meshing, and time-stepped using a fourth order
Runge-Kutta method. In our simulations to create a
vortex tangle, we have to make a main fortran program to
solve the motion equation and many modules to do some
other jobs. The most important modules are to add new
points, to remove some points and to do reconnection
between the vortex points. The first one adds new points
when the meshing becomes too coarse depends on the
curve’s radius. The second module removes the points
when the meshing becomes fine. The addition or
removing of vortex point depends on the curve’s radius.
The reconnection module discovers which points have to
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reconnect together and compares lengths before and after
a reconnection. The reconnection takes place only if the
lengths after a reconnection are smaller. When two
vortices come sufficiently close to each other a
reconnection takes place. During reconnection, parts of
each vortex effectively ‘swap over’ and new vortices are
formed [see Figs (1) and (2) [24]]. How they reconnect
depends on the relative circulation of the vortices. For
more details, we refer to Refs. [25,15,26].

3 Results and Discussion

Because of the computational cost of the Biot-Savart law,
it is not practically possible to compute vortex tangle. For
this reason, we used the local-induction approximation
(LIA) to compute vortex tangle with high densities. The
following numerical experiments are performed when the
space resolution is∆ξ = 1.0× 10−2 cm and the time
resolution is∆ t = 5.0× 10−3 s. All results presented in
this paper are performed when the counterflow
vns = 0.286 cm/s is applied along thez direction and the
periodic cube of sizeD = 0.5 cm. We adopt periodic
boundary conditions along all directions. All calculations
are made under the LIA.

In these calculations, we study the effect of the mutual
friction on vortex rings reconnection (vortex tangle) and
their motion in the presence of counterflowvns. The initial
vortex configuration was 16 vortex rings placed randomly
in the periodic box of sizeD as appear in Fig. 3(a). It is
known that the vortex ring moves forward with its own
self-induced velocity as follows:

V =
Γ

4πR
ln

(

8R
a

−
1
2

)

. (6)

For more details, we refer to Refs. [27,28,29]. The time
sequence contained in Fig. (3) illustrates the evolution of
vortex rings at temperatureT = 1.3 K whereα = 0.034
andα ′

= 0.01383.
Figure (4) shows the vortex rings evolution atT = 1.6

K, α = 0.097 andα ′
= 0.01608. The vortex tangle is

shown in Fig. (5) at T = 1.9 K and the friction
coefficientsα = 0.206 andα ′

= 0.00834. It is known that
because of the friction, the vortex loses energy, decreases
its radius and speeds up. But if the normal fluid is not
stationary but moves, it makes the ring shrink faster if it
flows against the motion of the ring, or grow in size if it
flows from behind the ring with sufficient speed. As a
result, the normal fluid moves behind the vortex rings
Figs. (3), (4) and (5) show that the helical disturbances of
vortex tangle increases as the temperature increases. It is
clear that the vortex rings extend fast as long as the
temperature increases and more tangles are occurred. If
we compare between these figures, which are plotted at
the same times, we found that the mutual friction plays
the dual role of the growth of vortex line length density.

Figure (6) confirms that the average of velocity of
vortex points< v > increases as the average radius of

(a) (b)

(c) (d)

Fig. 3 Numerical simulation of the tangle of 16 vortex rings at
T = 1.3 K, whereα = 0.034 andα ′

= 0.01383; (a)t = 0 s. (b)
t = 3 s. (c)t = 8 s. (d)t = 13 s.

(a) (b)

(c) (d)

Fig. 4 Numerical simulation of the tangle of 16 vortex rings at
T = 1.6 K, whereα = 0.097 andα ′

= 0.01608; (a)t = 0 s. (b)
t = 3 s. (c)t = 8 s. (d)t = 13 s.

curvature decreases. This is dependent on the
temperature. Whensoever the temperature increases the
radius of curvature decreases and the vortex point moves
faster. Att = 13 s, we found that the total length grows
from 4.3 cm to 12.2988, 48.5604 and 225.9208 cm at
T = 1.3, 1.6 and 1.9 K, respectively. As a result the
number of vortex pointsN arises from 475 until 1756,
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(a) (b)

(c) (d)

Fig. 5 Numerical simulation of the tangle of 16 vortex rings at
T = 1.9 K, whereα = 0.206 andα ′

= 0.00834; (a)t = 0 s. (b)
t = 3 s. (c)t = 8 s. (d)t = 13 s.

(a) (b)

Fig. 6 Corresponding to the evolution shown in Figs. (3), (4) and
(5): (a) Average velocity of vortex points< v > versus timet
and (b) Average inverse radius of curvature< 1/R > versus time
t.

7436 and 38332, respectively. The number of
reconnection events was 32, 666 and 7436, respectively.

The evolution of the number of the vortex pointsN
versus time is shown in Fig. (7a). It is clear that the total
of vortex length increases with time when the temperature
increases; see Fig. (7b). This leads to arising of the
number of vortex lines reconnection as appear in Fig.
(7c). As shown in Fig. (7d) the vortex points move inz
direction sharply untilt ≈ 5 s then average of< z >
stables at approximately in the same level because of that
the reconnection events change the direction of vortex
lines and the points move in all directions. Figure (8a)
illustrates how the number of reconnection events
increases with the total length. The effect of mutual
friction on the helicity is clarified in Fig. (8b). This
number increases more sharply as the temperature

(a) (b)

(c) (d)

Fig. 7 Corresponding to the evolution shown in Figs. (3), (4) and
(5): (a) Number of discretization pointsN versus timet, (b) Total
vortex lengthL versus timet, (c) Number of reconnection events
versus timet and (d) Average of< z > versus timet.

(a) (b)

(c) (d)

Fig. 8 Corresponding to the evolution shown in Figs. (3), (4) and
(5): (a) Number of reconnection events versus total vortex length
L, (b) Absolute value of helicity|H| versus timet, (c) Number
of discretization pointsN versus Number of reconnection events
and (d) Number of reconnection events versus Number of
discretization pointsN.

decreases. The relation between the number of
reconnection events and the number of vortex points at
T = 1.30 K, T = 1.60 K andT = 1.90 K is explained in
Fig. (8c) and (8d).
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4 Conclusion

In conclusion, we have numerically studied vortex tangles
under the effect of mutual friction using the
local-induction approximation model (LIA). This model
was expounded in details by Schwarz [4]. It is useful to
study the vortex tangles by using LIA model because it is
less computational cost of the Biot-Savart model. In this
work, we studied how the vortex tangles are affected by
the temperature. We push 16 vortex rings inside the cube
of sizeD = 0.5 cm at various temperature. Our numerical
experiments are performed when the space resolution is
∆ξ = 1.0 × 10−2 cm and the time resolution is
∆ t = 5.0 × 10−3 s. The calculations made when the
counterflowvns = 0.286 cm/s is applied inz direction.
The periodic cube with sizeD = 0.5 cm is used.

We found that the vortex rings grow in size because of
the normal fluid is not stationary but moves behind the
vortex rings. The vortex lines are grown by the effect of
normal fluid velocity in the existence of mutual friction.
The vortex rings extend fast and the helical disturbances
of vortex tangle increases as long as the temperature
increases. For example, att = 13 s we found that the total
length grows from 4.3 cm to 12.2988, 48.5604 and
225.9208 cm atT = 1.3, 1.6 and 1.9 K, respectively. The
growth of length leads to more reconnection events and
more new vortex points are added on the vortex lines.
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