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Abstract: This paper proposes new matrix methods for solving positive solutioresgdositive Fully Fuzzy Linear System (FFLS). All
coefficients on the right hand side are collected in one block matrix, whilertivées on the left hand side are collected in one vector.
Therefore, the solution can be gained with a non-fuzzy common stepna@tessary theorems are derived to obtain a necessary and
sufficient condition in order to obtain the solution.The solution for FFLS taioled where the entries of coefficients are unknown. The
methods and results are also capable of solving Left-Right Fuzzy LBystem (LR-FLS). To best illustrate the proposed methods,
numerical examples are solved and compared to the existing methodsatdhehefficiency of the proposed method. New numerical
examples are presented to demonstrate the contributions in this paper.
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1 Introduction derived from Linear Algebra, such as the LU
decomposition and Cramer’s rule in order to determine
System of linear equations has a wide application inthe approximated solution of a system. He also shared a
varying subjects including mathematics, physics,new method of using Linear Programming (LP) in order
statistics, operational research, engineering, ecormmic to obtain the solution of square and non-square matrix.
finance and social sciences. Nevertheless, most of thesehe Adomian decomposition method was also expanded
applications are characterized by the lacking of thein order to solve the positive fuzzy vector solution of
imprecision system coefficients and improper information FFLS in [11]. Dehghan and Hashemi i1 §] investigated
on actual parameters values. Therefore, there is a need tbe iterative solution like Gauss—Seidel, Jacobi and Jacob
review the mathematical models and numerical variableover-relaxation (JOR).
that are suitable to deal with these ambiguous values; for
examples, researchers may introduce fuzzy numbers Few researchers commented on new methods to solve
instead of crisp numbers. Most importantly, it is possible FFLS [21-25], and brought forward new methods to solve
to solve fuzzy linear system (FLS) when the matrix FFLS. However, Kumar et al.4] introduced a new
elements are crisp numbers while the right hand side is @omputational method to solve FFLS by relying on the
fuzzy vector. On the other hand it is called FFLS when computation of row reduced echelon form. The
both the matrix elements and vector are fuzzy numbers. contribution of their method is that it can easily check the
consistency of the system, nique, infinite or no solution.
The first achievable approach of FLS was obtained by
Friedman et al. 14] they proposed a generic model for | this paper, new methods are proposed to solve
solving anxn FLS by employing the embedding FFLS through two computational steps. Firstly, we
approach. The original FLS was replaced byrax22n  rearrange the coefficients in left hand side to make it easy
crisp linear system and obtained the solution. to transfer from fuzzy system to an associated linear
system. Secondly, the problem is solved by the classical
Dehghan et al. 2] introduced several methods for methods in Linear Algebra. Unlike the existing methods,
solving FFLS that are similar to the classic methodsthe equations are rearranged and the matrices are
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represented in a square block matrix. Thereafter, the —L is non-increasing off0, c].

classical method such as the matrix inverse method is o ) ) )
used to find the solution. Through these new methods, we  Also the definition of function R which called right
can study the fuzzy solution using the associated lineaghape is similar to that of (). It is symbolically written

system, and the conditions for the system to have d"= (Ma,B) g where m symbolizes the mean value,
consistent solution. while a and 3 are left and right spreads, respectively. We

denote the set of LR fuzzy numbe(RF

The structure of this paper is organized as follows. In o
Section 2, the basic definitions of the fuzzy set theory and ~ Definition 2.4. Two fuzzy numbem = (m.a,B)ir
matrix theory are discussed. This is to explain the concep@ndfi= (n,y,d).r are called equal, if r=m,y=a,d =
of FFLS and operations of block matrices. In Section 3,B.
we review the solution of FFLS and introduce the new
methods. The theorems and lemmas are derived to obtain Definition 2.5. (Arithmetic operations on LR fuzzy
a necessary and sufficient condition to prove the existenceumbers) We will represent arithmetic operations for two
of solution. Also the solution of LR-FLS is discussed. In LR Fuzzy numbem$i= (m,a, ) .r andfi= (n,y,0).r as

Section 4, we conclude the paper. follows:
—Addition:
.. . mei=(m+na+y,B+90)Lr 2
2 Preliminaries ( VPO @)
—Opposite:
In this section, basic definitions and notions of fuzzy set —=—(m,a,B)r=(—m,B,a)rL. (3)
theory are reviewed], [1]:
—Subtraction:

Definition 2.1. Let X be a universal set. Then, we
define the fuzzy subsatof X by its membership function mefi=(m—na+90,8+Y)r 4)
Mz : X — [0,1] which assigns to each elemenexX a
real numberpz(x) in the interval(0, 1]; where the value
Hz(X) represents the grade of membership of XAinA —Approximate multiplication:

fuzzy sef is written as: If M >0and i > Othen,

A= HAX)) X € X, UaX) € [0 1} M® A (mnmy+na,md+nf) g (5)

Definition 2.2. A fuzzy sef in X = R" is convex fuzzy If h <0and @i < Othen
set if: ’
Vxq, %€ X, VA € [0,1],

HAAX+H(1=A)Xp) >min(ug(xy), Hx(Xp)). MmeA=(mn-ng—md,—na—mya.  (6)

Definition 2.3. LgtA be a fuzzy set defined on the set If m >0and i <O0then,
of real numbersR. A is called normal fuzzy set if there
exist xe R such thatuz(x) = 1. M® A2 (mnna —md,nB —my)ge. @)
A fuzzy numbem is called Left -Right Fuzzy number
(LR fuzzy number) where its membership function satisfy
—Scalar multiplication:

L(&X), x<a1 a>0, LetA € R, then,
px(X) = 1, a<x<a, 1) (AmAa,AB)r, A =0,
A= (8)
R(*F%), a2<x B>0, (Am —AB,-Aa)rL, A <O0.

where ma, 8 € R. And the function L(.) is called a left o .
shape function if the following hold Definition 2.6. A popular LR fuzzy number is a
triangular fuzzy number (TFN), where

L) =L(=x),
-L(0)=1,L(1) =0, L=R=max0,1—Xx),
@© 2014 NSP
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consequently, Its membership function 1) i6 given
by:

1-T2X m—a<x<ma>0,

(9)

1—%“,m§x<m+[3,ﬁ >0,
0 otherwise

and it is symbolically written as a triangular fuzzy
number= (m,a, 3).

Definition 2.7. A vectorX = (%,%,...,%,), where
%,1 <i<nareLR fuzzy numbers, is called dR fuzzy
vector.

Definition 2.8. A matrixA= (&;)f _, is called a fuzzy

number matrix, or shortly fuzzy matrix, if each element of

A'is a fuzzy number.

Definition 2.9. LetA = (&;) andB = (bj;) be two mx

nand nx p respectively. We defides B =C = (&;) which
is the mx p matrix where
@ ~
Gij = &k @ byj (10)

Definition 2.10. (Fully fuzzy linear system) Consider
the nx n linear system,

A% + 81o%o + ... + 81n%n = by,

1K1 + @928 + ... + 8onfn = Do,
: (11)

8n1%1 + 8np%2 + ... + 8nnkn = bn,

whereVa;;, 6,- € F(R) this system~is called a fully fuzzy
linear system (FFLS). The matrik = (éij){jjzl and the

vectorB = (Bj)?:l may be represented as

AX =B (12)
If the all entries ofA,B > 0it is called positive FFLS.
If the vectorX = (%;)]_, satisfies {2), and all entries
of X = (%) are positives, where
VX € F(R),j = 1,2,...,n, it is called positive fuzzy
solution, abbreviated P - X). If

3% ¢ F(R),j =1,2,...,n, itis called non fuzzy solution.

3 Solving FFLS

Now we are going to solve FFLS by using the matrix
theory. A necessary and sufficient conditions for FFLS to
have a positive solution are investigated. At the end of
this section LR-FLS is solved using the new method.

3.1 The proposed method for solving FFLS

In order to solve 12), we assume thak, X, B > 0, where
A= (A M, N), X=(x,y, z)andB= (b, h, g),then

(A, M, N)®(x, Yy, z) = (b, h, g). (13)

By Arithmetic operations on fuzzy numbers we have,

Ax=Db,
Ay+Mx = h, (14)
Az+Nx=g.

First we will find the associated linear system for
fuzzy system. The system i12) can be represented by
these equations

ai1X1 + &2X2 + - - +@inXn = by,

(A41y1+ @i2Y2 + - - + @inYn)+
(MigX1 + MigXp + -+ - 4+ MinXn ) = h, (15)
(81214 @i2Z2 + -+ + @inZn)+
(Ni1X1 + Ni2X2 + - -+ NinXn) = Gi,

Let us rearrange the linear system and add zero terms as
follows:

(@1X1 + @2X2 + - - - + @inXn )+
(0+0+---+0)+
(0+0+---+0) =b;,

(Mi2Xq + MigXp + - - - + MinXn )+
(a1y1+a@i2y2+ - +@inyn)+
(0+0+---+0)=h,

(16)

(Ni1X1 + Ni2X2 + - - - + NinXn)+
(0+0+---+0)+
(&1y1+aizy2+---+an¥n) =0,

where 1<i <n.
Appoint the blockS= (s, j)anx3n Matrix where 1<
i <nas follows:

S, | = Si+n, j+n = S+2n, j+2n = &ij,
Si+n, j = Mij, a7)
Si+2n, j = Nij.

Also, anys; which is undetermined irl() is zero.
Then we have a new3x 3n block matrixS:
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Definition 3.1. (The associated linear system) Let the

block matrix S be as follows

In this paper the linear system SX B, is called the
associated linear system for FFLS.

In order to prove few theorems in this section we have
to review the operation block matricessince the
techniques used for manipulating block matrices are
similar for ordinary matrices. As an applicatiorthe
elementary row or column operations for ordinary
matrices can be generalized to block or partitioned

1.By interchanging two block rows or columns.

2.By multiplying a block row or columns from the left
or right by a non-singular matrix of appropriate size.

3.By multiplying a block row or column by a non-zero
matrix from the left or right then add it to another row
or column.

AO0O
s=(mao],
NOA
where A M and N square matrices are in common size matrices as followsf]:
n. Also let
X
X = VeqX’ y? Z) = y b
z
and,
b
B=Vedb, h,g)=(h],
g

where Xy, z b, hand g are vectors of n components.
We will appoint nevdn x 3n linear system,

SX=B, (18)
in matrix form
AOO

M A0 | Vedx,y,z) = Vedb,h,g), (19)
NOA

hence the new linear system can be written by:

As such there is a necessity to show the relation
between the solution for the associated crisp system in
Definition 3.1. and FFLS. Therefore the following two
statements based on the techniques for block matrices
reviewed:

—The J x 3n crisp linear system inl@) can be uniquely
obtained the solutioiX, if and only if the matrixSis
nonsingular.

—Are the components ofr8dimensional crisp solution
vector X in (20) representing a corresponding
solution X of fuzzy system? In other wordsgs the
solution forSX= B also a solution for FFLS.

AOO X b The next theorem determines when crisp maS8iis
MAO yl=1|h (20)  nonsingular.
NOA z g
h Theorem 3.1. The block matrix S in 18) is
where, non-singular if and only if the matrix A in1Q) is
a ... aln) non-singular.
A= : I
T Proof
@n1 -+ Gnn Since A, M and N are square matrices in common
ordern, we can easily make the matr8a diagonal block
My ... Min matrix by subtracting the first row multiplied by
M= Do ) MA~! from the second rowand subtracting the first row
Ma1 -+ Man multiplied by NA~1 from the third row as follows:
AOO AOO
fut - Min s=(MA0|=[0A0]| =5
N=1[ : s NOA 00A
fng ++* M Now, we will expandS; through 3 block matrices of
order H1x 3n, (E;, Ep, E3) where
X1 Y1 Z
X= Y y: : ) Z= : ’ A O O
' : : E;=(01,0 ],
Xn Yn Zn 00I,
by h g1 1,00
b=1 1], h=|:], 9=]|": E,=| 0AO |,
bn hn On 00Iy
© 2014 NSP
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Ih 00
Ez=1 01,0 |. the solution of SX=Biis
00A A—lb
Hence
= A1 (h— MA—lb) ,
S = E;E;E3.
Clearly, A1 (g—NA1p)
then,
S = [S1] = |Ea B2 [Es| = |A]® i
Therefore X
S # 0 if and only if |A| # 0. Ath—-AMA D |=]|Y]. (22)
Moreover 1 CInA-1
' A *g—A *NA-b z
S/ = IAP. (21)

Now, from (14) we can gek, y andz by multiplying

i -1
And this concludes the proof. each equation bj™*,

x=A"1p,
Now we will study the equivalency between the fuzzy
system and the associated crisp linear system. y+A IMx=A"lh, (23)
Theorem 3.2. The unique solutions of SX B in (18) 74+ A-INx=A"1lg.

andA® X = B in (12) are equivalent.

By substitutingc = A~1bin second and third equations
Proof Let A be an invertible matrix in3). A row g ATl A1
reduced echelon form of augmentéd |B) is employed y+ATMATb=Ah,

he solution.
to compute the solution 7+ A-INA-lb = A-lg

Hence after rearranging the equations we get

y=A1lh—-AMA b,
S=|MAO0:h|— (24)
z=A"1g— A" INA1Db.

AOO ‘b

NOA g
: Thenx, y andz are equivalent to the proposed solution
of P— X for P—FFLSin (22).
| 00 Al Corollary 3.1. If the associated linear system does
not have a unique solution then the FFLS does not have
MAO : h =5 one either.
NOA g The following examples show that the solution can be
: obtained directly formZ0).
_ Example 3.1. Find a positive solution for the
100° Al following FFLS [12].
. _ -1 _ (67 17 4)® (X17 Y1, Zl)@(sv 23 2)®(X27 Y2, 22)@
S [0AQ0 T h=MATD | =S (3, 2, 1)® (xa, ya, z3) = (58, 30, 60),
00A  g-NA"D (12, 8, 20) ® (x1, yi, z) ® (14, 12 15 ®
: (X2, Y2, ) ® (8, 8 10 ® (X3, VY3 2Z) =
(142, 139, 257), (247 :I.O7 34) [024] (X]_, Vi, Zl) D
100" Alp (32, 30, 30) @ (%2, Y2, 2) @ (20, 19, 24) ®
(X3, y3, z3) = (316 297, 514).

$—]|010: A h-MATID) | =S, _
' Where% = (x,¥i,z) >0,i=1,23.
00l Al (g — NAflb) Solution
: The system may be written in matrix form,

© 2014 NSP
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(6,1,4) (522) (321)

Since|A| # 0, according to Theorem 3.115 # 0.
(128,20) (14,1215) (8,8,10)

Then the associated linear system is giversby~= B :
(24,10,34) (3230,30) (20,19,24)

6 53000000\ /x
(X1, Y1, 21) (58,30,60) 12148 0 0 0 0 0 O] [ %
2432200 0 0 0 O O X3
(%2, ¥2, 22) | = | (142139257) 122653000]|wn
812812148 0 0 O 7
(X3, ya, 23) (31@297,514) 103019243220 0 0 O] | v
4210006253 z
where, 201510 0 0 0 1214 8| | 2
6 5 3 34302400024322}1) Z3
A=|1214 8 |, 58
24 32 20 142
12 2 4 2 1 316
M=| 812 8 | ,N=(201510]. 30
10 30 19 34 30 24 =1 139 |,
58 30 60 297
b=|142|,h=[139], 9= 257], 60
316 297 514 257
514
X1 Y1 )
X= <X2> Y= (VZ) 2= (22> : the crisp solution can be obtained by only computig:
X3 Y3 Z3 s1B:
The associated linear system can be constructed
by SX= B, whereS, X andB are appointed as follows : X1 4
A0O %o 5
S=|MAO |, X3 3
NOA Vi 1
also,
X1 X = Y2 = % , or
X2
(x3) Y3 %
X 72} 3
Y1
X=Vedx,y,z)=|y | = (Y2) ) 2 2
Y3
z z5 1
Z
Y}
Z3 X1 4
X2 5
58 X3 3
142
316 y1 1
b X=||y2| |=]1]05
30 Y3 0.5
B=Vedb, h,g)=| h| = 139 .
297 1 3
g Z2 2
60 Z3 1
257
514 Then the fuzzy solution is

© 2014 NSP
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X1 (X1, Y1, 1)

X = XZ (X27 Yo, ZZ)

(X3, ¥3, Z3)

(4,1,3)

(5,052) |,

(3,05,1)

whereX is a unique solution according to Theorem
3.2.

Now, the third question to be answered.

—Does the exact solutioX satisfying (L2) is a positive
fuzzy solution for any FFLS?

Before answering the above questidwo examples
are illustrated here for non-fuzzy solution and non-puesiti
fuzzy solution.

Example 3.2. Find a positive solution for the

following FFLS.

(5,0, @ (X1, Y1, 22)D(6, 1, 2)® (X2, Y2, 22)
— (50, 10, 17),

(7, 1, 0)® (X1, Y1, 21)D(4, 0, )@ (X2, Y2, Z2)
— (48 5, 7).

Whereg = (X,Yi,z) > 0,1 =12

Solution
The system may be written in matrix form,

(57 07 1) (67 17 2) (X17 Y1, Zl)
(77 13 0) (47 07 1) (X27 Y2, 22)

(50, 10, 17)
\ (4857 |

and,

Hence, the associated linear system is giveBXy- B

By computingS—1B then,

X1 4
X2 5
Y1

Y2

V4l 0
V&) %

Hence the unique solution of the fuzzy system is

)~(l = (Xla Y1, Zl) = (45 - %_7 )a
Ko = (X2, Y2, 22) = (5, . 3)

Sincey; = —+ is non-positive the solution is a
non-fuzzy solution even thougl, |A| # 0. However the
vector solutionX is unique but X is still is a non-fuzzy
vector.

Example 3.3. Find a positive solution for the
following FFLS.

(317 O4a 01) ® (X17 Y1, Zl) S¥) (2, 06, 04) X
(Xz, Y2, 22) = (17.3, 14.75, 7.86)7

(8,0.6,0.7)®(x1, y1, 1) © (6.9, 0.2, 0.1) ®
(X2, Y2, 22) = (516, 3291, 22.72).

Where% = (X,Vi,z) > 0,1 =1,2.

Solution
The system may be written in matrix form,

© 2014 NSP
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((3.17 04,0.1) (2,06, 04) )

(8,06,07) (6.9, 02 0.1)

(x0.y1,21) (17.3,14.75,7.86)
(xey222) )\ (516,3291,2272) )

Then,

0.4 0.6 0.104
M= (0.6 o.2>’ N= (o.7 0.1)’
b (173 |, _ (1475 _( 786
=\s16) "= \3201)97 (2272 )"

and,
(X1 (X1 N st
< (e)v= (i) == (2)

Hence, the matri§Sis appointed as follows
31 2 00 00
8 69 00 00
0.4 06 31 2 0.0
0602 8 69 00
0104 00 31 2
0701 00 8 69

The vectoB is appointed as follows
17.3
516

14.75

B= (32.91)

7.86
22.72

The crisp solution of systend = S 1B is
X1 3
X2 4

X — Y1 _ 3.0269
N Y2 - 0.883302

7 0.126902
Z 2.7833

Then the fuzzy solution is

%1 = (x1, y1, z1) = (3, 3.0269 0.126903,

% = (X2, Y2, Z2) = (4, 0.883302 2.7833.

Sincex; —y1 # 0, then(xi, y1, z1) is a non-positive
LR fuzzy number.

Therefore we have to determinethe conditions for
known positive matrixA and positive vectoB to have a
positive solution. In the following sectiorthe conditions
for FFLS to have positive solution are discussed.

3.2 A necessary and sufficient conditions for
FFLS to have positive solution

A necessary and sufficient conditions for FFLS to have a
positive solution are investigated in the two following
cases:

Case 1:The conditions on botA andB.
(Dehghan et al. 12]) studied this case using the
following theorem.

Theorem  3.3. (Dehghan et al. 12)

letA= (A, M, N), B= (b, h, g) >0, and

i— Centric matrix A be an inverse-nonnegative.
i.e. Al existand AL > 0.

i— h>MAb, g>NAband
(MA™t+1)b>h.

Then the system has-PX.

Literature review revealed that no
investigation, was carried out whether the- FFLS have
P — X or not, even though it is mentioned in most of
studies for (P — FFLS). Although [12] illustrated an
example of non-fuzzy solution, they couldn’t apply their
theorem.

Therefore we can summarize the weakness of this
theorem in two points:

1. The further conditiofMA~1+1)b > his used to proof
X—y>0inX=(x,Y, z).

The following alternative proof shows thaMA=*+1)b >
his redundantand must be omitted.

b>0andA™1>0=X=A1b>0,
x—y=(A"tb) — (A"th— A~'MA~1b)
=Ab-Ath+AMA 1.

Hence:

© 2014 NSP
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X— y A‘ [(b—h)+ (MA1b)]
“H(o—h)+ (Mx)],

_ _ _ 0, 0, 01 ® (X, y1,227) ® (0, 0O, 06) ®
(b—h)>0 sinceb = (b, h, g) is non-negative fuzzy (X2, Y2, 22) @ (0, 0, 0.2) ® (X3, Y3, Z3) ® (4, 2, 0.2) ®
number vector and 1, Mx > 0, (Xa, Ya, z2) = (16, 8.4, 14.9),

thenx—y > 0.

However (MA™1 +1)b > h is already satisfied by the (11, 0, 0)® (X1, Y1, z1) ® (0, 0, 0.2) ® (X2, Y2, Z2) B
hypothesisA~1 > 0, (0, 0, 0.11) ® (X3, Y3, 3) & (0, 0, 0.13) ® (X4, Y4, Z1) =

55, 7.2, 42.07
(MA™t+1)b—h= (MA"*b+b) —h ( )
= (MA~1b) + (b—h),
(07 Oa 0'5)®(Xla Y1, Zl)@(sa 37 0‘6)®(X27 Y2, 22)@
sinceA~1 >0, M, b>0and(b—h) >0, (0, 0, 0.9) ® (X3, Y3, ) @ (0, 0, 0.17) @ (X4, Ya, Z3) =
then(MA~1+1)b—h>0. (95, 60.5, 19.83),

2. The conditionA~? > 0 is very powerful as is shown in
the following theorem. (0,0,09 ®
0.7

Theorem 3.4 (Minc, [32]) The inverse of a nonnegative g 0 6)

matrix A is a nonnegative if and only if A is a
generalized permutation matrix.

Therefore the restrictionA~! > 0 discussed in our
case(P— FFLS) by the following result.

)@ (X1, Y1, 21) ®(0, 0, 0.9) ® (X2, Y2, 22) ®
® (X3, ¥3, z3) @ (0, 0, 0.3) ® (X4, Ya, ) =
5).

Where% = (x,Yi,z) >0,i=1,....4

Solution

Corollary 3.2. If the matrix A in (L3) is a generalized The system may be written in matrix form,

permutation matrix then the right spread matrix

. : . . AOO X b

M is also a generalized permutation matriand _|n
must y ’

have the same  structure  of '\N/l '82 . o g
A i.e.Vaj = (aij, mj, nij),
o where,
wheng =0, thennmy =0, Vi,j=1,...,n
0004 00 0 2
Proof A 11000 M — 0000
The proof is obtained easily by contradiction. ~10500)]”" |03 00])"
Let3 mj # 0, andaj; = 0. Then 0020 00050
ajj —mj # 0. This led to&j as a negative LR fuzzy
number  which  contradict ~ with  the 0106 02 02
hypothesisvaj >0 in P—-FFLS And this 0 02011013
concludes the proof. N=1|0506 09 017
According to Theorem 3.4. and Corollary 321 > 0 is 0909 07 03
only satisfied in our case dP — FFLS) when:
1. The entries of the matricés= (aj);';_, andM = 0L00
(mj){fi:l are all zero except for a single positive 0 16 1g
entry in each row and column. Al= 00 % 1
2. The right spreadnj # 0 only when &; # 0. 100 20
4
In order to point out the weakness of the previous
theorem according to the discussion abgveve can Also,
illustrate an example in following form odjj to satisfy 16 8.4 14.9
Theorem 3.3. b 55 he 7.2 g 4207
(0, 0, nij), whereajj = 0. 95 | 605 [ 1983 |-
&j = 10 4.3 26.5
(aij, mij, nij), whereajj # 0.
X1 Y1 Z
X2 Y2 4]
Example 3.4. Find the positive solution for the el BV D Al IRVA RS (PR
following FFLS. X4 Ya Z
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SinceA~! > 0, we can apply Theorem 3.3.

04
7.2
_MA-1p—
h—MA b= 35 | 2 0,
18
12
g—NA1b= 377?) >0,
0.2
15.6
(MAL41)b-h=| 78] >0,
82
Then the crisp solution X is obtained by
X =S 1B, where
X1 5
X2 19
X3 5
X4 4
V1 0.65454
— Y2 _ 0.7
ol B v I 0.9
Ya 0.1
7 3.3818
vz 0.15
Z3 0.1
Z 0.3

Hence the® — X is
%1 = (X1, Y1, z1) = (5, 0.654545 3.38182,

%2 = (X2, Y2, 22) = (19, 0.7, 0.15),
%3 = (X3, Y3, z3) = (5, 0.9, 0.1),

X = (Xa, Ya, 24) = (4, 0.1, 0.3).

To overcome these weaknesses in Theorem 3v8.

provide the following theorem without the powerful

conditionA=1 > 0.

Theorem 3.5. The P— FFLS has P- X when center
matrix A is invertible that is, if

i— A11+MA Hb>Ath,
i— A th>A1(MA )b,

i — A~tg> A"INA"1b.

Proof
y, z> 0 can be easily obtained by comparing 2Q)(
y > 0 is obtained fromA~th > A~Y{(MA~1)b.

Similarly,
z> 0is obtained fromA~1g > A-INA™L.

Now, to complete the main contribution in this
theorem we have to showx —y > 0 can be obtained
without A~1 > 0.

x—y=(A"tb) — (A~th— A"IMA-1pb) =
(A~b+A"IMA-1b) — (A th),

and,

(A"b+AMA1b) = A 1 (b+MA 1b) =
A1+ MA )b,

thenx—y > 0ifand only ifA=*(I + MA~H)b— A~1h >
The proof is completed.

Now, we apply Theorem 3.5 for Example 3.3.
SinceA™! # 0, Theorem 3.3. fails to investigate this
system:

act_ (31 2\ _ (1280 03710
=\ 869) ~|-1484-03710

By applying(i) in Theorem 3.5.

6.64378
-1 -1 —
A (+MA )b<o.152134)’
and,
6.67069
—1ph —
Ah= (—2.96456)'
Then,
~0.026901
-1 -1 —1h —
AL(1 + MA L) b— A h( 0.0269 )
Hence,
A1l + MAYHb ¥ A~'h, because 4378 %
6.67069

Finally, P—FLLSdoes not ha®— X.

Case 2:The conditions o whenB are arbitraries.
In this case the necessary and sufficient condition in
positive fuzzy matrixA to have P — X when B is an

arbitrary positive fuzzy vector. (Friedman et all4])

investigated this case for FL.$0 we will follow their

technique in our case. To the best of our knowledhés
case has not been studied for FFLS.

Lemma 3.1. If S1 exist it must have the same

structure as S, i.e.

© 2014 NSP
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A 0O
Lemma 3.2. The matrix S is an
St=|MAO|, inverse-nonnegativef and only if the centric matrix A be
an inverse-nonnegative and the spreads matrices M and
N" 0 A N are zero matrices i.e. ST > 0, if and only if
-1 A _
and, A >0, andA= (A 0, 0).
_ a1l
A=A, Proof
By Lemma 3.1.
M’ = —AIMA1 Y
A 0O
N = —AINAL
Si=| MA O
Proof
. _ N 0 A
Let (SI) be a rectangle block matrix,
At 0 0

AO0O" 100
_ | _a1pma-1 a1
(Shy=|mMAo0: 010, ATMATAT 0,
~1NA-L =
NOA 00l —ATNAT 0 A
' A > 0ifand only ifA~1 > 0.
using Theorem 3.1S 1 is exist therA~1 is exist.
By multiplying each rows b1, M’ >0 if and only if —A~*MA~1 > 0 implies thatM =
0.
Il 00°A1 o0 O
N’ > 0 if and only if —A"INA~1 > 0 implies thatN =

AIM | 0: 0 At o |, 0.
The proof is completed
AINOI 0 0 A1l The following result answers case 2.
after that subtracting the first row multiplied by Theorem 3.6. If A~1 > 0 and the spreads matrices
A-M and AN from the second row and third M, N are zeros then the unique solution X of SX B
row, respectively. represents a positive LR fuzzy number vecfofor an

arbitrary positive LR fuzzy number vect®rin Ao X = B.
loo: Al 0 0

Proof
010: -AmAatAa?t 0 |, B > 0 by hypothesis implieB > 0.
' By Lemma 3.1,
001  —AINAT 0 A?
: Al>0andM =N=0thenS !> 0.
then, Hence
A 0O
SIB>0=X>0=1y,z>0.
Sstl=|MAO0], .
ThenX is LR fuzzy vector.
N 0 A N
Now the nonnegative of is obtained as follows:
where, .
/] _ —
A=A, x—y=A1p—AlhtAMA b,
=A~1(b—h), sinceb > h
_ -1 -1 ) i )
M= -A"MA"", (25) thenx—y > 0.
N = —AINAL
© 2014 NSP
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X1 by

_ This theorem shows that the conditions in X2 07)
A= (A, M, N) to let B an arbitrary positive vector are X3 b3
Al>0andM =N=0inA= (A M, N). y1 hy
Y2 | =] h2

Corollary 3.3. The unique solution X of SX B Y3 hs
represents a positive LR fuzzy number vector for an 71 o1
arbitrary a positive LR fuzzy number vectiif b2 02
i— Al>0, z3 g3

il — The FFLS is a LR-FLS.
By computingS B, then

Proof
According to previous Theorem 3,6. « %2
~ 1
M =N=0thenA= (A 0, 0). b
~ bg
Hence the fuzzy matriA represents by only crisp X2 7
matrix A. by
Unfortunately the guarantee ok to be nonnegative X3 3
is very small as is shown in Theorem 3.4. hy
Now we illustrate an example for this case under the V1 x
previous conditions.
X=1Y2|= %
Example 3.5. Consider the following FFLS. Find the
positive solutionwhenB is an arbitrary positive LR fuzzy Y3 %1
vector. ,
(3,0, 0)® (xa, y1, 21) = (b, hu, @v), ' %
z
(4,0,00® 0%, Y2, 2) = (b2, o, ), ? ¢

Z3
(77 Oa 0)®(X3a Y3, 23) = (b37 h37 g3) %L

The general solution for an arbitrary fuzzy veckbiis
WhereXi = (x,Yi,z) > 0,1 =1,23.

~ b, h
X1 = (X1>Y1721) = (%7%7%) )

Solution
The system may be written in matrix form,
%o = (X2,Y2,22) = (@ L ﬁ)
(0,0,0)(0,0,0)(3,0,0) 1 Y25 70707 )
(4,0,0) (0, 0,0)(6,0,0) %= (xa.v3.20) = (%.%.%).
(0,0,0) (7,00 (0,0,0)
(X1, Y1, 71) (b1, h1, 91) Some particular solutions of this FFLS are:
(%2, Y2, 22) | = | (b2, ho, @) |- —~When
h
(X3a Y3, 23) (b37 h3, g3) (b17 1, gl) (57 37 8)
The associated linear systeBX = B can be obtained B=| (b2, 2, 02) | = | (3, 2 1)
as follows:
003000000 (b3, hs, g3) (4,3, 1)
400000000 then
070000000
000003000
000400000 (x1, Y1, 1) 3,3, %)
000070000 ~
000000003 X=|(xys2)|[=|(737)
000000400
000000070 (%3, y3, 23) (5,19
© 2014 NSP
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—When

(b1, hy, 01)
(b2, h2, g2)
(b3, h, g3)

Xla Yl7 Zl
X = (X2, Y2, 22) | =
(X3, Y3, Z3)

then

339
(3 3 3)

—When
(b1, hy, 1) (1,11
B=| (b, ho, 2) | = ((37 3,3
(bs, h3, 93) (6, 6, 6)

then

(X1, Y1, 22) (%, z§1v %)
X=|(eyr2) [=](55%9
(X3, y3, 23) (3 % %)

We note that the solution must be positive LR fuzzy
vector for any arbitrary right hand side positive fuzzy

vectorB.

3.3 Solution of LR-FLS

In this section we will show thé& — X for positive LR

FLS (P—LR—FLS) can be obtained by supposing the

spreads matrices are zeliee.M =N =0n

AOO X b
00A z g

The solution of° — LR— FLS can computed easily or
directly by

A necessary and sufficient condition For- LR—FLS
is neededand according to Corollary 3.3. this method can
obtain the solution for an arbitrary vector positiBes is
shown in Example 3.5. Other examples B+ LR—FLS
are illustrated in Example 3.6. and for ¥0LO FFLSin
Example 3.7.

Example 3.6. Find P— X for the following LR -FLS.
10x1+ 9% = (120 4, 9),
{ x1+8x2 = (80, 1, 5).
WhereX = (%,Yi,z) > 0,1 =1,2.

Solution
The system may be written in FFLS form,

(10,0, 0) @ (X1, Y1, 21) D (9, 0, 0) @ (X2, Y2, Z2) =
(120, 4, 9),

(1,0,0)®(x1, Y1, 1) © (8, 0, 0) @ (X2, Y2, Z2) =

(80, 1, 5).
Then SX=Bis
109000 X1 120
180000 Xo 80
0010900 yi | 4
001800 yo | 1
0000109 z 9
000018 b3 5

The crisp solutiorX is obtained byx = S1B,

240

X1 71
680

X2 71
23

Y1 b

X = —

Y2 7%
Z 27
1 71
2 41
71

Hence the positive solution is

—_ a1
A b7 U — — &) ;3 ;7
X1 = (X17 Y1, Zl) - ( 710 710 71)7
y:A_lh7
Z= Ailg. )~(2 = (X27YZ722) = (@10 % %)
@© 2014 NSP
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Example 3.7. Find P — X for the following (8,2,7) ® (x1,y1,21) @ (7,2,5) ® (x2,¥2,22) @
10x 10FFLS. (6,4,1) ® (x3,¥3,23) © (5,2,5) @ (X4,Y4,2) ® (4,3,7) ®
(Xs5,¥5,25) @ (9,2,8) ® (X.,¥6,26) @ (8,3,3) ®
(5707 1) Y (X17Y1721) 53] (6, 3,0) ® (X2>y2722) S2) (X y7,Z7) S5 (7 6v 0) ® (X87y87 ) @ (87472) ®
(2,2,1) ® (X3,¥3,23) @ (3,2,2) @ (Xa,y2,24) © (4,1,3) @  (Xo,Y¥0,20) B (7,3,1) @ (X10,Y10, Z10) = (508 432 565),
(%5,¥5,25) @ (8,3,4) @ (X,¥6,2) @ (7,0,5) ®
(x7,y7,27) @ (9,2,6) ® (Xg,¥8,28) @ (83,4) ®
(%9,¥0,29) © (9,1,5) ® (X10,Y10, 210) = (450, 297,473), (9,3,8) ® (x1,¥1,21) @ (8,2,4) ® (X,¥2,22) @
(7 4 9) oY (X37YB7Z3) D (Ga 17 8) & (X47y4724) SB) (57 27 8) oY
(4731 O) ® (X17Y1721) @ (47 17 8) ® (X27YZ>ZZ) S (X5ay5a ) @ (4a 33 8) ® (XG»YG»ZG) S (3,278) ®
(6,2,8) @ (X3,¥3,23) ® (7,1,3) @ (Xa,y4,22) ® (8,0,6) @  (x7,¥7,z7) © (9,1,3) ® (X8,¥8,28) @© (6,4,1) ®
(Xs,Y5,25) & (4,1,7 (%,¥6,26) @ (5,2,6) ®  (X9,Ys,20) & (6,1,3) ® (X10,Y10,210) = (477,327,700).
(x7,¥7,z7) © (9,L,3) ® (x8¥8,28) © (7,35 ®
(X9,Y0,29) @ (8,3,1) @ (X10,Y10,Z10) = (476,303 548),
WhereXi = (x,Yi,z) >0,i=1,...,10.
(22,3) ® (x1,y,z21) @ (7,35 @ (X,Y2,22) @ Solution
(6,4,1) ® (X3,¥3,23) © (4,2,2) @ (X4,Y4,21) ® (4,0,2) ® The system may be written in matrix form,
(%s5,¥5,25) @ (3,1,5) ® (X.Y¥6,.26) @ (4,4,8) ®
(X75y7az7) Y (5 2) 8) X (XS,YS,ZS) S7] (6a273) ® AO0O X b
(X9,Y9,29) ® (7,2,2) ® (X10, Y10, Z10) = (359,293 452), M A0 yl=1|h].
N OA g
(3,26) ® (x1,y1,z2) @ (6,1,3) @ (X,¥2,22) © where,
(8,0,0) ® (x3,y3,23) @ (5,2,1) ® (X4,¥a,24) @ (8,4,1) ® 562348798
(x5,y5, ) © (8,1,5) ® (X%,¥s2%) © (4,48 © 446784597 §
(x7.y7,27) @ (528) @ (xa¥8,28) @ (6,23 ® 2764434567
7 2, )® (Xlo, Y10 ZlO) = (359 29354 2)
(¥9, Y0, 20) & (7, : ’ : 3685885456
4321376345
A=15432863234|
(4,3,8) ® (X1,y1,z1) ® (3,29 @ (X,¥2,22) @ 6573854723
(2,1,3) ® (x3,¥3,23) @ (1,0,0) ® (x4,y1,24) ® (3,1,5) ® 7654376979
(%s5,¥5,25) & (7,6,2) ® (X,¥6,28) @ (6,0,2) ® 8765498787
(x7,y7,27) @ (3,1,8) ® (X8,¥8,28) @ (4,2,6) ® 987654396
(X9,Y9,29) @ (5,2,9) @ (X10,Y10,210) = (279 236,562),
032213023
(5,14) @ (x,y1,z2) © (44,8 @ (X,Y2,22) © 3121012133
2342014222
(3a 27 8) ()(37)’3723) @ (27 17 3) (X4 Y4,Z4) @ (87 57 4) ®
2102411133
(Xs,Y5,25) & (6,2,8) (X,Y6,26) @ (3,1,5) ®
3210160122
(x7,y7,z7) D (2 2a3) ® (X8 Y8, 23 ) S (37272) & M= 1421521223|°
(Xg,yg, )EB (47 37 ) (X107Y107 ZlO) (3003 2807519)7 0232133511
5541212352
2242323643
(6,0,3) ® (x1,y1,22) @ (521) ® (X,¥2,22) © 324123214 1}
(7,3,4) ® (X3,¥3,23) @ (3,2,4) @ (X4,Ya,24) ® (8,1,3) ®
(X57y57 ) D (57 3a 1) ® (X6>YG726) S (47378) ®
(Xn.yr,27) ® (1,500 @ (%Ys,28) @ (21,3 ® 101234564
(Xo,¥0,29) ® (3,1,3) ® (X10, Y10, Z10) = (384,294, 423), 0883676351

3512258832
6301154727
8930522869

(7,51) ® (x,y1,2) @ (6,54) @ (X,¥2,22) © N = .
(5,4.5) © (x,Y3,23) © (4.1,8) ® (xa.ya,21) & (3,2.8) @ AP
(X%5,¥5,25) @ (7,1,3) @ (X,¥6,25) © (6,2,8) ® 1458838147
(X7,¥7,27) @ (9,3,1) ® (Xs,Vs23) & (7,54) ® 7515783021
(X9,Y9,29) @ (9,2,7) ® (X10, Y10, Z10) = (471,406,628,

8498888313
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450
476
359
427
279
300
384
471
508
477

X1
X2
X3
X4
X5
X6
X7
Xg
X9
X10

Then the crisp solutioX is obtained byX = S 1B,

X1
X2
X3
X4
Xg
X6
X7
Xg

X9
X10

Y1
Y2
Y3
Ya
Y5
Yo
y7
Ys

Y9
Y10

297
303
293
293
236
280
294
406
432
327

Y1
Y2
Y3
Y4
Ys
Ye
y7
Y8
Yo
Y10

OO ONOO O

NWOITOWWONEN

RPONPMIONEL, AR O

473
548
452
480
562
519
423
628
565
700

Al
Vel
Z3
Z
Z5
Z5
Z7
Z3

Z9
210

Then the fuzzy solution is

(X1,Y1,21) (9,2,9)
(X2,Y2,22) (6,1,1)
(X3,Y3,23) (8,2,4)

(X4, Y4,24) (7,0,1)

. (Xs,Ys,25) (9,3,2)
e (X6, Y6 26) B (4,3,5)
(X7,¥7,27) (9,6,4)

(X8, Y, 28) (8,5,2)

(X9, Yo,29) (6,3,9)
(X10,Y10, Z10) (9,2,1)

4 Conclusion

Positive solution of fully fuzzy linear systems, where the
coefficients are postive, can be solved by classical
methods of linear algebra through Gauss elimination
method, Cramer’s rule, Cholesky method, decomposition
method, and some other iterative methods. These
computational methods have many disadvantages such as
the large number of iterations, finding more numbers of
determinants or inverse of many matrices, and large
number of computational steps. In order to solve the fully
fuzzy linear system, we proposed a model based on the
representation of all matrices in one block matrix then
making two computational steps by finding the inverse of
the block matrix. After that, the method was used to solve
fully fuzzy linear systems and the consistency of fuzzy
solution can be checked by an associated linear system.
The method was employed to solve LR-FLS.
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