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Abstract: In Appadu(2012d), we have used the technique of Minimized IntegratedExponential Error for Low Dispersion and Low
Dissipation, (MIEELDLD) to construct high order methods with low dispersion and low dissipation properties which approximate the
1D linear advection equation. Modifications to the spatial discretisation schemes constructed by Lockard et al. (1995), Zingg et al.
(1996) and Bogey and Bailly (2002) have been obtained and also a modification to the temporal scheme developed by Tam et al. (1993)
has been devised. These novel methods obtained using MIEELDLD aremore effective in terms of shock-capturing properties as they
require less number of points per wavelength than the existing optimized methods for a given accuracy.
In this paper, we perform some numerical experiments dealing with wavepropagation with these novel as well as existing, combined
spatial and temporal discretisation schemes and compare the variation oftwo errors namely the Total Mean Square Error and error
rate with the CFL. The spectral analysis of two optimized methods made up ofspatial discretisation scheme coupled with temporal
discretisation scheme is also studied.
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1 Introduction

The increasing demand by the aerospace, automotive and
other industries for accurate and reliable numerical
models of sound generation and propagation in complex
physical environments has prompted the construction of
new Computational Aeroacoustics (CAA) algorithms.
CAA methods have applications which range from
aircraft noise to ground vehicle noise to noise from
electronic cooling and air-moving devices [9].
In Computational Aeroacoustics (CAA), the accurate
prediction of the generation of sound is demanding due to
the requirement for preservation of the shape and
frequency of wave propagation and generation. It is
well-known [7,14] that in order to conduct satisfactory
computational aeroacoustics, numerical methods must
generate the least possible dispersion and dissipation
errors. In general, higher order schemes would be more
suitable for CAA than the lower-order schemes since,
overall, the former are less dissipative [8]. This is the
reason why higher-order spatial discretisation schemes

have gained considerable interest in computational
aeroacoustics.

2 Organisation of paper

This paper is organised as follows. In section 3, we
describe briefly the technique of Minimised Integrated
Exponential Error for Low Dispersion and Low
Dissipation, (MIEELDLD) when used to optimise
parameters in numerical methods. In section 4, we
describe how the technique of MIEELDLD [5] has been
extended to construct low dispersion and low dissipation
methods in a Computational Aeroacoustics framework
and we list the coefficients of the spatial discretisation
methods constructed by Lockard et al. [11], Zingg et al.
[16], Bogey and Bailly [6] and also of the temporal
discretisation method of Tam et al. [15]. In section 5, we
present the results of a numerical experiment dealing with
wave propagation and also obtain the variation of the
Total Mean Square Error [13] and the error rate vs the
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CFL and this helps to obtain a good estimate of the
optimal CFL. In section 6, we obtain the variation of the
relative phase error vs CFL for two optimised numerical
methods. Section 7 includes the conclusion.

3 The Concept of Minimised Integrated
Exponential Error for Low Dispersion and
Low Dissipation

The technique of Minimized Integrated Exponential Error
for Low Dispersion and Low Dissipation(MIEELDLD)
has been introduced in Appadu and Dauhoo [1]. It
basically enables us to choose the optimal parameters
from two conditions namely;
(i) small amounts of dissipation when added can help to
curb dispersion [10].
(ii) the dissipation and dispersion errors must both be
small in a numerical scheme to yield efficient
shock-capturing properties.
We now describe the technique of Minimized Integrated
Exponential Error for Low Dispersion and Low
Dissipation, (MIEELDLD). Suppose the amplification
factor of the numerical scheme when applied to the 1-D
linear advection equation, given by:

∂u
∂ t

+β
∂u
∂x

= 0, (1)

is
ξ = A+ IB.

Then the modulus of the Amplification Factor,(AFM)
and the relative phase error, (RPE) are calculated as:

AFM = |ξ |,
and

RPE =− 1
rw

tan−1 B
A
,

wherer andw are the CFL and phase angle respectively.
The quantities|1− RPE| and (1− AFM) measure the
dispersion and dissipation errors respectively.
For a numerical scheme to have low dispersion and low
dissipation, we require

|1−RPE|+(1−AFM)−→ 0.

Also when dissipation neutralises dispersion optimally, we
have,

∣

∣

∣
|1−RPE|− (1−AFM)

∣

∣

∣
→ 0.

Thus on combining these two conditions, we get the
following condition necessary for dissipation to neutralise
dispersion and for low dispersion and low dissipation
character to be satisfied:

eldld =
∣

∣

∣
|1−RPE|− (1−AFM)

∣

∣

∣
+

(|1−RPE|+(1−AFM))−→ 0, (2)

where eldld denotes error for low dispersion and low
dissipation.

If we now plot the quantity, eldld vs RPE vs AFM,
[5], we can see thateldld = 0 when RPE = 1 (no
dispersion) andAFM = 1 (no dissipation) and this makes
sense. However, the eldld takes a constant value of 2
whenRPE = 2 independent of the value of the AFM and
this presents a drawback of the measure. Therefore, we
present a modification to the quantity, eldld which is

eeldld = exp
(∣

∣

∣
|1−RPE|− (1−AFM)

∣

∣

∣

)

+

exp(|1−RPE|+(1−AFM))−2−→ 0, (3)

and this quantity goes to zero when|1− RPE| → 0
and(1−AFM)→ 0.
The eeldld denotes exponential error for low dispersion
and low dissipation.

Only one parameter involved
If the CFL is the only parameter, we compute

∫ w1

0
eeldld dw,

for a range ofw ∈ [0,w1], and this integral will be a
function of r. The optimal CFL is the one at which the
integral quantity is closest to zero.

Two parameters are involved
Suppose, we now have two parameters, sayλ and r. In
that case, we can compute

∫ r1

0

∫ w1

0
eeldld dw dr, (4)

and this integral will be a function ofλ and we can obtain
the optimal value ofλ .
We can also compute

∫ w1

0
eeldld dw, (5)

and this integral will consist ofλ and r. From there, we
can obtain the optimal values of bothλ andr.

Considerable and extensive work on the technique of
Minimised Integrated Exponential Error for Low
Dispersion and Low Dissipation has been carried out in
[1,2,3,4].

4 Extension of MIEELDLD to a CAA
framework

In this section, we describe briefly how the technique of
MIEELDLD is used to construct high order, low
dispersion and low dissipation spatial schemes, which are
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modifications to the methods constructed by Lockard et
al. [11], Zingg et al. [16] and Bogey and Bailly [6].
The spatial derivative proposed by Lockard et al. [11],
Bogey and Bailly [6] is approximated as

∂u
∂x

≈ 1
h

N

∑
i=−N

ai u(x+ ih), (6)

and the coefficients are listed in Table (1).
In the case of the spatial discretisation proposed by Zingg
et al. [16], we have

∂u
∂x

=
1
h

3

∑
i=1

ai (u(x0+ ih)−u(x0− ih))+

1
h

(

d0 u(x0)+
3

∑
i=1

di (u(x0+ ih)+u(x0− ih))
)

. (7)

To simplify things, we abbreviate the spatial schemes
constructed by Lockard et al. [11], Zingg et al. [16],
Bogey and Bailly [6] as Lockard, Zingg and Bogey.
Using MIEELDLD, we have proposed modification to the
existing schemes described by Eqs. (6) and (7) and Table
(1). The coefficients of the modified schemes are shown
in Table (2). For more details on how the novel spatial
methods have been constructed, please refer to [5].

The temporal discretisation scheme proposed by Tam
et al. [15] is given as follows:

un+1−un ≈ k
3

∑
i=0

bi

(dU
dt

)n−i
, (8)

where b0 = 2.30255809, b1 = −2.49100760,
b2 = 1.5743093 andb3 =−0.38589142.

Using MIEELDLD, a modification to the temporal
discretisation scheme proposed by Tam et al. [15] has
been obtained and is termed as Tam-Modified. We refer to
Eq. (8) with the coefficients being;b0 = 2.27963782,
b1 = −2.42224680, b2 = 1.50558014 and
b3 =−0.36297116.

Hence, we have three new spatial discretisation
schemes and one new temporal discretisation method. In
[5], we have obtained the range of stability of the methods
namely: Zingg, Lockard, and Bogey, when they are
combined with the temporal discretisation scheme of Tam
et al. [15]. Thus, we instance in the case of the spatial
scheme of Lockard et al. [11] coupled with the temporal
scheme of Tam et al. [15], this combined method is called
Lockard + Tam. The same type of abbreviation is used for
the remaining optimised methods.
In [5], we have obtained the range of stability of the novel
methods: Zingg-New, Lockard-New and Bogey-New
when they are combined with the temporal discretisation
scheme, Tam-Modified. Table (3) summarises details for
the stability of the six finite difference schemes.

Table 1: Coefficients for spatial discretisation schemes
derived by Zingg et al. [16], Lockard et al. [11] and Bogey
and Bailly [6]

ZINGG LOCKARD BOGEY

a1 = 0.759961 a−4 = 0.010393 a0 = 0

a2 =−0.158122 a−3 =−0.084670 a1 = 0.841570

a3 = 0.018761 a−2 = 0.342031 a2 = 0.244679

d0 = 0.1 a−1 =−1.052681 a3 = 0.059464

d1 =−0.076385 a0 = 0.287274 a4 =−0.007651

d2 = 0.032290 a1 = 0.586162 a−1 =−0.841570

d3 =−0.005905 a2 =−0.098144 a−2 =−0.244679

− a3 = 0.009662 a−3 =−0.059464

Table 2: Coefficients for new spatial discretisation
schemes using MIEELDLD which are modifications to the
schemes designed by Zingg et al. [16], Lockard et al. [11],
and Bogey and Bailly [6] (to 6 d.p)

Zingg-New Lockard-New Bogey-New

a1 = 0.764316 a−4 = 0.011346 a0 = 0

a2 =−0.161452 a−3 =−0.089198 a1 = 0.844367

a3 = 0.019530 a−2 = 0.349998 a2 =−0.248033

d0 = 0.1 a−1 =−1.058267 a3 = 0.061300

d1 =−0.076438 a0 = 0.286601 a4 =−0.008050

d2 = 0.032300 a1 = 0.589520 a−1 =−0.844367

d3 =−0.005863 a2 =−0.1 a−2 =−0.248033

− a3 = 0.01 a−3 =−0.061300

− − a−4 = 0.008050

Table 3: Region of stability for some combined spatial-
temporal discretisation schemes

Spatial scheme Temporal scheme max. value ofr

Zingg Tam 0.23

Zingg-New Tam-Modified 0.24

Lockard Tam 0.20

Lockard-New Tam-Modified 0.22

Bogey Tam 0.20

Bogey-New Tam-Modified 0.21

5 Numerical Results

The test problem we consider is the propagation of the

Boxcar function [12] subject to
∂u
∂ t

+
∂u
∂x

= 0. This test

problem involves discontinuous initial conditions. The
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initial disturbance can be written as
g(x) = H(x + 25)− H(x − 25), for 0 ≤ x ≤ 450, where
H(x) is the Heaviside function.

To evaluate the solution accuracy, we define the error
vector as

−→
E = (E1, ...,EN)

T , whereEi = U(xi)− ui, 1≤
i ≤ N, U(xi) is the exact solution at the pointxi, andui is
the numerical solution at the pointxi andN is the number
of grid points. We compute the Total Mean Square Error,
ET at the different CFL:0.025, 0.05, 0.08, 0.10, 0.125, 0.16
and 0.20 as

ET =
∑N

i=1(U(xi)−ui)
2

N
. (9)

The Total Mean Square Error has been shown to be a
measure of the sum of the dispersion and dissipation
errors [13].
The error rate,enum computed as

enum =
(∑N

i=1(U(xi)−ui)
2

∑N
i=1(U(xi))2

)1/2
,

is also compared for each scheme at some values of CFL.

Table 4: Errors for boxcar propagation at dimensionless
time, t = 400 at some values of CFL using spatial scheme
of Lockard et al. [11] coupled with temporal scheme of
Tam et al. [15]

CFL Total Mean Square Error error rate

0.025 1.4563×10−3 0.1166

0.05 1.4246×10−3 0.1153

0.08 1.4191×10−3 0.1151

0.10 1.3687×10−3 0.1130

0.125 1.3447×10−3 0.1120

0.16 1.3074×10−3 0.1105

0.20 1.3114×10−3 0.1063

The results of the boxcar propagation are shown in
Figs. (1) to (3).

The Total Mean Square Error and error rate of the six
schemes at some different values of CFL are tabulated in
Tables (4) to (9). We can deduce that the scheme
Lockard+Tam and Lockard-New+Tam-Modified are most
effective at CFL 0.20. Fig. (4) shows that the new scheme
has smaller total errors at a given CFL. Also, with
increase in CFL, the general trend is that the errors
decrease.
Both the schemes Zingg+Tam and
Zingg-New+Tam-Modified are more effective at low CFL
as can be deduced from Fig. (5). Also, the new scheme is

Table 5: Errors for boxcar propagation at dimensionless
time, t = 400 at some values of CFL using spatial
scheme Lockard-New coupled with temporal scheme
Tam-Modified

CFL Total Mean Square Error error rate

0.025 1.3951×10−3 0.1141

0.05 1.3622×10−3 0.1128

0.08 1.3566×10−3 0.1252

0.10 1.3053×10−3 0.1038

0.125 1.2821×10−3 0.1094

0.16 1.2491×10−3 0.1080

0.20 1.2598×10−3 0.1084

Table 6: Errors for boxcar propagation at dimensionless
time, t = 400 at some values of CFL using spatial scheme
of Zingg et al [16] coupled with temporal scheme of Tam
et al. [15]

CFL Total Mean Square Error error rate

0.025 1.5121×10−3 0.1188

0.05 1.5378×10−3 0.1198

0.08 1.5410×10−3 0.1199

0.10 1.5998×10−3 0.1222

0.125 1.6383×10−3 0.1237

0.16 1.7499×10−3 0.1278

0.16 1.8033×10−3 0.1297

Table 7: Errors for boxcar propagation at dimensionless
time, t = 400 at some values of CFL using spatial scheme
Zingg-New coupled with temporal scheme Tam-Modified

CFL Total Mean Square Error error rate

0.025 1.3636×10−3 0.1128

0.05 1.3814×10−3 0.1135

0.08 1.3846×10−3 0.1137

0.10 1.4269×10−3 0.1154

0.125 1.4564×10−3 0.1166

0.16 1.5453×10−3 0.1201

0.20 1.5884×10−3 0.1218

more effective at a given CFL.
Fig. (6) shows the variation of the Total Mean Square
Error vs the CFL and for both schemes namely
Bogey+Tam and Bogey-New+Tam-Modified. The errors
decrease with increase in CFL. Moreover, the new
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Table 8: Errors for boxcar propagation at dimensionless
time, t = 400 at some values of CFL using spatial scheme
Bogey and Bailly coupled with temporal scheme Tam et
al. [15]

CFL Total Mean Square Error error rate

0.025 1.5220×10−3 0.1192

0.05 1.4541×10−3 0.1165

0.08 1.4083×10−3 0.1147

0.10 1.3401×10−3 0.1118

0.125 1.2895×10−3 0.1097

0.16 1.2341×10−3 0.1073

0.20 1.2197×10−3 0.1067

Table 9: Errors for boxcar propagation at dimensionless
time, t = 400 at some values of CFL using spatial scheme
Bogey-New coupled with temporal scheme Tam-Modified

CFL Total Mean Square Error error rate

0.025 1.4426×10−3 0.1160

0.05 1.3721×10−3 0.1132

0.08 1.3164×10−3 0.1108

0.10 1.2401×10−3 0.1076

0.125 1.1848×10−3 0.1052

0.16 1.1577×10−3 0.1040

0.20 1.2054×10−3 0.1061

scheme is more effective at a given CFL.

6 Dispersive and dissipative properties of two
high-order numerical schemes

In this section, we study the dissipative and dispersive
properties of two methods and also attempt to locate the
optimal CFL. Single expressions for the two methods
namely: spatial discretisation of Bogey and Bailly [6]
coupled with the temporal discretisation scheme of Tam
et al. [15] abbreviated as Bogey + Tam and our novel
method, abbreviated as Bogey-New + Tam-Modified are
given as follows:

un+4
i = un+3

i − r
(

T1 (S1(u
n+3
i+1 −un+3

i−1 )−S2 (un+3
i+2 −un+3

i−2 )

+S3 (un+3
i+3 −un+3

i−3 ))+T2 (S1(u
n+2
i+1 −un+2

i−1 )−
S2 (un+2

i+2 −un+2
i−2 )+S3 (un+2

i+3 −un+2
i−3 ))

+T3 (S1(u
n+1
i+1 −un+1

i−1 )−S2 (un+1
i+2 −un+1

i−2 )

+S3 (un+1
i+3 −un+1

i−3 ))+T4 (S1(u
n
i+1−un

i−1)

−S2 (un
i+2−un

i−2)+S3 (un
i+3−un

i−3))
)

, (10)

In the case of Bogey+Tam, we haveT1 = 2.30255809,
T2 = −2.49100760, T3 = 1.57434093,
T4 = −0.38589142, S1 = 0.77088238,
S2 =−0.16670590,S3 = 0.02084314 while in the case of
Bogey-New + Tam-Modified, we haveT1 = 2.27963782,
T2 = −2.42224680, T3 = 1.50558014,
T4 = −0.36297115, S1 = 0.76772067,
S2 =−0.16417654,S3 = 0.02021080.

The amplification factor of the Bogey+Tam method
satisfies the following complicated equation:

ξ 4 = ξ 3− r
(

2.30255809A1 ξ 3−2.49100760A1 ξ 2

+1.57434093A1 ξ −0.38589142A1

)

, (11)

where

A1 = 2 I (0.8415701254 sin(w)−0.2446786317 sin(2w)

+0.0594635848 sin(3w)

−0.0076509041 sin(4w)). (12)

Therefore, it is not possible to obtainξ in terms ofr and
w so that the expressions for theAFM andRPE cannot be
expressed in terms ofr andw.
So, we adopt an approach where we fix the CFL number
and the phase angle,w. For instance, we compute the
AFM andRPE at a given CFL for some different phase
angles,w say 0,π/8, π/4, π/2, 3π/8, π/2, 5π/8, 3π/4,
7π/8 andπ. Then, we repeat the whole procedure for two
otherCFL numbers, say 0.1 and 0.2.

For instance for the case,r = 0.025 andw = π/8, we
have four values for ξ namely;
ξ1 = 0.999518200 − 0.009816207782 I,
ξ2 = 0.02398334562 + 0.1517460053 I,
ξ3 = −0.1468577715− 0.1047185759 I and
ξ4 = 0.1229226059− 0.05981397341. In that case, we
choose the physical mode and obtain theAFM = |ξ1|= 1

andRPE =
−1

0.025.(π/8)
arg(ξ1) = 0.9998867719.

Table (10) show some values ofAFM and RPE at
three different values of CFL obtained at some values of
the phase angle for the Bogey+Tam method. It is seen that
the AFM is almost one and is almost independent of the
CFL and the phase angle but such is not the case with the
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(a) Lockard + Tam

(b) Lockard-New + Tam-Modified

Fig. 1: Results of Boxcar propagation at dimensionless
time, t = 400 at CFL 0.025.

RPE. The general trend with theRPE is that as the phase
angle increases, it decreases for all the three values of
CFL considered hence exhibiting phase lag behaviour.
Table (11) shows the values of theAFM andRPE for our
new optimised method which is a modification of the
spatial scheme of Bogey and Bailly [6] coupled with
temporal scheme of Tam and al. [15]. Again, the same
observation is made i.e. theAFM is mostly one and is
almost independent of the CFL and phase angle.
Fig. (7) shows the plots of the relative phase error vs the
phase angle,w ∈ [0,π/2] for the two methods namely
Bogey+Tam and Bogey-New+Tam-Modified at three
different CFL namely 0.025, 0.1 and 0.2. Mainly phase
lag behaviour is observed. Our new scheme has better
dispersion properties for all the three different values of
CFL considered.

(a) Zingg+Tam

(b) Zingg-New + Tam-Modified

Fig. 2: Results of Boxcar propagation at dimensionless
time, t = 400 at CFL 0.025.

(a) Bogey + Tam at CFL 0.20
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(b) Bogey-New + Tam-Modified at CFL 0.16

Fig. 3: Results of Boxcar propagation at dimensionless
time, t = 400.

Fig. 4: Plot of Total Mean Square Error vs CFL number for
Lockard+Tam ’+’ and Lockard-New+Tam-Modified ’*’.

Fig. 5: Plot of Total Mean Square Error vs CFL number
for Zingg+Tam ’+’ and Zingg-New+Tam-Modified ’*’.

Fig. 6: Plot of Total Mean Square Error vs CFL number
for Bogey+Tam ’+’ and Bogey-New+Tam-Modified ’*’.

(a) CFL=0.025

(b) CFL= 0.1
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(c) CFL=0.2

Fig. 7: Plot of theRPE vs phase angle for two methods:
Bogey+Tam(+) and Bogey-New + Tam-Modified(∗) at
three different values of CFL.

7 Conclusion

In this work, we have used new spatial discretisation
schemes and the novel temporal discretisation method
constructed in [5] to solve a 1-D wave propagation
experiment. We have obtained the variation of the Total
Mean Square Error and error rate vs the CFL for six
numerical methods. It is seen that our new schemes are
more efficient. Also, we have done some spectral analysis
of two methods: Bogey and Bailly [6] coupled with
temporal scheme of Tam et al. [15] and also that of
Bogey-New combined with Tam-Modified and deduced
that the shock-capturing property of Bogey-New
combined with Tam-Modified is in general better.

Nomenclature
I =

√
(−1)

k: time step
h: spatial step
n: time level
β : advection velocity
r: CFL or Courant number

r =
βk
h

w: phase angle in 1-D
w = θh
RPE: relative phase error per unit time step
AFM: modulus of amplification factor
LDLD: Low Dispersion and Low Dissipation
IEELDLD: Integrated Exponential Error for Low
Dispersion and Low Dissipation
MIEELDLD: Minimised Integrated Exponential Error

Table 10: Some values forAFM andRPE at CFL 0.025,
0.1 and 0.20 for the Bogey + Tam method.

Phase angle CFL AFM RPE

0 0.025 1 1

π/8 0.025 1 0.999887

π/4 0.025 1.000000 0.999362

3π/8 0.025 1.000000 1.000580

π/2 0.025 1.000000 0.995808

5π/8 0.025 1.000000 0.937222

3π/4 0.025 1.000000 0.748499

7π/8 0.025 1.000000 0.405732

π 0.025 1 0

0 0.1 1 1

π/8 0.1 1.000000 0.999886

π/4 0.1 1.000000 0.999348

3π/8 0.1 1.000001 1.000510

π/2 0.1 0.999998 0.995595

5π/8 0.1 0.999991 0.936843

3π/4 0.1 0.999994 0.748243

7π/8 0.1 1.000001 0.405709

π 0.1 1 0

0 0.2 1 1

π/8 0.2 1.000000 0.999873

π/4 0.2 0.999998 0.999144

3π/8 0.2 0.999940 0.999520

π/2 0.2 0.999612 0.992735

5π/8 0.2 0.998945 0.931984

3π/4 0.2 0.999185 0.744911

7π/8 0.2 0.999960 0.405384

π 0.2 1 0

for Low Dispersion and Low Dissipation.
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Table 11: Some values forAFM, RPE at CFL 0.025, 0.10
and 0.20 for the Bogey-New + Tam-Modified method.

Phase angle CFL AFM RPE

0 0.025 1 1

π/8 0.025 1.000000 0.999864

π/4 0.025 1.000000 0.999161

3π/8 0.025 1.000000 1.000424

π/2 0.025 1.000000 0.997031

5π/8 0.025 1.000000 0.941147

3π/4 0.025 1.000000 0.754127

7π/8 0.025 1.000000 0.409761

π 0.025 1 0

0 0.025 1 1

π/8 0.1 1.000000 0.999864

π/4 0.1 0.999999 0.999149

3π/8 0.1 0.999996 1.000363

π/2 0.1 0.999985 0.996843

5π/8 0.1 0.999962 0.940809

3π/4 0.1 0.999972 0.753895

7π/8 0.1 0.999997 0.409740

π 0.1 1 0

0 0.2 1 1

π/8 0.2 0.999999 0.999852

π/4 0.2 0.999991 0.998971

3π/8 0.2 0.999878 0.999498

π/2 0.2 0.999434 0.994332

5π/8 0.2 0.998608 0.936486

3π/4 0.2 0.998875 0.750885

7π/8 0.2 0.999904 0.409443

π 0.2 1 0
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