
Appl. Math. Inf. Sci.8, No. 3, 1021-1028 (2014) 1021

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/080310

Stability Analysis of a Fractional-Order Differential
Equation System of a GBM-IS Interaction Depending on
the Density
Fatma Bozkurt∗

Mathematics Department, Erciyes University, 38039 Kayseri, Turkiye

Received: 12 May. 2013, Revised: 16 Sep. 2013, Accepted: 17 Sep. 2013
Published online: 1 May. 2014

Abstract: In this paper, fractional-order is introduced into the interaction model between GBM and IS. GBM (Glioblastoma
Multiforme) is a brain tumor, that has a monoclonal origin and produces after reaching a specific density another tumor with different
growth rate and treatment susceptibilities. The IS cells are also divided into two populations, namely, the macrophages and the activated
macrophages. Hence, this model show two conversions, the conversion from sensitive tumor cell to resistant tumor cell and the
conversion from macrophages to active macrophages, and an interaction between the tumor cell and the macrophages. In this work,
it is shown that the model possesses non-negative solutions. Furthermore, the stability, existence and uniqueness were studied. To
investigate the conditions for an extinction of the tumor cells, Allee threshold is considered. Numerical simulations will give a detailed
description of the behavior of the constructed models at the end of the paper.
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1 Introduction

Cancer is one of the greatest killer in the world and the
control of tumor growth requires special attention[1]. The
typical approach for treating GBM involves surgical
resection of as much of the tumor as possible, followed
by radiation treatment and chemotherapy[2]. Within a
single tumor of monoclonal origin, this kind of tumor can
develop multiple sub-populations, each of which may be
characterized by different growth-rates and treatment
susceptibilities[3− 5]. Works about modeling of multi
sub- populations can be shown in[6− 10]. Modeling the
interaction between the tumor cell and the immune
system are interesting researches, where a few of them
will be referee, see[1,11−13]. However, a large amount
of work done on modeling tumor growth has been
restricted to integer order ordinary or delay differential
equations [14-17]. Recently, fractional calculus has been
applied in many fields[18−22,32,33]. In biology, it has
been deduced that the membranes of cells of biological
organism have fractional order electrical conductance
[23]. Fractional derivatives embody essential features of
cell rheological behavior and have enjoyed success in the

field of rheology [24]. It is shown that modeling the
behavior of brainstem vestibule-oculumotor neurons by
fractional order differential equation has more advantages
than by integer order differential equation[21]. In this
paper GBM has two kind of cells, the sensitive tumor cell
and resistant tumor cell. Additionally, for the IS we will
consider the activated macrophages and macrophages.
Thus, taking into account the converting of the sensitive
tumor cell to resistant tumor cell, the converting of the
macrophages to the activated macrophages and the
interaction between the tumor cells and the activated
macrophages, we construct a fractional-order the model
such as


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


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
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




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



















Dα(S(t)) = pS(t)+ r1S(t)(K1−β1S(t))− γS(t)R(t)
−d1S(t)− τ1S(t)N(t)
Dα(R(t)) = r2R(t)(K2−β2R(t))+ γS(t)R(t)
−d2R(t)− τ2R(t)N(t)
Dα(N(t)) = µN(t)Z(t)− εZ(t)N(t)−d3N(t)
Dα(Z(t)) = r3Z(t)(K3−δ1Z(t))−µN(t)Z(t)
+εZ(t)N(t)−d4Z(t),

(1)
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where t≥ 0, the parametersβ1, β2, δ1, τ1, τ2, γ, µ , ε, p,
d1, d2,d3, d4,K1, K2,K3,r1, r2 and r3 denote positive
numbers. GBM is a brain tumor, that has at least two
population. Here, we will have the sensitive tumor cell
and resistant tumor cell, which is given in system(1) with
S(t) and R(t), respectively.N(t) and Z(t) show the
activated macrophages and macrophages, respectively.p
is the division rate of the sensitive tumor cell,K1 andK2
are the carrying capacities of the sensitive (including
negrotic part) and resistant cell, respectively. Parameter
β1 and β2 are necessary to construct logistic differential
equations.r1 and r2 are the growth rate of the sensitive
cell and resistant cell, respectively.γ is the converting rate
of sensitive tumor cell to resistant tumor cell. The
parameterd1 andd2 are their dead rate caused from drugs,
respectively.µ is the conversion rate of macrophages to
active macrophages.d3 is the natural death of active
macrophages andd4 natural death of macrophages.r3 is
the growth rate of macrophages and the parameterδ1 is
selected in view of logistic differential equations.K3 gives
the carrying capacity of macrophages.ε is the conversion
rate of the activated macrophages to macrophages.τ1 and
τ2 are the destroying rate caused from the activated
macrophages. In section 2, we show that(1) has
non-negative equilibrium points and analyze the stability
of these steady states. We have investigated the existence
and uniqueness of the fractional order model in section 3.
Since we obtain in section 2, that(0,0,B, d3

(µ−ε) ) is an

unstable steady state, we modify system(1) in section 4
to get the stability conditions of the threshold. Obtaining
a solution that is less than the threshold leads to an
extinction that is desired in the population dynamics.
Numerical simulations will give a detailed description of
the behavior of system(1) at the end of the paper.

Definition 1.1. [25] The fractional integral of order
α > 0 of a function f: R+ → R is given by

Iα
0 f (x) =

1
Γ (α)

∫ x

0
(x− t)α−1 f (t)dt, (2)

provided the right side is pointwise defined on R+.

Definition 1.2. [25] The Caputo fractional derivative
of orderα ∈ (n−1,n) of a continuous function f: R+ →R
is given by

Dα f (x) = In−α
0 Dn f (x),D =

d
dt
. (3)

2 Stability Analysis

2.1 Equilibrium points

Let us consider the system

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












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





























Dα(S(t)) = f (S(t),R(t),N(t),Z(t)) = pS(t)−d1S(t)
+r1S(t)(K1−β1S(t))− γS(t)R(t)− τ1S(t)N(t)
Dα(R(t)) = g(S(t),R(t),N(t),Z(t) =−τ2R(t)N(t)
+r2R(t)(K2−β2R(t))+ γS(t)R(t)−d2R(t)
Dα(N(t)) = h(S(t),R(t),N(t),Z(t)) = µN(t)Z(t)
−εZ(t)N(t)−d3N(t)
Dα(Z(t)) = k(S(t),R(t),N(t),Z(t)) =−µN(t)Z(t)
+r3Z(t)(K3−δ1Z(t))+ εZ(t)N(t)−d4Z(t),

(4)

We want to discuss the stability analysis of(4). Let
us perturb the equilibrium point by adding positive terms
ε1(t), ε2(t), ε3(t) andε2(t), that is

S(t)−S= ε1(t), R(t)−R= ε2(t), (5)

N(t)−N = ε3(t)and Z(t)−Z = ε4(t). (6)

Then we have
Dα(ε1(t)) ≃ f (S,R,N,Z) + ∂ f (S,R,N,Z)

∂S ε1(t)

+ ∂ f (S,R,N,Z)
∂R ε2(t)+

∂ f (S,R,N,Z)
∂N ε3(t)+

∂ f (S,R,N,Z)
∂Z ε4(t),

Dα(ε2(t)) ≃ g(S,R,N,Z) + ∂g(S,R,N,Z)
∂S ε1(t)

+ ∂g(S,R,N,Z)
∂R ε2(t)+

∂ f (S,R,N,Z)
∂N ε3(t)+

∂g(S,R,N,Z)
∂Z ε4(t),

Dα(ε3(t)) ≃ h(S,R,N,Z) + ∂h(S,R,N,Z)
∂S ε1(t)

+ ∂h(S,R,N,Z)
∂R ε2(t)+

∂h(S,R,N,Z)
∂N ε3(t)+

∂ f (S,R,N,Z)
∂Z ε4(t)

and
Dα(ε4(t)) ≃ k(S,R,N,Z) + ∂k(S,R,N,Z)

∂S ε1(t)

+ ∂k(S,R,N,Z)
∂R ε2(t)+

∂k(S,R,N,Z)
∂N ε3(t)+

∂ f (S,R,N,Z)
∂Z ε4(t).

We used the fact thatf (S,R,N,Z) = g(S,R,N,Z) =
h(S,R,N,Z) = k(S,R,N,Z) = 0 and obtain therefore a
linearized system about the equilibrium point such as

Dα(U) = JU, (7)

whereU = (ε1(t),ε2(t),ε3(t),ε4(t)) and J is the Jacobian
matrix evaluated at the equilibrium. We haveB−1JB=C,
where C is a diagonal matrix of J given by

C=







λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4






(8)

whereλ1, λ2, λ3 and λ4 are the eigenvalues and B the
eigenvectors of J. Therefore, we get


















Dα
∗ (η1) = λ1η1

Dα
∗ (η2) = λ2η2,

Dα
∗ (η3) = λ3η3

Dα
∗ (η4) = λ4η4,

(9)
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whereη =







η1
η2
η3
η4






andη = B−1Z, and whose solutions are

given by Mittag-Leffler functions

η1(t) =
∞

∑
n=i

tnα λi
n

Γ (nα +1)
η1(0) = Eα(λit

α)η1(0) (10)

wherei = 0,1,2,4.
By using the result of Matignon [26], if

|arg(λi)| > απ
2 (i = 1,2,3,4), then ηi(t) are decreasing

and therefore are alsoεi(t) decreasing. Thus, let the
solution (ε1(t),ε2(t),ε3(t),ε4(t)) of (7) exist. If the
solution of (7) is increasing, then(S,R,N,Z) is unstable
and if (ε1(t),ε2(t),ε3(t),ε4(t)) is decreasing, then the
equilibrium point (S,R,N,Z) is locally asymptotically
stable.

Now we want to obtain the equilibrium points of
system study the equilibrium and stability of system(4).
Considering (4), we want to consider the following
equilibrium points, which are biological admissible.

Λ1 = (0,0,B,
d3

µ − ε
) (11)

whereµ > ε and
Λ2 = ( r2β2(p+r1K1−d1−τ1B)−γ(r2K2−d2−τ2B)

r1r2β1β2+γ2 ,

β1r1(r2K2−d2− τ2B)+ γ(p+ r1K1−d1− τ1B)
r1r2β1β2+ γ2 ,B,

d3

µ − ε
)

(12)
where

B=
(r3K3−d4)(µ − ε)− r3δ1d3

(µ − ε)2 . (13)

If

r3 >
(µ − ε)d4

K3(µ − ε)−δ1d3
andK3 >

δ1d3

µ − ε
, (14)

then we haveB> 0. If we have the conditions

r1 >
d1+ τ1B

K1
andr1 >

d2+ τ2B
K2

, (15)

wherep> γK2
β2

the equilibrium pointΛ2 is positive.

2.2 Local Stability

The Jacobian matrixJ(Λ1) for system (4) evaluated atΛ1
show us that for the conditions (13), (14) and (15)Λ1 is
unstable. To discuss the local stability of the equilibrium
pointΛ2, this means that both tumors exist in the brain, we
consider the linearized system of (4) atΛ2. Considering
the Jocabian matrixJ(Λ2) for system (4), we obtain the
characteristic equation of (4) such as
P(λ ) = (λ 2−a44λ −a43a34)

(λ 2− (a11+a22)λ +a11a22−a12a21) = 0, (16)

where
a11 = p+ r1K1−d1−2r1β1S− γR− τ1N,
a22 = r2K2−d2−2r2β2R+ γS− τ2N,
a44 =

(r3K3−d4−(µ−ε)B)(µ−ε)−2r3δ1d3
(µ−ε)

a12 =−γS,a21 = γR,a34 = (µ − ε)B,a43 =−d3.
Considering (16), we can obtain the following theorem.
Theorem 2.1.Let Λ2 be the positive equilibrium point of
system (4). The following statements are true.
(a) Assume that K3 > 2δ1d3

µ−ε , K2 < (d2+τ2B)β2
γ and

γ
β1

> r2K2−d2−τ2B
p+r1K1−d1−τ1B hold. If

r2 >
d2+ τ2B

K2

and

d4(µ − ε)
K3(µ − ε)−δ1d3

< r3 <
d4(µ − ε)+(µ − ε)2B

K3(µ − ε)−2δ1d3
,

then all roots of (16) have are real or complex conjugates
with negative real parts, which means thatΛ2 is locally
asymptotically stable.
(b) Assume thatK3 >

2δ1d3
µ−ε , K2 >

(d2+τ2B)β2
γ and

M ∈ (0,

√

r2β2(2r1r2β1β2γ +4γ3− r2
1r2β 2

1 β2− r2β2γ2)

r1β1(2r1r2β1β2γ +4γ3+ r1r2
2β1β 2

2 + r1β1γ2)
)

∪( r2β2(r1β1+ γ)
r1β1(−r2β2+ γ)

,∞)

hold, where

M =
r2K2−d2− τ2B

p+ r1K1−d1− τ1B
.

Furthermore, suppose that
∣

∣

∣
tan−1(−

√

4(a11a22−a12a21)− (a11+a22)2)/(a11+a22)
∣

∣

∣
> απ

2 .

If

γ
β2

> r2 >
d2+ τ2B

K2

and

d4(µ − ε)+(µ − ε)2B
K3(µ − ε)−δ1d3

< r3 <
d4(µ − ε)+(µ − ε)2B

K3(µ − ε)−2δ1d3
,

then (16) has has two real or complex conjugates with
negative real parts and two complex conjugate with
positive real parts, whereΛ2 is locally asymptotically
stable.
(c) Assume that K2 < (d2+τ2B)β2

γ , K3 > 4δ1d3
µ−ε ,

µ−ε
r3δ1

>
√

d3
(µ−ε)B and γ

β1
> r2K2−d2−τ2B

p+r1K1−d1−τ1B hold.

Furthermore, suppose that we have
∣

∣

∣

∣

tan−1(−
√

−4(a43a34−a2
44)/a44)

∣

∣

∣

∣

>
απ
2

.
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If

r2 >
d2+ τ2B

K2

and

d4(µ − ε)+(µ − ε)2B
K3(µ − ε)−2δ1d3

< r3 <
d4(µ − ε)+(µ − ε)2B

K3(µ − ε)−4δ1d3
,

then (16) has has two real or complex conjugates with
negative real parts and two complex conjugate with
positive real parts, whereΛ2 is locally asymptotically
stable.
(d) Assume that K2 > (d2+τ2B)β2

γ , K3 > 4δ1d3
µ−ε ,

µ−ε
r3δ1

>
√

d3
(µ−ε)B and

M ∈ (0,

√

r2β2(2r1r2β1β2γ +4γ3− r2
1r2β 2

1 β2− r2β2γ2)

r1β1(2r1r2β1β2γ +4γ3+ r1r2
2β1β 2

2 + r1β1γ2)
)

∪( r2β2(r1β1+ γ)
r1β1(−r2β2+ γ)

,∞)

hold, where

M =
r2K2−d2− τ2B

p+ r1K1−d1− τ1B
.

Furthermore, suppose thatα is in the interval satisfying
∣

∣

∣

∣

tan−1(−
√

4(a11a22−a12a21)− (a11+a22)2)/(a11+a22)

∣

∣

∣

∣

> απ
2 . and

∣

∣

∣

∣

tan−1(−
√

−4(a43a34−a2
44)/a44)

∣

∣

∣

∣

>
απ
2

.

If

γ
β2

> r2 >
d2+ τ2B

K2

and

d4(µ − ε)+(µ − ε)2B
K3(µ − ε)−2δ1d3

< r3 <
d4(µ − ε)+(µ − ε)2B

K3(µ − ε)−4δ1d3
,

then all of the roots of (16) are complex conjugates with
positive real parts, which implies thatΛ2 is locally
asymptotically stable.
Proof. The proof follows by using the theory in[27] and
will be omitted.

3 Existence and Uniqueness

Consider system (4) with the initial conditionsS(0) > 0 ,
R(0) > 0, N(0) > 0 and Z(0) > 0. The initial value
problem can be written in the form

DαU(t) = AU(t)+S(t)BU(t)+R(t)CU(t)+N(t)DU(t)

+Z(t)EU(t), t ∈ (0,T] (17)

andU(0) =U0, where

U(t) =







S(t)
R(t)
N(t)
Z(t)






, U(0) =







S(0)
R(0)
N(0)
Z(0)






,

A=







p−d1+ r1K1 0 0 0
0 r2K2−d2 0 0
0 0 −d3 0
0 0 0 0






, (18)

B=







−r1β1 0 0 0
0 γ 0 0
0 0 0 0
0 0 0 0






, C=







−γ 0 0 0
0 r2β2 0 0
0 0 0 0
0 0 0 0






. (19)

D=







−τ1 0 0 0
0 −τ2 0 0
0 0 0 0
0 0 0−(µ − ε)






, E=







0 0 0 0
0 0 0 0
0 0 (µ − ε) 0
0 0 0 −r3δ1






.

(20)

In view of [19] and [22], the desired definitions for
existence and uniqueness are defined as follows;
Definition 3.1. Let C∗[0,T] be the class of continuous

column vectorU(t)whose componentsx,y,z,w ∈ C[0,T]
are the class of continuous functions on the interval[0,T].
The norm ofU ∈C∗[0,T] is given by

||U ||= supt
∣

∣e−Ntx(t)
∣

∣+supt
∣

∣e−Nty(t)
∣

∣

+supt
∣

∣e−Ntz(t)
∣

∣+supt
∣

∣e−Ntw(t)
∣

∣ .

Whent > σ ≥ 0, we writeC∗
σ [0,T] andCσ [0,T].

Definition 3.2. U ∈ C∗[0,T] is a solution of the initial
value problem (17), if
(i)(t,U(t)) ∈ D, t ∈ [0,T] whereD = [0,T]×K,

K =
{

(x,y,z,w) ∈ R2
+ : |x| ≤ l1, |y| ≤ l2 |z| ≤ l3, |w| ≤ l4

}

.

(ii)U(t)

satisfies (17).

Theorem 3.1.The initial value problem (17) has a unique
solutionU ∈C∗[0,T].
Proof. Let us write

I1−α d
dt

U(t) = AU(t)+S(t)BU(t)+R(t)CU(t)

+N(t)DU(t)+Z(t)EU(t). (21)

Operating withIα we obtain

U(t) =U(0)+ Iα(AU(t)+S(t)BU(t)
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+R(t)CU(t)+N(t)DU(t)+Z(t)EU(t)). (22)

Now letF : C∗[0,T]→C∗[0,T] be defined by

FU(t) =U(0)+ Iα(AU(t)+S(t)BU(t)+R(t)CU(t)

+N(t)DU(t)+Z(t)EU(t)). (23)

Then
e−Nt ||FU −FV||=
e−NtIα(A(U(t) − V(t)) + S(t)B(U(t) − V(t))
+R(t)C(U(t) − V(t)) + N(t)D(U(t) − V(t)) +
Z(t)E(U(t)−V(t))
≤ 1

Γ (α)

∫ t
0(t − s)α−1e−N(t−s)(U(s)−V(s))e−Ns(A+ aB+

bC)ds

≤ (A+aB+bC)
Nα ||U −V||∫ t

0
sα−1

Γ (α)ds.
This implies that

||FU −FV|| ≤ (A+Bl1+Cl2+Dl3+El4)
Nα ||U −V|| .

If we choose N such that

Nα > A+Bl1+Cl2+Dl3+El4,

then we obtain

||FU −FV||< ||U −V||

and the operator F given by (23) has a unique fixed point.
Consequently, (22) has a unique solution
U ∈C∗[0,T].From (22), we have
U(t) =

U(0) + ( tα

Γ (α+1) (AU(0) + S(0)BU(0) + R(0)CU(0)) +

N(0)DU(0)+Z(0)EU(0))+ Iα+1(AU′(t)+S′(t)BU(t)+
S(t)BU′(t)+R′CU(t)+R(t)CU′(t)+
N′(t)DU(t)+N(t)CU′(t)+Z′EU(t)+Z(t)EU′(t))
and
U(t)
dt = tα−1

Γ (α) (AU(0) + S(0)BU(0) + R(0)CU(0) +

N(0)DU(0) + Z(0)EU(0)) + Iα(AU′(t) + S′(t)BU(t) +
S(t)BU′(t) + R′CU(t) + R(t)CU′(t) + N(t)DU(t) +
N(t)DU ′(t) + Z′EU(t) + Z(t)EU′(t))

⇒ e−Nt(U(t)
dt ) = e−Nt[ tα−1

Γ (α) (AU(0) + S(0)BU(0) +

R(0)CU(0)+N(0)DU(0)+Z(0)EU(0))
+ Iα(AU′(t) + S′(t)BU(t) + S(t)BU′(t) + R′CU(t) +
R(t)CU′(t) + N′(t)DU(t) + N(t)DU ′(t) + Z′EU(t) +
Z(t)EU′(t))]
from which we can deduce thatU ′ ∈ C∗

σ [0,T].Now, we
have
dU(t)

dt = d
dt I

α(AU(t) + S(t)BU(t) + R(t)CU(t) +
N(t)DU(t)+Z(t)EU(t))

⇒ I1−α dU(t)
dt = I1−α d

dt I
α(AU(t) + S(t)BU(t) +

R(t)CU(t)+N(t)DU(t)+Z(t)EU(t))
DαU(t) = AU(t) + S(t)BU(t) + R(t)CU(t) +
N(t)DU(t)+Z(t)EU(t)
and

U(0) = U0 + Iα(AU(0) + S(0)BU(0) + R(0)CU(0) +
N(0)DU(0) + Z(0)EU(0)) = U0. Therefore, this initial
value problem is equivalent to the initial value probem
(17).

4 Analysis of the extinction of GBM by using
Allee effect

An important research for population models by Allee
[28], who demonstrated that Allee effect occurs when
population growth rate is reduced at low population size.
It is well known that the logistic model assumes that
per-capita growth rate declines monotonic when the
density increase; however, it is shown that for population
subjected to an Allee effect, per-capita growth rate gives a
humped curve increasing at low density, up to a
maximum intermediate density and then declines again
[29]. Many theoretical and laboratory studies have
demonstrated the importance of the Allee effect in
dynamics of small populations, see for example[28−31].

Let us embed to (4) functions such as















































Dα(S(t)) = (pS(t)+ r1S(t)(K1−β1S(t))− γS(t)R(t)

−d1S(t)− τ1S(t)N(t))(S(t)
E0

−1)

Dα(R(t)) = (r2R(t)(K2−β2R(t))+ γS(t)R(t)

−d2R(t)− τ2R(t)N(t))(R(t)
E1

−1)

Dα(N(t)) = µN(t)Z(t)− εZ(t)N(t)−d3N(t)
Dα(Z(t)) = r3Z(t)(K3−δ1Z(t))−µN(t)Z(t)
+εZ(t)N(t)−d4Z(t),

(24)

where t > 0 and
(S(0),R(0),N(0),Z(0)) = (S0,R0,N0,Z0). E0 and E1
represents the Allee threshold of the populationsS(t) and
R(t), respectively. The equilibrium point that will be
considered in this section isΛ3 = (E0,E1,B,

d3
µ−ε ). The

characteristic equation of (24) is
P(λ ) = (λ − (pE0+r1E0(K1−β1E0)−γE0E1−d1E0−τ1E0B)

E1
)

×(λ − (r2E1(K2−β2E1)+γE0E1−d2E1−τ2E1B)
E1

)

(λ 2−(
(r3K3−d4− (µ − ε)B)−2r3δ1d3

µ − ε
)λ (µ−ε)B)= 0,

(25)
The following theorems will be given without the

proofs, which can be proven in view of Section 2 and
Section 3.

Theorem 4.1. Let (E0,E1,B,
d3

µ−ε ) be the positive
equilibrium point of system (24). The following
statements are true.

(a) Assume that K1 > r1β1(d2+τ2B)−pγ
r1γ and

K3 <
d4+(µ−ε)B

r1
hold, such thatp< r1β1(d2+τ2B)

γ . If
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E1 >
K2

β2
and

p+ r1K1

r1β1
< E0 <

d2+ τ2B
γ

,

then all roots of (25) have are real or complex
conjugates with negative real parts, which means thatΛ3
is locally asymptotically stable.

(b) Assume that K1 > r1β1(d2+τ2B)−pγ
r1γ and

8δ1d3
µ−ε > K3 > (d2+τ2B)β2

γ > 4δ1d3
µ−ε hold, such that

p< r1β1(d2+τ2B)
γ . Furthermore, suppose that

(µ − ε)d4+(µ − ε)2B
8δ1d3

< r3 <
(µ − ε)d4+(µ − ε)2B

4δ1d3
,

µ − ε
r3δ1

>

√

d3

(µ − ε)B

and
∣

∣

∣
tan−1−

√
4d3(µ − ε)− ( (r3K3−d4−(µ−ε)B)(µ−ε)−2r3δ1d3

µ−ε )2
∣

∣

∣

/( (r3K3−d4−(µ−ε)B)(µ−ε)−2r3δ1d3 ) > απ
2 hold. If

E1 >
K2

β2
and

p+ r1K1

r1β1
< E0 <

d2+ τ2B
γ

,

then (25) has has two real or complex conjugates with
negative real parts and two complex conjugate with
positive real parts, whereΛ3 is locally asymptotically
stable.

Theorem 4.2.Let p > d1, r2 > d2
K2

,r3 > d3
K3

and µ > ε.
System (24) has a unique solution in

W =
{

(S,R,N,Z) ∈ R4
+ : |S| ≤ E0, |R| ≤ E1, |N| ≤ l3, |Z| ≤ l4

}

,

if

3r1β1E0+ p+ r1K1+3γE1−d1+3τ1l3
Nα < 1,

3r2β2E1+ r2K2+ γE0−d2+3τ2l3
Mα < 1,

(µ − ε)l4−d3

Pα < 1

and
2δ1r3l4+ r3K3+(µ + ε)l3−d4

Qα < 1.

Conclusion If S(t) < E0 and R(t) < E0 for all t > 0,
where (S(t),R(t),N(t),Z(t)) ia a positive solution of
system (24), thenS(t) andR(t) go to zero whilet → ∞.

ExampleThe values of parameter of (4) are mainly so
selected as given in[8] and in view the conditions of the

Fig. 1: The asymptotic behavior of the solutions of system (4)

Fig. 2: Interaction of the tumor-IS populations

theorems. Information of activated macrophases and
macrophases are obtained from[13]. Therefore, the table
is given as follows;

Division rate of the sensitive cells:p= 0.192
Carriying capacity of the negrotic and sensitive cells
together:K1 = 4.704
Carriying capacity of the resistant tumor population:
K2 = 1.232
Mutation rate of the sensitive cells to resistant cells:
γ ∈ [10−5,10−2]
Logistic population rate of sensitive cell population:
β1 ∈ [0.5,0.95]
Logistic population rate of resistant cell population:
β2 ∈ [0.05,0.2]
Causes of drug treatment to the sensitive cells:d1 = 0.6
Causes of drug treatment to the resistant cells:d2 = 0.006
Destroying rate caused from the activated macrophages to

c© 2014 NSP
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Fig. 3: The asymptotic behavior of the solutions of system (24)

the sensitive cells:τ1 = 0.3
Destroying rate caused from the activated macrophages to
the resistant cells:τ2 = 0.03
Activation rate of the macrophages:µ = 0.201
Deactivation rate of the macrophages:ε = 0.01
Logistic population rate of the macrophages:
δ1 ∈ [0.05,0.2]
Carrying capacity of the macrophages:K3 ∈ [0.11,1.17]
Natural death of macrophages:d3 = 0.07
Natural death of active macrophages:d4 = 0.07.

The population rates of both tumor cells are different,
where here in Figure 1 and Figure 2 is taken
(1.05) ∗ r = r2. The growth rate of the macrophage isr3.
For this example, the mutation rate is selected as
γ = 0.01. The initial conditions are
S(0) = 0.35,R(0) = 0.25,N(0) = 0.15, andZ(0) = 0.25.
Figure 1 shows the behavior of the system that hold the
conditions of Theorem 2.1/(a).The growth rates are
r1 = 0.5, r2 = 0.525 andr3 = 0.0146. It is shown in this
graph that a local asymptotic behavior about the
equilibrium point µ2 occur, whereα = 0.9.In Figure 2,
we have an interaction behavior of the solutions, where
r1 = 0.5, r2 = 0.525,r3 = 0.5, K3 = 1.17 andα = 0.98. A
local asymptotic behavior of the solutions forα < 0.88 is
obtained in Figure 3, where
r1 = 0.105, r2 = 0.1207, r3 = 0.14. The relation between
the growth rates of the tumors are here(1.15)∗ r = r2.
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