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Abstract: In Appadu(2012d), we have used the technique of Minimized Integixgdnential Error for Low Dispersion and Low
Dissipation, (MIEELDLD) to construct high order methods with low dispersand low dissipation properties which approximate the
1D linear advection equation. Modifications to the spatial discretisation ssheonstructed by Lockard et al. (1995), Zingg et al.
(1996) and Bogey and Bailly (2002) have been obtained and also a oatidifi to the temporal scheme developed by Tam et al. (1993)
has been devised. These novel methods obtained using MIEELDLD@ne effective in terms of shock-capturing properties as they
require less number of points per wavelength than the existing optimize@dsdfibr a given accuracy.

In this paper, we perform some numerical experiments dealing with mamagation with these novel as well as existing, combined
spatial and temporal discretisation schemes and compare the variation efrors namely the Total Mean Square Error and error
rate with the CFL. The spectral analysis of two optimized methods made sypatifil discretisation scheme coupled with temporal
discretisation scheme is also studied.

Keywords. dispersion, dissipation, optimised, high-order, Computational Aertios

1 Introduction have gained considerable interest in computational
aeroacoustics.

The increasing demand by the aerospace, automotive and

other industries for accurate and reliable numerical L

models of sound generation and propagation in complex Organisation of paper

physical environments has prompted the construction of

new Computational Aeroacoustics (CAA) algorithms. This paper is organised as follows. In section 3, we
CAA methods have applications which range from describe briefly the technique of Minimised Integrated
aircraft noise to ground vehicle noise to noise from Exponential Error for Low Dispersion and Low
electronic cooling and air-moving deviced.[ Dissipation, (MIEELDLD) when used to optimise
In Computational Aeroacoustics (CAA), the accurate parameters in numerical methods. In section 4, we
prediction of the generation of sound is demanding due tadescribe how the technique of MIEELDL®] has been
the requirement for preservation of the shape andextended to construct low dispersion and low dissipation
frequency of wave propagation and generation. It ismethods in a Computational Aeroacoustics framework
well-known [7,14] that in order to conduct satisfactory and we list the coefficients of the spatial discretisation
computational aeroacoustics, numerical methods musiethods constructed by Lockard et d1], Zingg et al.
generate the least possible dispersion and dissipatiofil6], Bogey and Bailly f] and also of the temporal
errors. In general, higher order schemes would be moreliscretisation method of Tam et all4. In section 5, we
suitable for CAA than the lower-order schemes since,present the results of a numerical experiment dealing with
overall, the former are less dissipativ@].[ This is the  wave propagation and also obtain the variation of the
reason why higher-order spatial discretisation scheme3otal Mean Square ErrorlB] and the error rate vs the
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CFL and this helps to obtain a good estimate of thewhere eldld denotes error for low dispersion and low

optimal CFL. In section 6, we obtain the variation of the dissipation.

relative phase error vs CFL for two optimised numerical

methods. Section 7 includes the conclusion. If we now plot the quantity, eldld vs RPE vs AFM,
[5], we can see thatldld = 0 when RPE = 1 (no
dispersion) and\FM = 1 (no dissipation) and this makes

3 The Concept of Minimised I ntegrated sense. However, the eldld takes a constant value of 2

; ; ; whenRPE = 2 independent of the value of the AFM and
Exponential Error for L ow Dispersion and this presents a drawback of the measure. Therefore, we

L ow Dissipation present a modification to the quantity, eldld which is

The technique of Minimized Integrated Exponential Error egldld = exp(‘ |1— RPE| — (1_A|:|\/|)D +

for Low Dispersion and Low DissipatioM|EEL DL D)

has been introduced in Appadu and Dauhdd. [it exp(|1—RPE[+ (1-AFM))—2— 0, 3)
basically enables us to choose the optimal parameters and this quantity goes to zero whé¢h— RPE| — 0
from two conditions namely; and(1—AFM) — 0.

(i) small amounts of dissipation when added can help toThe eeldld denotes exponential error for low dispersion

curb dispersionQ). _ _ and low dissipation.
(i) the dissipation and dispersion errors must both be

small in a numerical scheme to y|e|d efficient On'y one par ameter involved

shock-capturing properties. o If the CFL is the only parameter, we compute
We now describe the technique of Minimized Integrated

Exponential Error for Low Dispersion and Low /Wleeldld dw
Dissipation, (MIEELDLD). Suppose the amplification 0 ’

factor of the numerical scheme when applied to the 1-D

linear advection equation, given by: for a range ofw € [0,w;], and this integral will be a
function of r. The optimal CFL is the one at which the
du Jdu integral quantity is closest to zero.
B =0, (r e Aty

Two parameters areinvolved
E—A+IB Suppose, we now have two parameters, dagndr. In
' that case, we can compute

is

Then the modulus of the Amplification FactqiFM)
and the relative phase erroRRE) are calculated as: /rl /Wl ecldld dw dr, @)
Jo Jo

AFM =
<1 and this integral will be a function of and we can obtain

and the optimal value of.

RPE — 1 tan! E We can also compute
rw A
wherer andw are the CFL and phase angle respectively. / ™ eeldld dw, )
The quantities|1 — RPE| and (1 — AFM) measure the 0

dispersion and dissipation errors respectively.
For a numerical scheme to have low dispersion and lo
dissipation, we require

W';md this integral will consist oA andr. From there, we
can obtain the optimal values of bothandr.

|1— RPE|+ (1— AFM) — 0. Considerable and extensive work on the technique of
Minimised Integrated Exponential Error for Low
Also when dissipation neutralises dispersion optimally, w Dispersion and Low Dissipation has been carried out in
have, [1,2,3,4].

‘|1—RPE|—(1—AFM))—>O.

Thus on combining these two conditions, we get the

following condition necessary for dissipation to neusali 4 Extension of MIEELDLD toa CAA
dispersion and for low dispersion and low dissipation fr gmewor k

character to be satisfied:

_ |1 e In this section, we describe briefly how the technique of
eldid "1 RPE|-(1 AFM)’ * MIEELDLD is used to construct high order, low

(|1-RPE|+ (1-AFM)) — 0, (2) dispersion and low dissipation spatial schemes, which are
@© 2014 NSP
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Table 1: Coefficients for spatial discretisation schemes
modifications to the methods constructed by Lockard etderived by Zingg et al.16], Lockard et al. 11] and Bogey

al. [11], Zingg et al. [L6] and Bogey and Bailly§]. and Bailly [6]
The spatial derivative proposed by Lockard et dl1]]
Bogey and Bailly §] is approximated as ZINGG \ LOCKARD \ BOGEY
P 1 N a; = 0.759961 a_4=0.010393 ap=0
% = N z a u(x+ih), (6) ap = —0.158122 | a_3=-0.084670| a; =0.841570
I==N a3 =0.018761 a p»=0.342031 ap, =0.244679
and the coefficients are listed in Tablg.( dp=01 a1=-1052681| az=0.059464

In the case of the spatial discretisation proposed by Zingg d, = —0.076385| ag=0.287274 | a, = —0.007651
etal. [L6], we have d, — 0032290 | a — 0586162 | a 1 — 0841570

du 13 (U0 +1h) — U(xo — ih)) + d3 = —0.005905 | ap=—0.098144 | a_, = —0.244679
ox hi;a* X X0 - az =0.009662 | a_3=—0.059464

3

% (do u(xo) + Z of (u(xo+ih)+u(xo—ih))). (7)  Table 2: Coefficients for new spatial discretisation
i= schemes using MIEELDLD which are modifications to the

schemes designed by Zingg et dl6], Lockard et al. 1],

To simplify things, we abbreviate the spatial schemesemd Bogey and Baillyd] (to 6 d.p)

constructed by Lockard et all]], Zingg et al. [L6],
Bogey and Bailly ] as Lockard, Zingg and Bogey.
Using MIEELDLD, we have proposed modification to the Zingg-New Lockard-New Bogey-New
existing schemes described by Ed).4nd () and Table 5 _ (0764316 a ,=0011346 ay=0

(2). The coefficients of the modified schemes are shown
in Table @). For more details on how the novel spatial & = —0.161452 a 3= -0.089198 a; = 0.844367

methods have been constructed, please reféjto [ ag—=0.019530 a ,—0.349998 a,— —0.248033
The temporal discretisation scheme proposed by Tanfo =01 a_1=-1058267 a;=0.061300

et al. [L5] is given as follows: d; = —0.076438 ay = 0.286601 ay = —0.008050

3 dU \ n—i d, = 0.032300 a1 = 0.589520 a1 = —0.844367
n—+1 n, .
U - Utk ,Z)b' (E) ’ (8  d3= 0005863 a= 0.1 a_,=—0.248033
1=

where by = 2.30255809 b; = —2.49100760, % =001 a3 = ~0.061300

by, = 1.5743093 andh; = —0.38589142. - - a4 =0.008050

Using MIEELDLD, a modification to the temporal
discretisation scheme proposed by Tam et &f] has  Table 3: Region of stability for some combined spatial-
been obtained and is termed as Tam-Modified. We refer taemporal discretisation schemes
Eq. 8) with the coefficients beinghy = 2.27963782
b1 = -242224680, b, = 150558014
bz = —0.36297116.

and Spatial scheme  Temporal scheme max. value of

Zingg Tam 0.23

Hence, we have three new spatial discretisationzijngg-New Tam-Modified 0.24
schemes and one new temporal discretisation method. In

[5], we have obtained the range of stability of the methods-ockard Tam 0.20

namely: Zingg, Lockard, and Bogey, when they are|ockard-New Tam-Modified 0.22

combined with the temporal discretisation scheme of Tam

et al. [L5]. Thus, we instance in the case of the spatial B09€Y Tam 0.20

scheme of Lockard et all]l] coupled with the temporal Bogey-New Tam-Modified 0.21

scheme of Tam et allp], this combined method is called

Lockard + Tam. The same type of abbreviation is used for

the remaining optimised methods.

In [5], we have obtained the range of stability of the novel 5 Numerical Results

methods: Zingg-New, Lockard-New and Bogey-New

when they are combined with the temporal discretisationThe test problem we consider is the propagation of the

scheme, Tam-Modified. Tabl&)(summarises details for , ) du u i

the stability of the six finite difference schemes. Boxcar function 2] subject Ot ox ™ 0. This test
problem involves discontinuous initial conditions. The
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Table 5: Errors for boxcar propagation at dimensionless

initial disturbance can be written as time, t = 400 at some values of CFL using spatial
g(x) = H(x+ 25) — H(x — 25), for 0 < x < 450, where scheme Lockard-New coupled with temporal scheme
H(x) is the Heaviside function. Tam-Modified
To evaluate the solution accuracy, we define the errolCFL  Total Mean Square Error  error rate
_ T - : .
yeCtor a.SE = (E]_7 ey EN) , WhereE| =U (X|) —u, 1 S 0.025 13951x 103 0.1141
i <N, U(x) is the exact solution at the poirt andu; is 3
the numerical solution at the poirtandN is the number 005  13622x 10~ 0.1128
of grid points. We compute the Total Mean Square Error,g g 13566x 103 0.1252
Er at the different CFL:0.025, 0.05, 0.08, 0.10, 0.125, 0.16
and 0.20 as 010  13053x10°3 0.1038
N (U(x) - u)? 0125 12821x10°3 0.1094
N %) — U
Er = 2'*1% (9 016 12491x10°3 0.1080
The Total Mean Square Error has been shown to be #20  12598x10°° 0.1084
measure of the sum of the dispersion and dissipation
errors fL3). Table 6: Errors for boxcar propagation at dimensionless
The error rateenum computed as time,t = 400 at some values of CFL using spatial scheme
of Zingg et al [L6] coupled with temporal scheme of Tam
e — (zL(u (%) —ui>2)1/2 etal. [15]
um — \ © N 11 /.. o 9
ZiN:1(U (%))?
CFL  Total Mean Square Error  error rate
is also compared for each scheme at some values of CFL; 3
0.025 15121x 10 0.1188
0.05 15378x 103 0.1198
Table 4: Errors for boxcar propagation at dimensionless0.08  15410x 103 0.1199
time,t = 400 at some values of CFL using spatial scheme "3
of Lockard et al. 11] coupled with temporal scheme of 010 15998x10 0.1222
Tam et al. 5] 0.125 16383x10°3 0.1237
0.16 17499x 103 0.1278
CFL  Total Mean Square Error  error rate —
0.16 18033x 10 0.1297
0.025 14563x 103 0.1166
0.05  14246x 103 0.1153 Table 7: Errors for boxcar propagation at dimensionless
_ time,t = 400 at some values of CFL using spatial scheme
3 1
0.08  14191x10 0.1151 Zingg-New coupled with temporal scheme Tam-Modified
010 13687x10°3 0.1130
0.125 13447x 103 0.1120 CFL Total Mean Square Error  error rate
0.16 13074x 103 0.1105 0.025 13636x 103 0.1128
0.20 13114x 103 0.1063 0.05 13814x 1073 0.1135
0.08 13846x 103 0.1137
-3
The results of the boxcar propagation are shown ino'10 1426910 0-1154
Figs. (1) to (3). 0125 14564x10°3 0.1166
The Total Mean _Square Error and error rate of the SIXy16  15453x 103 0.1201
schemes at some different values of CFL are tabulated in
Tables 4) to (9). We can deduce that the scheme 020  15884x10°3 0.1218

Lockard+Tam and Lockard-New+Tam-Modified are most

effective at CFL 0.20. Fig.4) shows that the new scheme

has smaller total errors at a given CFL. Also, with

increase in CFL, the general trend is that the errorsmore effective at a given CFL.

decrease. Fig. (6) shows the variation of the Total Mean Square
Both the schemes Zingg+Tam and Error vs the CFL and for both schemes namely
Zingg-New+Tam-Modified are more effective at low CFL Bogey+Tam and Bogey-New+Tam-Modified. The errors
as can be deduced from Fid)( Also, the new scheme is decrease with increase in CFL. Moreover, the new
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Table 8: Errors for boxcar propagation at dimensionless
time,t = 400 at some values of CFL using spatial scheme
Bogey and Bailly coupled with temporal scheme Tam et

al. [19] Ut =3 —r (T1 (SUUl 2= ) — S (U3 —uD)
+S5 (WS - UM 3) + T (S Z - Ut )
CFL  Total Mean Ssquare Error  error rate S (U{’Izz _ Uinjzz) +Ss (Upfgz B u{’fg,z))
0.025 15220x 1(r3 0.1192 +Ts (Sl(ui”if _ut s, (Uinle —ud
0.05  14541x 1(r3 0.1165 S (u%l CU) Ty (SUU U )
0.08  14083x 10~ 0.1147
—— S (W o)+ S (g~ U 5)). (10)
010  13401x10- 0.1118
3 In the case of Bogey+Tam, we havg = 2.30255809,
0125 12895x10 0.1097 T, = —249100760, Ts = 157434093,
016  12341x10°3 0.1073 Ta = —-0.38589142, S = 077088238,
3 S = -0.16670590S; = 0.02084314 while in the case of
020 12197x10 0.1067 Bogey-New + Tam-Modified, we havg = 2.27963782,
T, = —2.42224680, T3 = 1.50558014,
T, = —0.36297115, S = 0.76772067,

Table 9: Errors for boxcar propagation at dimensionless S, = —0.16417654S; = 0.02021080.

time,t = 400 at some values of CFL using spatial scheme

Bogey-New coupled with temporal scheme Tam-Modified = The amplification factor of the Bogey+Tam method
satisfies the following complicated equation:

CFL  Total Mean Square Error  error rate

0025 14426x 103 0.1160 A=g3 g (2.3025580%1 £3 2491007608, &2

3
005  13721x10° 0.1132 +157434003,; § —0.385891424, ), (11)
008 13164x10°3 0.1108 A

wnere

010  12401x 1073 0.1076

3
0125 11848x10 0.1052 Ay =21 (0.8415701254 sifw) — 0.2446786317 sif2w)
016  11577x10°3 0.1040 +0.0594635848 sif8w)
020  12054x 1073 0.1061 —0.0076509041 sifw)). (12)

Therefore, it is not possible to obtaénin terms ofr and

w so that the expressions for tA& M andRPE cannot be

expressed in terms ofandw.

So, we adopt an approach where we fix the CFL number
scheme is more effective at a given CFL. and the phase angley. For instance, we compute the

AFM and RPE at a given CFL for some different phase

anglesw say 0,71/8, m/4, ri/2, 3r1/8, 11/2, 5m1/8, 3m/4,

71/8 andrt. Then, we repeat the whole procedure for two

otherCFL numbers, say 0.1 and 0.2.

] ] S ) For instance for the case~= 0.025 andw = 17/8, we
6 DISperSVG and dl%patlve propertles of two have four values for & namely;

high-order numerical schemes & = 0999518200 — 0.009816207782 I,
§&, = 0.02398334562 + 0.1517460053 [,
§3 = —0.1468577715— 0.1047185759 | and

&4 = 0.1229226059- 0.05981397341. In that case, we
choose the physical mode and obtain &M = |&;| =1
In this section, we study the dissipative and dispersive -1
properties of two methods and also attempt to locate théNdRPE = 0,025 (11/8) arg(é1) = 0.9998867719.
optimal CFL. Single expressions for the two methods i
namely: spatial discretisation of Bogey and Baill§] [ Table (L0) show some values oAFM and RPE at
coupled with the temporal discretisation scheme of Tamthree different values of CFL obtained at some values of
et al. [L5] abbreviated as Bogey + Tam and our novel the phase angle for the Bogey+Tam method. It is seen that
method, abbreviated as Bogey-New + Tam-Modified arethe AFM is almost one and is almost independent of the
given as follows: CFL and the phase angle but such is not the case with the
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Fig. 2. Results of Boxcar propagation at dimensionless

Fig. 1: Results of Boxcar propagation at dimensionless
time,t = 400 at CFL 0.025.

RPE. The general trend with thePE is that as the phase
angle increases, it decreases for all the three values o
CFL considered hence exhibiting phase lag behaviour.
Table @L1) shows the values of th&FM andRPE for our
new optimised method which is a modification of the
spatial scheme of Bogey and Bailly][ coupled with
temporal scheme of Tam and aly. Again, the same
observation is made i.e. th&FM is mostly one and is
almost independent of the CFL and phase angle.

Fig. (7) shows the plots of the relative phase error vs the
phase anglew € [0,71/2] for the two methods namely
Bogey+Tam and Bogey-New+Tam-Modified at three
different CFL namely 0.025, 0.1 and 0.2. Mainly phase
lag behaviour is observed. Our new scheme has better
dispersion properties for all the three different values of
CFL considered.

uix.t)

time,t =400 at CFL 0.025.

[

06

04r

=

»M -

o 50 100 150 200 250 300 350 490 450

X

(a) Bogey + Tam at CFL 0.20
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ulx.1)

Fig. 3: Results of Boxcar propagation at dimensionless
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(b) Bogey-New + Tam-Modified at CFL 0.16
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Fig. 6: Plot of Total Mean Square Error vs CFL number
for Bogey+Tam '+ and Bogey-New+Tam-Modified *'.
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Table 10: Some values foAFM andRPE at CFL 0.025,

e F i i ' 0.1 and 0.20 for the Bogey + Tam method.
+
Phase angle CFL AFM RPE
| 0 0.025 1 1
/8 0.025 1 0.999887
= oost . /4 0.025 1.000000 0.999362
3m/8 0.025 1.000000 1.000580
sl * | /2 0.025 1.000000 0.995808
5m/8 0.025 1.000000 0.937222
t 3mn/4 0.025 1.000000 0.748499
=% B pL B2 7n/8 0.025 1.000000 0.405732
2 anzis
(c) CFL=0.2 T 0.025 1 0
. 0 0.1 1 1
Fig. 7: Plot of theRPE vs phase angle for two methods:
Bogey+Tam(+) and Bogey-New + Tam-Modifie¢k) at /8 0.1 ~ 1.000000 0.999886
three different values of CFL. /4 0.1 1.000000 0.999348
3mr/8 0.1 1.000001 1.000510
) /2 0.1 0.999998 0.995595
7 Conclusion 5m/8 0.1 0.999991 0.936843
. . . .. 3m/4 0.1 0.999994 0.748243
In this work, we have used new spatial discretisation
schemes and the novel temporal discretisation method”/8 0.1 1.000001  0.405709
constructed in §] to solve a 1-D wave propagation 01 1 0
experiment. We have obtained the variation of the Total
Mean Square Error and error rate vs the CFL for six9 02 1 1
numerical methods. It is seen that our new schemes argy/s 0.2 1.000000 0.999873
more efficient. Also, we have done some spectral analysis
/4 0.2 0.999998 0.999144

of two methods: Bogey and Bailly6] coupled with
temporal scheme of Tam et all§] and also that of 37/8 0.2 0.999940 0.999520
Bogey-New combined with Tam-Modified and deduced

that the shock-capturing property of Bogey-New /2 0.2 0.999612  0.992735

combined with Tam-Modified is in general better. 51/8 0.2 0.998945 0.931984
3mn/4 0.2 0.999185 0.744911
7m/8 0.2 0.999960 0.405384

Nomenclature - 0.2 1 0

I =(-1)

k: time step

h: spatial step

n: time level

: . for Low Dispersion and Low Dissipation.
B: advection velocity

r: CFIRor Courant number
r=-—

h
w: phase angle in 1-D Acknowledgement
w=6h
RPE: relative phase error per unit time step This work was funded through the Research Development
AFM: modulus of amplification factor Programme of the University of Pretoria. The period of
LDLD: Low Dispersion and Low Dissipation funding is from January 2012 to January 2014.

I[EELDLD: Integrated Exponential Error for Low
Dispersion and Low Dissipation
MIEELDLD: Minimised Integrated Exponential Error
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Table 11: Some values foAFM, RPE at CFL 0.025, 0.10

and 0.20 for the Bogey-New + Tam-Modified method. Advection Equation, International Journal of Computer
Applications in Technology43, 79-92 (2012).
Phase angle CFL AFM RPE [4] A. R. Appadu, Comparison of Some Optimisation techniques
for Numerical Schemes Discretising Equations with
0 0.025 1 1 Advection Terms, International Journal of Innovative
Computing and Applicationgl, 12-27 (2012).
/8 0.025 1.000000 0.999864 - .
/ [5]A. R. Appadu, The Technique of MIEELDLD in
/4 0.025 1.000000 0.999161 Computational  Aeroacoustics, Journal of Applied
Mathematics2012, Article ID 783101, 30 pages,
3n/8 0.025 1000000 1.000424 [6]C. Bogey and C. Bailly, A Family of Low Dispersive
/2 0.025 1.000000 0.997031 and Low Dissipative Explicit Schemes for Computing the
Aerodynamic Noise, 2002-2509 (2002).
5m/8 0.025 1.000000 0.941147 [7] 3. Hardin and M. Y. Hussaini, Computational Aeroacoustics,
3m/4 0.025 1.000000 0.754127 Springer-Verlag, New-York, Berlin, (1992).
[8] R. Hixon, Evaluation of High-Accuracy MacCormack-Type
/8 0.025 1.000000 0.409761 Scheme Using Benchmark Problems, NASA Contractor
Report 202324, (1997).
T 0.025 1 0 [9] Konstantin A. Kurbatskii and R. Mankbadi, International
0 0.025 1 1 Journal of Computational Fluid Dynamic48, 533-546
(2004).
/8 0.1 1.000000 0.999864 [10] R. Liska and B. Wendroff, Composite Schemes for
/4 0.1 0.999999 0.999149 Conservation Laws, SIAM Journal on Numerical Analysis,
35, 2250-2271 (1998).
3m/8 0.1 0.999996  1.000363 [11] D. P. Lockard, K. S. Brentner and H. L. Atkins, High-
/2 01 0.999985 0.996843 Accuracy Algorithms for Computational Aeroacoustics,
AIAA Journal, 33, 246-251 (1995).
5m/8 0.1 0.999962  0.940809 [12] W. De Roeck, W. Desmet, M. Baelmans and P. Sas,
3m/4 0.1 0.999972 0.753895 An Overview of High-Order Finite Difference Schemes

for Computational Aeroacoustics, Proceedings of
7m/8 0.1 0.999997 0.409740 the International Conference on Noise and Vibration
Engineering, Katholieke Universiteit Leuven, Belgium,

n o1 1 0 353-368 (2004).

0 0.2 1 1 [13] Takacs, A Two-Step Scheme for the Advection Equation
with Minimized Dissipation and Dispersion Errors, Monthly

/8 0.2 0.999999 0.999852 Weather Review]13, 1050-1065 (1985).

7-[/4 0.2 0.999991 0.998971 [14]C. K. W. Tam and J. C. Webb, Dispersion-Relation-
Preserving Finite Difference Schemes for Computational

3m/8 0.2 0.999878  0.999498 Acoustics, International Journal of Computational Physics,
107, 262-281 (1993).

/2 0.2 0999434 0.994332 [15] C. K. W. Tam(, J. C.)Webb and Z. Dong, A Study of the Short

5m/8 0.2 0.998608 0.936486 Wave Components in Computational Acoustics, Journal of

3m/4 0.2 09098875 0750885 Computational Acousticd,, 1-30 (1993).

[16] D. W. Zingg, H. Lomax and H. Jurgens, High-Accuracy
/8 0.2 0.999904 0.409443 Finite-Difference Schemes for Linear Wave Propagation,
SIAM Journal on scientific Computingy, 328-346 (1996).

s 0.2 1 0
A. R. Appadu is
a lecturer in the Department
References of Mathematics and Applied

Mathematics at the University
of Pretoria, South Africa.
He received the PhD
degree in Computational

[1]A. R. Appadu and M. Z. Dauhoo, Some Applications of
the Concept of Minimized Integrated Exponential Error for
Low Dispersion and Low Dissipation Schemes, International ) )
Journal for Numerical Methods in Fluidd5, 578-601 (2011). Fluid Dynamics at the

[2]A. R. Appadu, Some Applications of the Concept of . _University of Mauritius. His_
Minimized Integrated Exponential Error for Low Dispersion €S€arch interests are in the areas of Computational

and Low Dissipation Schemes, International Journal for Fluid Dynamics, Computational = Aeroacoustics and
Numerical Methods in Fluid68, 244-268 (2012). Optimisation. He has published research articles in

[3] A. R. Appadu, Investigating the Shock-Capturing Properties Féputed international journals in Applied Mathematics.
of Some Composite Numerical Schemes for the 1-D LinearHe is referee of some international journals.

© 2014 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

	Introduction
	Organisation of paper
	The Concept of Minimised Integrated Exponential Error for Low Dispersion and Low Dissipation
	Extension of MIEELDLD to a CAA framework
	Numerical Results
	Dispersive and dissipative properties of two high-order numerical schemes
	Conclusion

