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Abstract: In this paper, A Chebyshev spectral method is presented to study thewd#athe fractional SIRC model associated
with the evolution of influenza A disease in human population. The propetitee Chebyshev polynomials are used to derive an
approximate formula of the Caputo fractional derivative. This formethices the SIRC model to the solution of a system of algebraic
equations which is solved using Newton iteration method. The convergaratgsis and an upper bound of the error of the derived
formula are given. We compared our numerical solutions with thoseerioat solutions using fourth-order Runge-Kutta method. The
obtained results of the SIRC model show the simplicity and the efficiencyegirtbposed method. Also, illustration for propagation of
influenza A virus and the relation between the four cases of it along the tithe &ractional derivative are given.

Keywords: SIRC model; Caputo fractional derivative; Chebyshev spectral edettonvergence analysis; fourth-order Runge-Kutta
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1 Introduction the virusA is epidemiologically the most important one
for human beings, because it can recombine its genes
It is well known that the fractional differential equations with those of strains circulating in animal populations,
(FDEs) have been the focus of many studies due to theisuch as birds, swine, horses, and so forth, (30]). Over
frequent appearance in various applications such as ifhe last two decades, a number of epidemic models for
fluid mechanics, viscoelasticity, biology, physics and predicting the spread of influenza through human
engineering applications, for more details see forpopulation have been proposed based on either the
example (L8], [20]). Consequently, considerable classical susceptible-infected-removedSIR) model
attention has been given to the efficient numericaldeveloped by Kermack and McKendric][
solutions of the FDEs of physical interest, because it is  |n this paper, we use the collocation spectral method
difficult to find the exact solutions for it. Different to study the behavior of the approximate solution of the
numerical methods have been proposed in the literaturgollowing fractional model of SIRC
for solving the FDEs, seeq[-[17], [23]-[29).

Mathematical models have become important tools in DS(t) = u(1-9) —BS +C,
analyzing the spread and control of infectious diseases. DYl (t) = BS +0BCl — (u+0)l,
Under-standing the transmission characteristics of DIR(t) = (1— 0)BCI + 61 — (U+ SR, 1)

infectious diseases in communities, regions, and countrie
can lead to better approaches to decrease the transmission DIC(t) = 6R—BCI — (k+Y)C,
of these diseaseg] , with the following initial conditions
Influenza is transmitted by a virus that can be of three
different types, namelp, B, andC [19]. Among these, S(0)=s, 1(0)=ip, R(0)=rg, C(0)=co. (2)
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Where DY is the Caputo fractional derivative, with
respect to time. In which S= S(t), | = 1(t), R=R(t)

and C = C(t) represent the proportions of susceptible,
infectious, recovered and cross-immune, respectivelg. Th

model assumes a population of constant siteso that

N = S+ 1+ R+C, where provides an interpretation of the

model parametersy = 0.01y ! is the mortality rate,
6 = 365/3y L is the rate of progression from infective to
recovered per yea) = 0.625y ! is rate of progression
from recovered to cross-immune per yeas: 0.35y 1 is

rate of progression from recovered to susceptible per year,
o is the recruitment rate of cross-immune into the

infective (0 < 0 < 1) andf3 = 1200 is the contact rate per
year. Because model) monitors the dynamics of human

populations, all the parameters are assumed to b
nonnegative. Furthermore, it can be shown that all state,

variables of the model are nonnegative for all titie 0

(2], [3], [21]).

Further details on the biological motivation and the

associated assumptions are given #-{[]).
Note that, whema = 1, we get the standard form of
this system as follows

ds
G~ HA-9-BS+\C,
%433 +0BCl— (u+0)I,
t @3)
dR
Gt — (L= 0)BCI 61 — (+O)R
%‘t: — 5R—BCl — (1 +y)C,

where the parametét is the contact rate for the influenza

for
for

neNpandn< [a];
ne Npandn> [a].

®)
We use the ceiling functioa] to denote the smallest
integer greater than or equal toandNp = {0,1,2,...}.
Recall that fora € N, the Caputo differential operator
coincides with the usual differential operator of integer
order. For more details on fractional derivatives,
definitions and its properties sed g, [20]).
The organization of this paper is as follows. In the
next section, we derive an approximate formula for
fractional derivatives using Chebyshev series expansion.
In section 3, we study the error analysis of the introduced
pproximate formula. In section 4, we give the procedure
f the solution using Chebyshev collocation method. In
section 5, we present the numerical implementation of the
proposed technique. The conclusion is given in section 6.

ana

7

0,
DYX"= { r(n+1)
r(n+il-a)

2 Derivation of the approximate formula

The well known Chebyshev polynomialdZ] are defined
on the interva[—1, 1] and can be determined with the aid
of the following recurrence formula

Tht1(2) =221 (2) — Th-1(2), To(2) =1, Ti(2) =2z n=
1,2,.... The analytic form of the Chebyshev polynomials
Tn(2) of degreen is given by

(3] _ . o
Tn(Z)Zn.;(_l)l on—2i-1 ((I;(nl_;))'lzn

—2i

,h=23,...,

(6)

disease also called the rate of transmission for susceptiblyhere [n/2] denotes the integer part ofi/2. The

to infected,y ! is the cross-immune period ! is the
infectious periodd 1 is the total immune period ana is

the fraction of the exposed cross-immune individuals who

are recruited in an unit time into the infective
subpopulation {], [6]).
In this section, we

definitions and mathematical

orthogonality condition is

1T . T, for i=j=0;
/7T'(Z)T‘(22)dz= T for i=j#0;
-1 Vl-z 0, for i#]j.

introduce some necessary
preliminaries of the In order to use these polynomials on the interGal] we

fractional calculus theory that will be required in the define the so called shifted Chebyshev polynomials by

present paper.
Definition 1.
The Caputo fractional derivative operafdf of order
o is defined in the following form
1 /X £M(t) &t
Fr(m—a) o (x—t)a-m1="

wherem—1<a <m, meN.
Similar to integer-order differentiation, Caputo fractid
derivative operator is a linear operation

DY (A f(x) + Hg(x)) = A D® f(x) + 4D g(x),

DYf(x) = a>0, x>0,

whereA andu are constants. For the Caputo’s derivative

we have 20|

DYC =0, Cis a constant

(4)

introducing the change of variab#e= 2t — 1.The shifted
Chebyshev polynomials are defined as

Ty (1) = Tn(2t — 1) = Tan(V)

The analytic form of the shifted Chebyshev polynomials
T (t) of degreen is given by

ok 22 (n+k—1)!

I

n=23,....

_ _ (7
The functionx(t), which belongs to the space of square
integrable functions ifi0, 1], may be expressed in terms of
shifted Chebyshev polynomials as

T =nY (-1
(t) nkgo( )

(8)
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where the coefficients are given by The error in approximating(t) by the sum of its first
T m terms is bounded by the sum of the absolute values of
2 1X i* o o . .
¢ =75 Jo ﬁdt’ ho=2, hi=1 i=12,..  alltheneglected coefficients. If
(9) m
In practice, only the firstm+ 1)-terms of shifted Xm(t) = Z)Cka(t)’ (16)
Chebyshev polynomials are considered. Then we have K=
= then
Xm(t) = 20 G T (). (10) "
= Er(m) =[xt)—xn)| < T lal.  (17)
The main approximate formula of the fractional derivative k=m+1

of Xm(t) is given in the following theorem. for all x(t), all m, and allt € [~1,1].

Theorem 1.

Let x(t) be approximated by Chebyshev polynomials Theorem 3. [16]

asin (L0) and also suppose > 0, then The Caputo fractional derivative of order for the

m i shifted Chebyshev polynomials can be expressed in terms
DY (Xmn(t)) = Gw k- (11)  of the shifted Chebyshev polynomials themselves in the
i:%] k}a} ’ following form

Wherewi(ff() is given by

i k—[a]
DY(Ti* (1)) = G kT (1), (18)
e 2Ki(i+ k=) (k+1) k:%q J; .

(@ _
Wi = D T2 T (k1)

(12)

where

Proof.Since the Caputo’s fractional differentiation is a (—1)"K2i(i +k— ) (k—a+3)

linear operation we have O jk = : : : ;
P hir (k) (KM (k—a—j+ )M (k+j—a+1)
- ) j=01,.
D (sn(t)) = 3 &D*(T (V). (13) Sl
= Theorem 4.
Employing Eqs4) and 6) in Eq.(7), we obtain
The error |Er(m)| = |DIX(t) — D9%m(t)] in
DYT*(t) =0, i=0,1,..,[a]-1, a>0. (14) approximatingd9x(t) by D%xn(t) is bounded by
Therefore, foi = [a], [a]+1,...,m, and by using Eqs4) ° i kela]
and 6) in Eq.(7), we get Er(m)| < ’ S Ci( ; ZO Ol,j,k) ’ (19)
i 22X(i L K— 1)1 i=mtl  “k=[a] =
DT ) =i § (—1) Ko T Ekl ;k)l Dtk o
= (i—k)!(2K)! Proof.A combination of Eqs&), (10) and (L8) leads to
g 1)k 2K(i+k—1)IT (k+1) ea
_'k:%w(_ ) (i—K!2K)!T (k+1—a) [Er(m)| = |DUX(t) — Dxm(t)
(15) o0 i k=[a]
=| 3 o > 2 T V)],
A combination of Eqsi3), (14) and (5) leads to the i=m+l  k=[a] |=
desired result and completes the proof of the
theorem. L but[T{(t)| <1, so, we can obtain
3 Error analysis ’ S ( e )
ysi |Er(m)| < G 2 O.ik)|:
i:%l k=Ta] JZO '

In this section, special attention is given to study the
convergence analysis and evaluate an upper bound of thenq suptracting the truncated series from the infinite serie

error of the proposed formula. bounding each term in the difference, and summing the
Theorem 2. (Chebyshev truncation theorem) [22] bounds completes the proof of the theorem. O
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4 Procedure solution of the fractional SIRC For suitable collocation points we use roots of shifted Chebyshev
model and influenza A polynomialTy,, gy (t).

. ) ) Also, by substituting Eq20) in the initial conditions 2) we can
Consider the fractional SIRC model and influenza A of the obtain 4 a] equations as follows
type given in Eq.Q). In order to use Chebyshev collocation

method, we first approximat&t), I (t), R(t) andC(t) as i(—l)iai — 5, i(_l)ibi —io,
©=3aT@, 0= 6T, o n @3)
& & 20) S(Ya-ro 3 (-Yd-c
Rm(t) = %CiTi (t), Zyd'
i= i= Equations 22), together with the equations of the initial

conditions R3), give (4m+4) of nonlinear algebraic equations

From Egs.{) and Theorem 1 we have _ : : _
h which can be solved using the Newton iteration method, for the

m I m
? % aiwi(ﬁr()tk—a = p(1- Zjai T (1)) unknownsa;, bi, ¢ and d for i=0,1,....m
i= i=

a T ( bi T (1) +y(H diTi* (1), L .

zo za 2,47 5 Numerical implementation
b. (Dl = Z)a,T Z}bl _ _ _ _
i In this section, we implement the suggested technique to solve
the system SIRCI) with the constantgt = 0.02, 3 =100, =

B(Zodi Ti*(t))(_zobi T ) — (u+ 9)(20bi T (1)), 1, y=0.5, 0 =0.05, 6 =73, and the initial conditions

S(0)=08, 1(0)=0.1, R(0)=0.05 C(0)=0.05 (24)

; %ﬂc,wlktka (1-0)B Z)d. )(iibi'l'i*(t))

The approximate solutions of the proposed system are given in
figures 1-6 at different values @f. In figures 1-2 we compared

b T, o) T (t
ZO ! — )I; (), the obtained approximate solution@t= 1 using the proposed
m method with the numerical solution using fourth-order Runge-
di Wi.k ) th—a _ &( Zoq T (1)) Kutta method, respectively._ Also, in tht_e figures 3-6, we presented
i= the behavior of the approximate soluti®®n(t), Im(t), Rm(t),

m respectivelyCm(t)) ata = 0.9.
Z)d| TE(t Z)bl —(u+ V)(_Zjdi'ﬁ*(t)) (21) From figures 1 and 2, we can confirm that the approximate
= solution is in excellent agreement with the solution using fourth
We now collocate Eq2Q) at (m+ 1 — [a]) points  order Runge-Kutta. Also, from figures 3-6, we can conclude that

tp (p=0,1,...,m+1-[a])as the behavior of the approximate solution depends on the order of
‘ the fractional derivative.
i I (a) tk—a il *
> 2 vl a5 aT )
i=la]k=[a] i=
m m m 0.8 T T T T T T T T T
*[)’( %a TI* (tp))( Z)b| Tl*(tp)) + y( zod| TI* (tp))7 —+— Chebyshey Solut!om-S(t)
= P P 0.7 +  Chebyshev Solution-Iit) [+
2 Chebyshev Solution-R(t)
0B6F % Chehyshev Solution-Cit) |4
z ;b.lktk“ Zja,T (tp) gob. (tp)) ! =
i= 05k &
g | &
B(_Z)di Tﬁ(tp))(zobi T (tp)) — (H + e)gbi T (tp)), gM s
= = = = L T 4
é 0.3 g . :Vfggﬂﬁﬁég: % W
® 02 e

I_X %qwlktk“ (1-0)B Zodl (tp)) Z)b. (tp))
gob. u+5)|; " (tp):

m o 01 0z 03 04 058 06 0F 08 09 1

; %ﬂd' Wt = 5(i;CiTi*(tp)) t

Figure 1. The behavior of the approximate solution using the
Z}d' (tp)) Zobl —(H+y) Z}d' (tp). (22) proposed method at = 1.

e
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0e . . . , . ; ; . ; 012 . : . ; . ‘ .
—+— RK4 Salution-S(t) © =04
07 +  RK4 Solution-i) [ 0% |+ o=06 1
@ RK4 Solution-R(t) * oA08
06} % RK4 Solution-Cit) | 0.0ar s © ]
#-
006t v R
= *
& oos : ?
= % #
= = omf J
= *
% ar * ® b
omp @ .
* * E
0.04 - 5 i g 1
-00EF + .
g (o]
o s ! s ‘ . : . . ! 008 . s : . . : . ‘ !
0 o1 02 03 04 06 06 07 03 09 1 0 01 02 03 04 056 06 07 08 09 1
t t
. . . . Figure 4. The behavior of the approximate soluti(t).
Figure 2. The numerical solution using Runge-Kutta method at
a=1.
07 . . . : . ; .
% w o a=04
. 06} * ® * =06
6 Conclusion and remarks o % s
L o] 4
0s " * &
k.
In this article, the Chebyshev spectral method is implementec i i
for solving the fractional SIRC model and influenza A. The 03t 5 * X A
fractional derivative is considered in the Caputo sense. The £ i
properties of the Chebyshev polynomials are used to reduce th = = y :
proposed problem to the solution of a system of algebraic o1t 2 e Ca.
equations which is solved by using Newton iteration method. D‘f |
Special attention is given to study the convergence analysis an o
estimate an upper bound of the error of the derived formula. The 0t = .
obtained solutions using the suggested method are in exceller sl 4 ¢ |
agreement with solutions from fourth-order Runge-Kutta and
show that this approach can be solved the problem effectively. It V757 o3 04 05 06 07 05 o3 1
is evident that the overall errors can be made smaller by adding t
new terms in the series (20). All computations in this paper are
done using Matlab 8. Figure 5. The behavior of the approximate solutiRih).
9 pp
t R 0.35
o =04 o - ~— ' ' ; ' ! !
0.9H * 0B o] A + =08
* g=08 03w # B .
o=08 i e
0.5% 1
025t 4
o "
0.7t 2 ¥ g % = - * A
sl 4 % | _ 02 ” &
7] : = o
&1 S() o
- o 4 I % | 0151 ® o] o T
B i R
04 B 01F & 4
o = * ® 4 :
n3f - # : 0,054 .
w
02 | ! 1 |:|‘4 '5 L 1 L . 0 | | | | | I 1 I 1
eobap B W Be 00 OR W0 0B M2 o 01 02 03 04 05 08 07 08 08 1
t
Figure 3. The behavior of the approximate solut®t). Figure 6. The behavior of the approximate solut@ih).
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I Ry I

2 2
Ity cm Ity R(t)

Figure 7.a. Relationship betwe&(t) andl (t). Figure 7.d. Relationship betwe&ft) and (t) .

I o T s

[ Rt -. S(t)

2 2
s c() Sty R(t)

Figure 7.b. Relationship betwe@ft) andS(t) . Figure 7.e Relationship betwe&(t) andS(t) .

R L Cpy

I s

2 2 2
Ct) R(t) Itt) S(t)

Figure 7.c. Relationship betwe®(t) andC(t) . Figure 7.f. Relationship betwed(t) andl (t) .
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Previous figures 7(a-f) illustrate propagation of influeAadrus [4] E. H. Elbasha, C. N. Podder and A. B. Gumel, Analyzing
along the time wher = 0.4: the dynamics of an SIRS vaccination model with waning
Figure (a) shows that cross-immur@(t) intersects with natural and vaccine-induced immunityonlinear Analysis,
infection at certain poink(t) which means that an infection can 12, 2692-2705 (2011).

be converted to cross-immune, also infection is capable of{5] M. EI-Shahed and A. Alsaedi, The fractional SIRC model and
infected others, the cross immune is propagate slowly than influenza A,Mathematical Problems in Engineering, 2011,
infected figure which simulate the reality infection frequently 1-9 (2011).

changed. [6] L. Jédar, R. J. Villanueva, A. J. Arenas, and G. C. Galez,”
Figure (b) shows no intersection between cross-imma(te Nonstandard numerical methods for a mathematical model
and suspectablg(t) propagation which refer to suspectable can ~ for influenza diseaseMathematics and Computers in

not easily converted to cross immune also suspectable is Smulation, 79, 622-633 (2008).

frequently changed unlike cross-immune since cross-immund/] D- W. Jordan and P. SmitiNonlinear Ordinary Differential

expresses more advanced stage of the disease. Equations, third ed., Oxford University Press, (1999).
Figure (c) shows that intersections can occur more that oncd8] W. O. Kermack and A. G. McKendrick, Contributions to
between recovereR(t) and cross-immun€(t) which reflects the mathematical theory of epidemié¥oceedings of Royal

that a recovered state can be changed to cross-immune and this Society of London, 115 700-721 (1927). )
could happen frequently along the time, also cross-immune id%] M- M. Khader, On the numerical solutions for the fractional
very slow and steady in its changes along time unlike recovered diffusion equation,Communications in Nonlinear Science
which is very frequently changed since cross-immune is more_a&1d Numerical Smulation, 16, 2535-2542 (2011).
advanced state than recovered [10] M. M. Khader, Numerical treatment for solving the
Figure (d) shows that it is also possible for infected caggso perturbed fractlonal '_DDES using hybrid techniquissirnal
be converted to recovered ca$¥$) and vice vera several times 1 lo{\ﬂCol\n/wlpuit(aglogal Plh);scc? 250 565'5;.3 .(2033)' dificati ¢
which simulate the real world in which the status of disease can[ 1M. M, ader, Introducing an efhcient modrication o
be switched between recover and infected, the rate of the \.”M by using Chebyshev pqunomlaIAppllcatlon and
suspectable is changed more frequently than rate of infected, Angllzed Mathematics: An Iternational Journal, 7, 283-299
also rate of recovered is higher than rate of infection which is a ( )- . . .
good indication [12] M. M. Khader, Numerical treatment for solving fractional
Figure (e) shows several intersections between recove(gd Riccati differential -equation,Journal of the Egyptian

and suspectable ca hich simulate the reality also the Math ical Society, 21, 32-37 (2013).
Susp . Ss@ which simu iy als %13] M. M. Khader and A. S. Hendy, The approximate and exact
suspectable rate is higher than the recovered rate, and th

. ) ) solutions of the fractional-order delay differential equations
frequency of changes in both figures is almost the same.

) . . using Legendre pseudospectral methothternational
Figure (f) shows no intersection between suspectable &ses 9 9 b b th

. - . J al of P d Applied Mathemati 74, 287-297
and infected casdst) this means that changes between states is ggrlnz) Of Fure and Appit athematies,

impossible, which means that there is no meaning to indicate 14] M. M. Khader and A. S. Hendy, A numerical technique
patient either suspectable or infected, one decision must b for solving fractional variational problemsylathematics
taken, also infection rate reflect the propagation of virus which Methods in Applied Sciences, 36, 1281-1289 (2013).

is slower than just predicting with uncertainly that the virus is [15] M. M. Khader, N. H. Sweilam and A. M. S. Mahdy, An

exist or no. efficient numerical method for solving the fractional diffusion
equationJ. of Applied Mathematics and Bioinformatics, 1, 1-
12 (2011).
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