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1 Introduction

Variational inequality and complementarity problems are
of fundamental importance in a wide range of
mathematical and applied sciences problems, such as
mathematical programming, traffic engineering,
economics and equilibrium problems, see [1–18]. The
ideas and techniques of the variational inequalities are
being applied in a variety of diverse areas of sciences and
proved to be productive and innovative. It has been shown
that this theory provides a simple, natural and unified
framework for a general treatment of unrelated problems.
The fixed-point theory has played an important role in the
development of various algorithms for solving variational
inequalities. Using the projection operator technique, one
usually establishes an equivalence between the variational
inequalities and the fixed-point problem. This alternative
equivalent formulation was used by Lions and
Stampacchia [6] to study the existence of a solution of the
variational inequalities. Projection methods and its variant
forms represent important tools for finding the
approximate solution of variational inequalities. We now
have a variety of techniques to suggest and analyze

various iterative algorithms for solving variational
inequalities and the related optimization problems. In
recent years, some new and interesting problems, which
are called the system of variational inclusions were
introduced and studied. Chang et al. [2], Huang and Noor
[5], Noor and Noor [10], Noor [9], Verma [18,19,20] and
Yang et al. [22] introduced and studied a system of
variational inclusions involving four, three, two different
nonlinear operators.

Inspired and motivated by research going on in this
area, we introduce and consider a new system of extended
general variational inequalities involving six different
nonlinear operators in Banach spaces. We establish the
equivalence between this system of extended general
variational inequalities and the fixed point problems using
the projection operator technique. This equivalent
formulation is used to suggest and analyze some new
iterative methods for solving the extended general
variational inequalities. We also prove the convergence
analysis of the proposed algorithm under some suitable
mild conditions. Since this class of systems includes the
system of variational inequalities involving four, three,
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two operators and the classical variational inequalities as
special cases, results obtained in this paper continue to
hold for these problems. It is expected that these results
may inspire and motivate others to find novel and
innovative applications in various branches of pure and
applied sciences.

The readers are encouraged to explore the novel and
innovative applications of the system of extended general
variational inequalities and its variant forms in different
areas of pure and applied sciences.

2 Preliminaries

Throughout this article, letX be a real Banach space with
its dual spaceX∗. We usually use〈·, ·〉 to denote the pairing
betweenX and X∗, and 2X denote the family of all the
nonempty subsets ofX. The generalized duality mapping
Jq(x) : X −→ 2X∗

is defined by

Jq(x) = { f ∗ ∈ X∗ : 〈x, f ∗〉= ‖x‖q
,‖ f ∗‖= ‖x‖q−1},

whereq> 1 is a constant. In particular,J2 = J is the usual
normalized duality mapping. It is known that, in general,
Jq = ‖x‖q−2J2, for all x 6= 0, and Jq(x) is single-valued
if X∗ is strictly convex. IfX = H is a Hilbert space then
J2 becomes the identity mapping ofH. Note thatX is a
uniformly smooth Banach space if and only ifJq is single-
valued and uniformly continuous on any bounded subset
of X.

Let K be a nonempty, closed and convex subset ofX.

A mappingQ : X −→ K is said to be sunny if

Q(Q(x)+ t(x−Q(x))) = Q(x),∀x∈ X,∀t ≥ 0.

A mappingQ : X −→ K is said to be a retraction or a
projection if Q(x) = x;∀x ∈ K. If X is smooth then the
sunny nonexpansive retraction ofX onto K is uniquely
decided (see [4]). UsingJq = ‖x‖q−2J2, replaceJ by Jq, it
is easy to obtain the following results by Bruck [1],
Goebel and Reich [3].
Proposition 2.1 Let X be aq-uniformly smooth Banach
spaces and letK be a nonempty subset ofX. Let
QK : X −→ K be a retraction and letJq be the generalized
duality mapping onX. Then the following are equivalent:

(a)QK is sunny and nonexpansive.
(b) ‖QK(x)−QK(y)‖2

≤ 〈x−y,Jq(QK(x)−QK(y))〉,∀x,y∈ X.

(c) 〈x−QK(x),Jq(QK(x)−y)〉 ≥ 0,∀y∈ K.

Lemma 2.1 ( See [21]) Let X be a realq-uniformly
smooth Banach space(q> 1), then there exists a constant
cq > 0 such that

‖x+y‖q ≤ ‖x‖q+q〈y,Jqx〉+cq‖y‖q
,∀x,y∈ X.

In particular, if X be a real 2-uniformly smooth Banach
space, then there exists a constantc2 > 0 such that

‖x+y‖2 ≤ ‖x‖2+2〈y,J2x〉+c2‖y‖2
,∀x,y∈ X.

Let K be a nonempty, closed and convex subset ofX. For
given nonlinear operatorsTi(., .) : X × X −→ X and
gi ,hi : X −→ X(i = 1,2), we consider problem of finding
(x∗,y∗) ∈ X×X : (h1(x∗),h2(y∗)) ∈ K×K such that

〈ρT1(y∗,x∗)+h1(x∗)−g1(y∗),
Jq(g1(x)−h1(x∗))〉 ≥ 0;∀x∈ X,g1(x) ∈ K andρ > 0,
〈ηT2(x∗,y∗)+h2(y∗)−g2(x∗),
Jq(g2(x)−h2(y∗))〉 ≥ 0;∀x∈ X,g2(x) ∈ K andη > 0.











(1)

which is called the system of extended general variational
inequalities.

We now discuss some applications of the system of
extended general variational inequalities (1).

If X = H is a Hilbert space,Jq = I ,hi = I , the identity
operator, then problem (1) reduces to finding
(x∗,y∗) ∈ K×K such that

〈ρT1(y∗,x∗)+x∗−g1(y∗),
g1(x)−x∗〉 ≥ 0;
∀x∈ H,g1(x) ∈ K andρ > 0,
〈ηT2(x∗,y∗)+y∗−g2(x∗),g2(x)−y∗〉 ≥ 0;
∀x∈ H,g2(x) ∈ K andη > 0,



















(2)

which were introduced and studied by Noor and Noor
[10].

If gi = g(i = 1,2), then the system (2) is equivalent to
finding (x∗,y∗) ∈ K×K such that

〈ρT1(y∗,x∗)+x∗−g(y∗),g(x)−x∗〉 ≥ 0;
∀x∈ H,g(x) ∈ K and ρ > 0,
〈ηT2(x∗,y∗)+y∗−g(x∗),g(x)−y∗〉 ≥ 0;
∀x∈ H,g(x) ∈ K and η > 0,











(3)

which was considered and investigated by Noor [9].

If X = H is a Hilbert space,Jq = I , Ti(x,y) = Ti(x),
hi = gi = g(i = 1,2), then problem (1) reduces to finding
(x∗,y∗) ∈ H ×H : (g(x∗),g(y∗)) ∈ K×K such that

〈ρT1(y∗)+g(x∗)−g(y∗),g(x)−g(x∗)〉 ≥ 0;
∀x∈ H,g(x) ∈ K and ρ > 0,
〈ηT2(x∗)+g(y∗)−g(x∗),g(x)−g(y∗)〉 ≥ 0;
∀x∈ H,g2(x) ∈ K and η > 0,











(4)

which has been introduced and studied by Yang et al.
[22].

If X = H is a Hilbert space,x∗ = y∗,Jq = I ,Ti(x,y) =
T1(x) = T2(x)(i = 1,2),h1 = h2,g1 = g2, then problem (1)
reduces to findingx∗ ∈ H : h1(x∗) ∈ K×K such that

〈ρT1(x
∗)+h1(x

∗)−g1(x
∗),g1(x)−h1(x

∗)〉 ≥ 0; (5)

∀x∈ H : g1(x) ∈ K and ρ > 0,
which is called the extended general variational
inequality, introduced and studied by Noor [11] in 2009.
For the applications, numerical results, generalizations
and other aspects of extended general variational
inequalities, see [11,12,13,14] and the references therein.
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If g = I , then problem (3) reduces of finding(x∗,y∗) ∈
K×K such that

〈ρT1(y∗,x∗)+x∗−y∗,x−x∗〉 ≥ 0;
∀x∈ K and ρ > 0,
〈ηT2(x∗,y∗)+y∗−x∗,x−y∗〉 ≥ 0;
∀x∈ K and η > 0,











(6)

which has been considered and studied by Huang and
Noor [5].

If T1 = T2 = T, then problem (6) reduces of finding
(x∗,y∗) ∈ K×K such that

〈ρT(y∗,x∗)+x∗−y∗,x−x∗〉 ≥ 0;
∀x∈ K and ρ > 0,
〈ηT(x∗,y∗)+y∗−x∗,x−y∗〉 ≥ 0;
∀x∈ K and η > 0,











(7)

The system (7) has been studied and investigated by
Chang et al. [2] and Verma [19].

If T1 = T2 = T, and g = I , then problem (4) reduces of
finding (x∗,y∗) ∈ K×K such that

〈ρT(y∗)+x∗−y∗,x−x∗〉 ≥ 0;
∀x∈ K and ρ > 0,
〈ηT(x∗)+y∗−x∗,x−y∗〉 ≥ 0;
∀x∈ K and η > 0,











(8)

which has been introduced and studied by Verma [18,20].

If x∗ = y∗, then problem (8) collapses to findingx∗ ∈ K.

such that

〈T(x∗),x−x∗〉 ≥ 0, ∀x∈ K. (9)

Inequality of type (9) is called variational inequality,
which was introduced and studied by Stampacchia [17] in
1964. The system of extended general variational
inequalities (1) includes several classes of variational
inequalities and related optimization problems as special
cases. For the recent research, see [1-18] and the
references therein.

We now recall some well-known results and concepts,
which are needed.
Definition 2.1 A mappingh : X −→ X is called

(a) r-strongly monotone if, there exists a constantr > 0
such that

〈h(x)−h(y),Jq(x−y)〉 ≥ r‖x−y‖2
,∀x,y∈ X;

(b) (ξ ,ς)-relaxed cocoercive if, there exist constants
ξ ,ς > 0 such that

〈h(x)−h(y),Jq(x−y)〉 ≥ −ξ‖h(x)−h(y)‖2

+ς‖x−y‖2
,∀x,y∈ X;

(c) γ-Lipschitz continuous if, there exists a constantγ > 0
such that

‖h(x)−h(y)‖ ≤ γ‖x−y‖,∀x,y∈ X.

Definition 2.2 Let T : X×X −→ X andg : X −→ X. Then
T is called

(a) r-strongly monotone with respect tog if, there exists
a constantr > 0 such that

〈T(x1,y)−T(x2,y),Jq(g(x1)−g(x2))〉

≥ r‖x1−x2‖
2
,∀x1,x2,y∈ X;

(b) (ξ ,ς)-relaxed cocoercive with respect tog if, there
exist constantsξ ,ς > 0 such that

〈T(x1,y)−T(x2,y),Jq(g(x1)−g(x2))〉

≥ −ξ‖T(x1,y)−T(x2,y)‖
2+ ς‖x1−x2‖

2
,

∀x1,x2,y∈ X;

(c) γ-Lipschitz continuous in the first variable if, there
exists a constantγ > 0 such that

‖T(x1,y)−T(x2,y)‖ ≤ γ‖x1−x2‖,∀x1,x2,y∈ X.

(d) γ-Lipschitz continuous in the second variable if, there
exists a constantγ > 0 such that

‖T(x,y1)−T(x,y2)‖ ≤ γ‖y1−y2‖,∀x,y1,y2 ∈ X.

3 Main Results

In this section, we first establish the equivalence between
the system of the extended general variational inequality
(1) and the fixed point problems. Then by using the
obtained fixed point formulation, we construct a new
iterative algorithm for solving the systems (1).

Lemma 3.1 Let X be an smooth Banach space, for given
nonlinear operatorsTi : X ×X −→ X,gi ,hi : X −→ X(i =
1,2), andρ ,η > 0. Then the point(x∗,y∗) ∈ K ×K is a
solution of (1) if and only if

h1(x∗) = QK [g1(y∗)−ρT1(y∗,x∗)]
h2(x∗) = QK [g2(x∗)−ηT2(x∗,y∗)].

}

(10)

Proof. The first variational inequality of (1) can be written
as follows:

〈[g1(y
∗)−ρT1(y

∗
,x∗)]−h1(x

∗),Jq(h1(x
∗)−g1(x))〉 ≥ 0;

∀x∈ X,g1(x) ∈ K and ρ > 0.

We can deduce from Proposition 2.1 (c) that the above
inequality is equivalent to

h1(x
∗) = QK [g1(y

∗)−ρT1(y
∗
,x∗)].

Similar, the second variational inequality of (1) is
equivalent to

h2(x
∗) = QK [g2(x

∗)−ηT2(x
∗
,y∗)]. ⊓⊔

Lemma 3.1 implies that the system of extended general
variational inequalities (1) and the fixed point problems

c© 2014 NSP
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(10) are equivalent. This equivalent formulation plays a
crucial role in developing the iterative methods for solving
(1). We rewrite (10) in the following form:











h1(x) = QK [z]
h2(y) = QK [t]
z= (1−α)z+α[g1(y)−ρT1(y,x)]
t = (1−α)t +α[g2(x)−ηT2(x,y)],

which enables to suggest the following iterative method,
Algorithm 3.1 Let Ti ,gi ,hi(i = 1,2), be nonlinear
operators,ρ ,η > 0. For arbitrary chosen initial points
z0, t0 ∈ K, compute the iterative sequence{(xk,yk} by
using

h1(xk) = QK [zk]
h2(yk) = QK [tk]
zk+1 = (1−α)zk+α[g1(yk)−ρT1(yk,xk)]
tk+1 = (1−α)tk+α[g2(xk)−ηT2(xk,yk)],















(11)

whereQK is the sunny nonexpansive retraction ofX onto
K and 0< α ≤ 1.

We now establish the strongly convergence of the
sequences generated by Algorithm 3.1.
Theorem 3.1 Let Ti ,gi ,hi(i = 1,2), be nonlinear
operators, such that for each i = 1, 2,

(a)Ti is (κi ,θi)-relaxed cocoercive with respect togi and
γi-Lipschitz continuous in the first variable, and
µi-Lipschitz continuous in the second variable;

(b)hi is (ξi ,νi)-relaxed cocoercive andδi-Lipschitz
continuous;

(c)gi is σi-Lipschitz continuous.

If there exist constantsρ ,η > 0 such that

q
√

(σq
2 −ηqθ2)+(ηqκ2+Cqηq)γq

2

< 1−k1−ρµ1,k1+ρµ1 < 1
q
√

((σq
1 −ρqθ1)+(ρqκ1+Cqρq)γq

1)

< 1−k2−ηµ2,k2+ηµ2 < 1,
and
qνi < 1+(Cq+qξi)δ q

i ,(i = 1,2),
where

ki =
q
√

(1−qνi)+(Cq+qξi)δ q
i ,(i = 1,2),























































(12)

then for arbitrarily chosen initial pointsx0,y0 ∈ K, xk and
yk obtained from Algorithm 3.1 converge strongly tox∗

andy∗ respectively.
Proof. It follows from (11) that

‖zk+1−zk‖

= ‖(1−α)zk+α[g1(y
k)−ρT1(y

k
,xk)]− (1−α)zk−1

− α[g1(y
k−1)−ρT1(y

k−1
,xk−1)]

≤ (1−α)‖zk−zk−1‖+α‖g1(y
k)−g1(y

k−1)

− ρ(T1(y
k
,xk)−T1(y

k−1
,xk−1))‖ (13)

From T1 µ1-Lipschitz continuous in the second variable,
we have

‖g1(y
k)−g1(y

k−1)−ρ(T1(y
k
,xk)−T1(y

k−1
,xk−1))‖

≤ ‖g1(y
k)−g1(y

k−1)−ρ(T1(y
k
,xk)−T1(y

k−1
,xk))‖

+ ρ‖T1(y
k−1

,xk)−T1(y
k−1

,xk−1))‖

≤ ‖g1(y
k)−g1(y

k−1)−ρ(T1(y
k
,xk)−T1(y

k−1
,xk))‖

+ ρµ1‖xk−xk−1‖ (14)

SinceT1 is (κ1,θ1)-relaxed cocoercive with respect tog1
andγ1-Lipschitz continuous in the first variable, andg1 is
σ1-Lipschitz continuous, we can conclude that

‖g1(y
k)−g1(y

k−1)−ρ(T1(y
k
,xk)−T1(y

k−1
,xk))‖q

= ‖g1(y
k)−g1(y

k−1)‖q−ρq〈T1(y
k
,xk)−T1(y

k−1
,xk),

Jq(g1(y
k)−g1(y

k−1))〉

+ Cqρq‖T1(y
k
,xk)−T1(y

k−1
,xk)‖q

≤ ‖g1(y
k)−g1(y

k−1)‖q

+ ρqκ1‖T1(y
k
,xk)−T1(y

k−1
,xk)‖q−ρqθ1‖yk−yk−1‖q

+ Cqρq‖T1(y
k
,xk)−T1(y

k−1
,xk)‖q

≤
(

(σq
1 −ρqθ1)+(ρqκ1+Cqρq)γq

1

)

‖yk−yk−1‖q (15)

Substituting (14) and (15) in (13), we get

‖zk+1−zk‖

≤ (1−α)‖zk−zk−1‖+α q
√

((σq
1 −ρqθ1)

+ (ρqκ1+Cqρq)γq
1)‖yk−yk−1‖

+ αρµ1‖xk−xk−1‖. (16)

In a similar way, we can prove that

‖tk+1− tk‖

≤ (1−α)‖tk− tk−1‖

+ α q
√

(

(σq
2 −ηqθ2)+(ηqκ2+Cqηq)γq

2

)

‖xk−xk−1‖

+ αηµ2‖yk−yk−1‖. (17)

On the other hand, by using (11), we find that

‖xk−xk−1‖

≤ ‖xk−xk−1− (h1(x
k)−h1(x

k−1))‖

+ ‖ak(z
k)−Qk(x

k−1)‖

≤ ‖xk−xk−1− (h1(x
k)−h1(x

k−1))‖+‖zk−zk−1‖. (18)

From (ξ1,ν1)-relaxed cocoercive andδ1-Lipschitz
continuous ofh1, we have

‖xk−xk−1− (h1(x
k)−h1(x

k−1))‖q

≤ ‖xk−xk−1‖q−q〈h1(x
k)−h1(x

k−1),Jq(x
k−xk−1)〉

+Cq‖h1(x
k)−h1(x

k−1)‖q

≤ ‖xk−xk−1‖q+qξ1‖h1(x
k)−h1(x

k−1)‖q

− qν1‖xk−xk−1‖q

+Cq‖h1(x
k)−h1(x

k−1)‖q

≤
(

(1−qν1)+(Cq+qξ1)δ q
1

)

‖xk−xk−1‖q (19)

c© 2014 NSP
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Substituting (19) in (18), we get

‖xk−xk−1‖

≤
1

1− q
√

(1−qν1)+(Cq+qξ1)δ q
1

‖zk−zk−1‖ (20)

Similarly, we can prove that

‖yk−yk−1‖

≤
1

1− q
√

(1−qν2)+(Cq+qξ2)δ q
2

‖tk− tk−1‖. (21)

From (16),(17), (20) and (21), it follows that
‖zk+1−zk‖

≤ (1−α(1−
ρµ1

1− q
√

(1−qν1)+(Cq+qξ1)δ q
1

))

×‖zk−zk−1‖

+
α q
√

((σq
1 −ρqθ1)+(ρqκ1+Cqρq)γq

1)

1− q
√

(1−qν2)+(Cq+qξ2)δ q
2

×‖tk− tk−1‖ (22)
and

‖tk+1− tk‖

≤ (1−α(1−
ηµ2

1− q
√

(1−qν2)+(Cq+qξ2)δ q
2

))

×‖tk− tk−1‖

+
α q
√

(

(σq
2 −ηqθ2)+(ηqκ2+Cqηq)γq

2

)

1− q
√

(1−qν1)+(Cq+qξ1)δ q
1

×‖zk−zk−1‖ (23)
Now, we define‖ · ‖∗ on X×X by ‖(x,y)‖∗ = ‖x‖+ ‖y‖,
for all (x,y) ∈ X×X. From (22) and (23), it follows that

‖(zk+1
, tk+1)− (zk

, tk)‖∗

≤ (1−α)‖(zk
, tk)− (zk−1

, tk−1)‖∗

+ αΛ‖(zk
, tk)− (zk−1

, tk−1)‖∗ (24)
where

Λ = max





ρµ1+
q

√

(

(σq
2 −ηqθ2)+(ηqκ2+Cqηq)γq

2

)

1− q

√

(1−qν1)+(Cq+qξ1)δ
q
1

,

ηµ2+
q

√

((σq
1 −ρqθ1)+(ρqκ1+Cqρq)γq

1)

1− q

√

(1−qν2)+(Cq+qξ2)δ
q
2





In view of the condition (12), we know that 0≤ Λ < 1. Thus it
follows from (24) that, for eachk≥ k0,

‖(zk+1
, tk+1)− (zk

, tk)‖∗

≤ (1−α(1−Λ))‖(zk
, tk)− (zk−1

, tk−1)‖∗

≤ (1−α(1−Λ))2‖(zk−1
, tk−1)− (zk−2

, tk−2)‖∗

...

≤ (1−α(1−Λ))k−k0‖(zk0+1
, tk0+1)− (zk0, tk0)‖∗.

Hence, for anym≥ n> k0, we have

‖(zm
, tm)− (zn

, tn)‖∗

≤
m−1

∑
j=n

‖(zj+1
, t j+1)− (zj

, t j )‖∗

≤
m−1

∑
j=n

(1−α(1−Λ)) j−k0‖(zk0+1
, tk0+1)− (zk0, tk0)‖∗. (25)

Since 1− α(1 − Λ) < 1, it follows from (25) that
‖(zm, tm)− (zn, tn)‖∗ = ‖zm− zn‖+ ‖tm− tn‖ → 0, as n → ∞.

Hence{zn},{tn} are both Cauchy sequences inK and so there
exist z∗, t∗ ∈ K such thatzn → z∗ andtn → t∗ asn → ∞. From
(20) and (21) it follows that the sequences{xn} and {yn} are
also both Cauchy Cauchy sequences. Thus there existx∗,y∗ ∈ K
such thatxn → x∗ andyn → y∗ asn→ ∞.

Since the mappingsg1,g2,h1,h2 and QK are continuous, it
follows from (11) that

h1(x
∗) = QK [g1(y

∗)−ρT1(y
∗
,x∗)]

and
h2(x

∗) = QK [g2(x
∗)−ηT2(x

∗
,y∗)].

Now, Lemma 3.1 guarantees that(x∗,y∗) is a solution of the
problem (1). This completes the proof. ⊓⊔

Theorem 3.2 Let Ti ,gi ,hi(i = 1,2) be nonlinear operators, such
that for each i = 1, 2,

(a)Ti is θi-strongly monotone with respect togi andγi-Lipschitz
continuous in the first variable, andµi-Lipschitz continuous
in the second variable;

(b)hi is νi-strongly monotone andδi-Lipschitz continuous;
(c)gi is σi-Lipschitz continuous.

If there exist constantsρ ,η > 0 such that










































q

√

(σq
2 −ηqθ2)+Cqηqγq

2 < 1−k1−ρµ1, k1+ρµ1 < 1

q

√

((σq
1 −ρqθ1)+Cqρqγq

1)< 1−k2−ηµ2, k2+ηµ2 < 1,

and
qνi < 1+Cqδ q

i , (i = 1,2),
where

ki =
q

√

1− (qνi −Cqδ q
i ), (i = 1,2),

then for arbitrarily chosen initial pointsx0,y0 ∈ K, xk and yk

obtained from Algorithm 3.1 converge strongly tox∗ and y∗

respectively.

4 Conclusion

A new system of extended general variational inequalities in
Banach spaces is introduced and studied. It is shown that the
new system is equivalent to the system of fixed point problems.
This alternative equivalent formulation is used to suggest an
iterative method for solving system along with convergence
criteria. Some special cases are studied. Results proved in this
paper continue for these known and new systems. The
implementation and comparison of these methods with other
methods is a subject of the future research.
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