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Abstract: In this paper, A Chebyshev spectral method is presented to study the deals with the fractional SIRC model associated
with the evolution of influenza A disease in human population. The propertiesof the Chebyshev polynomials are used to derive an
approximate formula of the Caputo fractional derivative. This formulareduces the SIRC model to the solution of a system of algebraic
equations which is solved using Newton iteration method. The convergenceanalysis and an upper bound of the error of the derived
formula are given. We compared our numerical solutions with those numerical solutions using fourth-order Runge-Kutta method. The
obtained results of the SIRC model show the simplicity and the efficiency of the proposed method. Also, illustration for propagation of
influenza A virus and the relation between the four cases of it along the time at the fractional derivative are given.
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1 Introduction

It is well known that the fractional differential equations
(FDEs) have been the focus of many studies due to their
frequent appearance in various applications such as in
fluid mechanics, viscoelasticity, biology, physics and
engineering applications, for more details see for
example ([18], [20]). Consequently, considerable
attention has been given to the efficient numerical
solutions of the FDEs of physical interest, because it is
difficult to find the exact solutions for it. Different
numerical methods have been proposed in the literature
for solving the FDEs, see ([9]-[17], [23]-[29]).

Mathematical models have become important tools in
analyzing the spread and control of infectious diseases.
Under-standing the transmission characteristics of
infectious diseases in communities, regions, and countries
can lead to better approaches to decrease the transmission
of these diseases [7].

Influenza is transmitted by a virus that can be of three
different types, namelyA, B, andC [19]. Among these,

the virusA is epidemiologically the most important one
for human beings, because it can recombine its genes
with those of strains circulating in animal populations,
such as birds, swine, horses, and so forth ([1], [30]). Over
the last two decades, a number of epidemic models for
predicting the spread of influenza through human
population have been proposed based on either the
classical susceptible-infected-removed(SIR) model
developed by Kermack and McKendrick [8].

In this paper, we use the collocation spectral method
to study the behavior of the approximate solution of the
following fractional model of SIRC

Dα S(t) = µ(1−S)−βSI+ γC,

Dα I(t) = βSI +σβCI − (µ +θ)I,
Dα R(t) = (1−σ)βCI +θ I − (µ +δ )R,
DαC(t) = δR−βCI − (µ + γ)C,

(1)

with the following initial conditions

S(0) = s0, I(0) = i0, R(0) = r0, C(0) = c0. (2)
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Where Dα is the Caputo fractional derivative, with
respect to timet. In which S = S(t), I = I(t), R = R(t)
and C = C(t) represent the proportions of susceptible,
infectious, recovered and cross-immune, respectively. The
model assumes a population of constant size,N, so that
N = S+ I+R+C, where provides an interpretation of the
model parameters,µ = 0.01y−1 is the mortality rate,
θ = 365/3y−1 is the rate of progression from infective to
recovered per year,δ = 0.625y−1 is rate of progression
from recovered to cross-immune per year,γ = 0.35y−1 is
rate of progression from recovered to susceptible per year,
σ is the recruitment rate of cross-immune into the
infective(0≤ σ ≤ 1) andβ = 1200 is the contact rate per
year. Because model (1) monitors the dynamics of human
populations, all the parameters are assumed to be
nonnegative. Furthermore, it can be shown that all state
variables of the model are nonnegative for all timet ≥ 0
([2], [3], [21]).

Further details on the biological motivation and the
associated assumptions are given in ([4]-[6]).

Note that, whenα = 1, we get the standard form of
this system as follows

dS
dt

= µ(1−S)−βSI+ γC,

dI
dt

= βSI +σβCI − (µ +θ)I,

dR
dt

= (1−σ)βCI +θ I − (µ +δ )R,

dC
dt

= δR−βCI − (µ + γ)C,

(3)

where the parameterβ is the contact rate for the influenza
disease also called the rate of transmission for susceptible
to infected,γ−1 is the cross-immune period,θ−1 is the
infectious period,δ−1 is the total immune period andσ is
the fraction of the exposed cross-immune individuals who
are recruited in an unit time into the infective
subpopulation ([2], [6]).

In this section, we introduce some necessary
definitions and mathematical preliminaries of the
fractional calculus theory that will be required in the
present paper.

Definition 1.

The Caputo fractional derivative operatorDα of order
α is defined in the following form

Dα f (x)=
1

Γ (m−α)

∫ x

0

f (m)(t)
(x− t)α−m+1 dt, α > 0, x> 0,

wherem−1< α ≤ m, m ∈ N.
Similar to integer-order differentiation, Caputo fractional
derivative operator is a linear operation

Dα (λ f (x)+µ g(x)) = λ Dα f (x)+µ Dα g(x),

whereλ andµ are constants. For the Caputo’s derivative
we have [20]

Dα C = 0, C is a constant, (4)

Dα xn =

{

0, for n ∈ N0 andn < ⌈α⌉;
Γ (n+1)

Γ (n+1−α)x
n−α , for n ∈ N0 andn ≥ ⌈α⌉.

(5)
We use the ceiling function⌈α⌉ to denote the smallest
integer greater than or equal toα andN0 = {0,1,2, ...}.
Recall that forα ∈ N, the Caputo differential operator
coincides with the usual differential operator of integer
order. For more details on fractional derivatives,
definitions and its properties see ([18], [20]).

The organization of this paper is as follows. In the
next section, we derive an approximate formula for
fractional derivatives using Chebyshev series expansion.
In section 3, we study the error analysis of the introduced
approximate formula. In section 4, we give the procedure
of the solution using Chebyshev collocation method. In
section 5, we present the numerical implementation of the
proposed technique. The conclusion is given in section 6.

2 Derivation of the approximate formula

The well known Chebyshev polynomials [22] are defined
on the interval[−1,1] and can be determined with the aid
of the following recurrence formula

Tn+1(z)= 2zTn(z)−Tn−1(z), T0(z)= 1, T1(z)= z, n=
1,2, ... . The analytic form of the Chebyshev polynomials
Tn(z) of degreen is given by

Tn(z)= n
[ n
2 ]

∑
i=0

(−1)i 2n−2i−1 (n− i−1)!
(i)! (n−2i)!

zn−2i, n= 2,3, ...,

(6)
where [n/2] denotes the integer part ofn/2. The
orthogonality condition is

∫ 1

−1

Ti(z)Tj(z)√
1− z2

dz =







π, for i = j = 0;
π
2 , for i = j 6= 0;
0, for i 6= j.

In order to use these polynomials on the interval[0,1] we
define the so called shifted Chebyshev polynomials by
introducing the change of variablez = 2t −1.The shifted
Chebyshev polynomials are defined as

T ∗
n (t) = Tn(2t −1) = T2n(

√
t)

The analytic form of the shifted Chebyshev polynomials
T ∗

n (t) of degreen is given by

T ∗
n (t) = n

n

∑
k=0

(−1)n−k 22k (n+ k−1)!
(2k)! (n− k)!

tk, n = 2,3, . . . .

(7)
The functionx(t), which belongs to the space of square
integrable functions in[0,1], may be expressed in terms of
shifted Chebyshev polynomials as

x(t) =
∞

∑
i=0

ci T ∗
i (t), (8)
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where the coefficientsci are given by

ci =
2

π hi

∫ 1
0

x(t)T ∗
i (t)√

t−t2
dt, h0 = 2, hi = 1, i = 1,2, ....

(9)
In practice, only the first(m + 1)-terms of shifted

Chebyshev polynomials are considered. Then we have

xm(t) =
m

∑
i=0

ci T ∗
i (t). (10)

The main approximate formula of the fractional derivative
of xm(t) is given in the following theorem.

Theorem 1.

Let x(t) be approximated by Chebyshev polynomials
as in (10) and also supposeα > 0, then

Dα(xm(t)) =
m

∑
i=⌈α⌉

i

∑
k=⌈α⌉

ci w(α)
i,k tk−α , (11)

wherew(α)
i,k is given by

w(α)
i,k = (−1)i−k 22k i(i+ k−1)!Γ (k+1)

(i− k)! (2k)! Γ (k+1−α)
. (12)

Proof.Since the Caputo’s fractional differentiation is a
linear operation we have

Dα(xm(t)) =
m

∑
i=0

ci Dα(T ∗
i (t)). (13)

Employing Eqs.(4) and (5) in Eq.(7), we obtain

Dα T ∗
i (t) = 0, i = 0,1, ...,⌈α⌉−1, α > 0. (14)

Therefore, fori= ⌈α⌉,⌈α⌉+1, ...,m, and by using Eqs.(4)
and (5) in Eq.(7), we get

Dα T ∗
i (t) = i

i

∑
k=⌈α⌉

(−1)i−k 22k(i+ k−1)!
(i− k)! (2k)!

Dα tk

= i
i

∑
k=⌈α⌉

(−1)i−k 22k(i+ k−1)!Γ (k+1)
(i− k)! (2k)! Γ (k+1−α)

tk−α .

(15)

A combination of Eqs.(13), (14) and (15) leads to the
desired result and completes the proof of the
theorem.

3 Error analysis

In this section, special attention is given to study the
convergence analysis and evaluate an upper bound of the
error of the proposed formula.

Theorem 2. (Chebyshev truncation theorem) [22]

The error in approximatingx(t) by the sum of its first
m terms is bounded by the sum of the absolute values of
all the neglected coefficients. If

xm(t) =
m

∑
k=0

ck Tk(t), (16)

then

ET (m)≡ |x(t)− xm(t)| ≤
∞

∑
k=m+1

|ck|, (17)

for all x(t), all m, and allt ∈ [−1,1].

Theorem 3. [16]

The Caputo fractional derivative of orderα for the
shifted Chebyshev polynomials can be expressed in terms
of the shifted Chebyshev polynomials themselves in the
following form

Dα(T ∗
i (t)) =

i

∑
k=⌈α⌉

k−⌈α⌉
∑
j=0

Θi, j,k T ∗
j (t), (18)

where

Θi, j,k =
(−1)i−k 2i(i+ k−1)!Γ (k−α + 1

2)

h jΓ (k+ 1
2)(i− k)! Γ (k−α − j+1)Γ (k+ j−α +1)

,

j = 0,1, ...

Theorem 4.

The error |ET (m)| = |Dα x(t) − Dα xm(t)| in
approximatingDα x(t) by Dα xm(t) is bounded by

|ET (m)| ≤
∣

∣

∣

∞

∑
i=m+1

ci

( i

∑
k=⌈α⌉

k−⌈α⌉
∑
j=0

Θi, j,k

)∣

∣

∣
. (19)

Proof.A combination of Eqs.(8), (10) and (18) leads to

|ET (m)|=
∣

∣

∣
Dα x(t)−Dα xm(t)

∣

∣

∣

=
∣

∣

∣

∞

∑
i=m+1

ci

( i

∑
k=⌈α⌉

k−⌈α⌉
∑
j=0

Θi, j,kT ∗
j (t)

)∣

∣

∣
,

but |T ∗
j (t)| ≤ 1, so, we can obtain

|ET (m)| ≤
∣

∣

∣

∞

∑
i=m+1

ci

( i

∑
k=⌈α⌉

k−⌈α⌉
∑
j=0

Θi, j,k

)∣

∣

∣
,

and subtracting the truncated series from the infinite series,
bounding each term in the difference, and summing the
bounds completes the proof of the theorem.
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4 Procedure solution of the fractional SIRC
model and influenza A

Consider the fractional SIRC model and influenza A of the
type given in Eq.(1). In order to use Chebyshev collocation
method, we first approximateS(t), I(t), R(t) andC(t) as

Sm(t) =
m

∑
i=0

ai T ∗
i (t), Im(t) =

m

∑
i=0

bi T ∗
i (t),

Rm(t) =
m

∑
i=0

ci T ∗
i (t), Cm(t) =

m

∑
i=0

di T ∗
i (t).

(20)

From Eqs.(1) and Theorem 1 we have
m

∑
i=⌈α⌉

i

∑
k=⌈α⌉

ai w(α)
i,k tk−α = µ(1−

m

∑
i=0

ai T ∗
i (t))

−β (
m

∑
i=0

ai T ∗
i (t))(

m

∑
i=0

bi T ∗
i (t))+ γ(

m

∑
i=0

di T ∗
i (t)),

m

∑
i=⌈α⌉

i

∑
k=⌈α⌉

bi w(α)
i,k tk−α = β (

m

∑
i=0

ai T ∗
i (t))(

m

∑
i=0

bi T ∗
i (t))+

σβ (
m

∑
i=0

di T ∗
i (t))(

m

∑
i=0

bi T ∗
i (t))− (µ +θ)(

m

∑
i=0

bi T ∗
i (t)),

m

∑
i=⌈α⌉

i

∑
k=⌈α⌉

ci w(α)
i,k tk−α = (1−σ)β (

m

∑
i=0

di T ∗
i (t))(

m

∑
i=0

bi T ∗
i (t))

+θ(
m

∑
i=0

bi T ∗
i (t))− (µ +δ )

m

∑
i=0

ci T ∗
i (t),

m

∑
i=⌈α⌉

i

∑
k=⌈α⌉

di w(α)
i,k tk−α = δ (

m

∑
i=0

ci T ∗
i (t))

−β (
m

∑
i=0

di T ∗
i (t))(

m

∑
i=0

bi T ∗
i (t))− (µ + γ)(

m

∑
i=0

di T ∗
i (t)). (21)

We now collocate Eqs.(21) at (m + 1 − ⌈α⌉) points
tp (p = 0,1, ...,m+1−⌈α⌉) as

m

∑
i=⌈α⌉

i

∑
k=⌈α⌉

ai w(α)
i,k tk−α

p = µ(1−
m

∑
i=0

ai T ∗
i (tp))

−β (
m

∑
i=0

ai T ∗
i (tp))(

m

∑
i=0

bi T ∗
i (tp))+ γ(

m

∑
i=0

di T ∗
i (tp)),

m

∑
i=⌈α⌉

i

∑
k=⌈α⌉

bi w(α)
i,k tk−α

p = β (
m

∑
i=0

ai T ∗
i (tp))(

m

∑
i=0

bi T ∗
i (tp))+

σβ (
m

∑
i=0

di T ∗
i (tp))(

m

∑
i=0

bi T ∗
i (tp))− (µ +θ)(

m

∑
i=0

bi T ∗
i (tp)),

m

∑
i=⌈α⌉

i

∑
k=⌈α⌉

ci w(α)
i,k tk−α

p = (1−σ)β (
m

∑
i=0

di T ∗
i (tp))(

m

∑
i=0

bi T ∗
i (tp))

+θ(
m

∑
i=0

bi T ∗
i (tp))− (µ +δ )

m

∑
i=0

ci T ∗
i (tp),

m

∑
i=⌈α⌉

i

∑
k=⌈α⌉

di w(α)
i,k tk−α

p = δ (
m

∑
i=0

ci T ∗
i (tp))

−β (
m

∑
i=0

di T ∗
i (tp))(

m

∑
i=0

bi T ∗
i (tp))− (µ + γ)(

m

∑
i=0

di T ∗
i (tp)). (22)

For suitable collocation points we use roots of shifted Chebyshev
polynomialT ∗

m+1−⌈α⌉(t).
Also, by substituting Eq.(20) in the initial conditions (2) we can
obtain 4⌈α⌉ equations as follows

m

∑
i=0

(−1)i ai = s0,
m

∑
i=0

(−1)ibi = i0,

m

∑
i=0

(−1)ici = r0,
m

∑
i=0

(−1)idi = c0.

(23)

Equations (22), together with the equations of the initial
conditions (23), give (4m+ 4) of nonlinear algebraic equations
which can be solved using the Newton iteration method, for the
unknownsai, bi, ci and di for i = 0,1, ...,m.

5 Numerical implementation

In this section, we implement the suggested technique to solve
the system SIRC (1) with the constantsµ = 0.02, β = 100, δ =
1, γ = 0.5, σ = 0.05, θ = 73, and the initial conditions

S(0) = 0.8, I(0) = 0.1, R(0) = 0.05, C(0) = 0.05. (24)

The approximate solutions of the proposed system are given in
figures 1-6 at different values ofα . In figures 1-2 we compared
the obtained approximate solution atα = 1 using the proposed
method with the numerical solution using fourth-order Runge-
Kutta method, respectively. Also, in the figures 3-6, we presented
the behavior of the approximate solution(Sm(t), Im(t), Rm(t),
respectively,Cm(t)) at α = 0.9.

From figures 1 and 2, we can confirm that the approximate
solution is in excellent agreement with the solution using fourth
order Runge-Kutta. Also, from figures 3-6, we can conclude that
the behavior of the approximate solution depends on the order of
the fractional derivative.

Figure 1. The behavior of the approximate solution using the
proposed method atα = 1.
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Figure 2. The numerical solution using Runge-Kutta method at
α = 1.

6 Conclusion and remarks

In this article, the Chebyshev spectral method is implemented
for solving the fractional SIRC model and influenza A. The
fractional derivative is considered in the Caputo sense. The
properties of the Chebyshev polynomials are used to reduce the
proposed problem to the solution of a system of algebraic
equations which is solved by using Newton iteration method.
Special attention is given to study the convergence analysis and
estimate an upper bound of the error of the derived formula. The
obtained solutions using the suggested method are in excellent
agreement with solutions from fourth-order Runge-Kutta and
show that this approach can be solved the problem effectively. It
is evident that the overall errors can be made smaller by adding
new terms in the series (20). All computations in this paper are
done using Matlab 8.

Figure 3. The behavior of the approximate solutionS(t).

Figure 4. The behavior of the approximate solutionI(t).

Figure 5. The behavior of the approximate solutionR(t).

Figure 6. The behavior of the approximate solutionC(t).
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Figure 7.a. Relationship betweenC(t) andI(t).

Figure 7.b. Relationship betweenC(t) andS(t) .

Figure 7.c. Relationship betweenR(t) andC(t) .

Figure 7.d. Relationship betweenR(t) andI(t) .

Figure 7.e Relationship betweenR(t) andS(t) .

Figure 7.f. Relationship betweenS(t) andI(t) .
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Previous figures 7(a-f) illustrate propagation of influenzaA virus
along the time whenα = 0.4:
Figure (a) shows that cross-immuneC(t) intersects with
infection at certain pointI(t) which means that an infection can
be converted to cross-immune, also infection is capable of
infected others, the cross immune is propagate slowly than
infected figure which simulate the reality infection frequently
changed.
Figure (b) shows no intersection between cross-immuneC(t)
and suspectableS(t) propagation which refer to suspectable can
not easily converted to cross immune also suspectable is
frequently changed unlike cross-immune since cross-immune
expresses more advanced stage of the disease.
Figure (c) shows that intersections can occur more that once
between recoveredR(t) and cross-immuneC(t) which reflects
that a recovered state can be changed to cross-immune and this
could happen frequently along the time, also cross-immune is
very slow and steady in its changes along time unlike recovered
which is very frequently changed since cross-immune is more
advanced state than recovered.
Figure (d) shows that it is also possible for infected casesI(t) to
be converted to recovered casesR(t) and vice vera several times
which simulate the real world in which the status of disease can
be switched between recover and infected, the rate of
suspectable is changed more frequently than rate of infected,
also rate of recovered is higher than rate of infection which is a
good indication.
Figure (e) shows several intersections between recoveredC(t)
and suspectable casesS(t) which simulate the reality also the
suspectable rate is higher than the recovered rate, and the
frequency of changes in both figures is almost the same.
Figure (f) shows no intersection between suspectable casesS(t)
and infected casesI(t) this means that changes between states is
impossible, which means that there is no meaning to indicate a
patient either suspectable or infected, one decision must be
taken, also infection rate reflect the propagation of virus which
is slower than just predicting with uncertainly that the virus is
exist or no.
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