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Abstract: We discuss extended one-step methods of order three for the nuihmmsiodon of delay-differential equations. A
convergence theorem and the numerical studies regarding the gencerfactor of these methods are given. Also, we investigate
the stability properties of these methods. The results of the theoreticalsardi@lustrated by numerical examples.
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1 Introduction Many methods have been proposed for the numerical
approximation of problemi( 2). Oberle and PescHh.§]
Delay differential equations (DDEs) have a wide range ofintroduced a class of numerical methods for the treatment
applications in science and engineering. They arise inof DDEs based on the well-known Runge-Kutta-Fehlberg
models where the rate of change of process is not onlynethods. The retarded argument is approximated by an
determined by its present state, but also by a certain pag{ppropriate Hermite interpolation. The same methods are
state. As for instance, the natural delay in the populationysed by Arndt 2] with a different step size control
responding to overcrowding. Many examples of DDES mechanism. Bellen and Zennar] Heveloped a class of
from practice can be found in Driver]. We consider the  numerical methods to approximate the solution of DDEs.

following initial-value problem for DDEs, These methods are based on implicit Runge-Kutta
_ methods. Paul and Baketq] used explicit Runge-Kutta

y(x) = f(xy(x).y(a(x)), as<x<b (1) method for the numerical solution of singular DDEs.
y(X) = 9g(X), v<x<a (2) Toreli and Vermiglio RO] considered continuous

numerical methods for differential equations with several
constant delays. These methods are based on continuous
quadrature rules. Hayashi 1Q] used continuous
Runge-Kutta methods for the numerical solutions of
retarded and neutral DDEs. Engelborghs et d&] |
presented collocation methods for the computation of
H1: The Lipschitz condition holds: periodic solution of DDEs. Hu and Cahlonig]
considered the numerical solution of initial-value
discrete-delay systems.

The most obvious of the above methods for solving
problem (@) numerically are 8-methods given in the
following form

Heref, a andg denote given functions withr (x) < x for

X > a, the functiona is usually called the delay or lag
function andy is unknown solution foix > a. Also, the
function f and the initial functiorg satisfy the following
conditions:

[T (% y1,21) — F(XY2,22)| < Lalyr — Yol + La|lza — 2],
®3)
wherel; andL; are Lipschitz constants.
H2: For any y < Ctlv,b, the mapping
x — f(x,y(x),y(a(x))) is continuous.

Under the conditionsll andH2, the problem 1, 2) has a Vo+1=Yn+h[(1—6)fn+0fy1], n=0,1,... N—1
unique solution Driver (se€]). (4)
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where 0 is a parameter set to be<06 < 1, N is the where
number of noded is the uniform step length ang is an R
approximation to the exact solutioy(x,) at the mesh frniz = (X2, Ins2, Ya(a (Xns2))) )

pointx, = a+ nh. Furthermore,
In order to determine the coefficients, a; and a,, we

fn = f (X, Yn,Y(a(Xn))) (5)  rewrite @) in the exact form

where yn(X) = g(x) for x < a and yp(x) with x > a is

defined by piecewise linear interpolation, i.e. Y1) = Y0xa) + h{G0T (a, Y(a), Y(@ (%0)))

Ly + a1 f (X1, Y(Xn11), V(O (Xns1)))

Y(x) = Xk%yk + 02 f (Xn12,Y(Xn+2), Y(A (Xn+2)))]

X — Xi +t(xn+1)-

+Tyk+la for x <x<xy1 k=0,1,...

(6) We expand the _Ieft and right sides dfO)_ i_n the Taylor

In general the9-methods described byl), (6) and ) are  Seriés at the POIMty;1, equate the coefficients up to the

of first order and they are at most of second ordergor third order termsO(h®) and solving the resulting system
set to equal (. The stability of §-methods has been ©f €quations, we obtain

considered with respect to the following linear DDEs

(10)

or—E or—g 01——i (11)
YI(X) = AY(x) + Hy(x—1), x=0 o 0712 TPt P12

where A and p are complex numbers and> 0. It is t(Xni1) = Ey(4)(g) (12)
known, see Al-Mutib 1], that under the following two 24
conditions wherex, < & < xn.2. Substituting the alpha coefficients
1. g(x) is continuous from (11) into (8), we obtain
2. P-stability || < —RgA), H
the solutiony(x) of linear DDEs {) tends to zero astends Yni1 =Yn+ 75 [5fn+8fni1 — fn+2] (13)

to infinity. The adaptation of-methods has already been

considered in the literature, Calvo and Granslelliu and Here, and in the following

Spijker [1€], In’t Hout and Spijker L3], Guglielmi [8] and

Van Den Heuvel21] and [22]. yY'(x)=g(x) for x<a (14)
Our work aims to extend the curre6tmethods to be

of third order. Moreover, as these methods depend on @mdyh(x) with x > ais defined by

free parameter, we determine the range of the free

parameter which guarantees the stability of theseyh(x) = Boyk + Bryks1

methods. The paper is organized as follows: In the next L

Section, we derive our third order methods for solving +hiBafict Baficra], Torxe <X < X2 k=0, 1&15)

DDEs. Section 3 is devoted to the investigation the . -

stability of the methods and the determination of the N Order to determine the coefficienfis, by, 5 andps, we
. . : : rewrite (L5) in the exact form

stability regions. In Section 4, we determine the

convergence factor of the present methods. The proof of

convergence of the present methods is given in Section 5. Y(x) = Boy(%e) + Pry(%eci1)

Finally, in Section 6, we test numerically our extended 1B (X y(Xe), y(a (%)) (16)
methods and make numerical comparison with the + Baf (X1, Y 1), Y(O (Xir1)))] + (X 1)
6-methods.

Similarly, we expand the left and right sides a6] with
Taylor series at point. 1 and equate the coefficients up to
2 Extended one-step third-order methods the terms of second ord€@(h?). We obtain the resulting
system of equations
In this section, we extend the work of Usmani and

Agarwal [23], Jacques14] and Kondrat and Jacquesd] Bo+pBr=1
to derive the present methods. We start with the following Bo—B2— Bz = —5(x) (17)
discretization for the numerical solution
i Bo— 22 = 6%(X)
Yn+1=Yn H
+h[aofn+alfn+1+a2fn+2], n=0,1,....N—-1 where 1

(8) (%) = i (X = Xicr1) (18)
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The solution of the above systeh/ is

Bo=1-P1
) (19)

Bo = 5(8%X)+26(9 — i+ 1
and
3
(eet) = 15(28%00 + 38%00 + B~ )y () (20)

where B; is a free parameter andy < n < Xgi1.
Substituting from 19) into (15), we obtain

Y' (%) = (1= Bu)Yk+ Bryks1
0B 00

+(6%(X) +258(X) — L+ 1) fiea]
for x<x<x1;, k=0,1,...

(21)

Finally, from (21), the approximatiory,’ » is determined
in the form

h
Yni2 = (1= B1)Yn+ Bryni1— > (Bfa+ (B —4) faid]
(22)

Equations 13), (21) and @2) are the basis of the present

methods.

3 Stability definitions and results

The stability investigations are based on the linear

equation 7) and the concept dP-stability introduced by
Barwell [3]

Definition 1.1. (P-stability region) Given a numerical
method for solving T), the P-stability region of the
method is the set & of the pairs
(X,Y), X =Ah andY = ph, such that the numerical
solution of () asymptotically vanishes for step-lengtis

satisfying
T

h=— (23)

with mis positive integer.
Definition 1.2. (P-stability) A numerical method for7) is
said to beP-stable if
SOR
where
R={(X,Y):Y < —X}.

In order to solve the ProblenT), the present methods are
written as follows

with a constant step siZe satisfying the constrain2@).
The characteristic polynomial associated wigd)(takes
the form

Win(2) = [24—2X(8— B1) + X?(4— B1)] 2™
— [24+2X(4+ 1) + X2B1] 2"
—Y [10+ XB1 + (16— X(4— B1))z— 27|
=0, m=12...

(25)

It is clear that(X,Y) € S if and only if all roots of the
polynomialsW, are inside the unit disc fan=1,2,....
Let

P(2) := [24—2X(8— By) + X?(4— By)] 2™
— [24+2X(4+4 B) + X2B1)| 27,
Q(2) :=—Y [10+XB1+ (16— X (4— B1))z— 27]

and z" denotes the only nonzero root Bfz). It follows
from Rouche’s theorem, see Mardenl7], that
(X,Y) € S if [Z] <1 and|P(2)| > |Q(z)| on the unit
circle. Furthermore, on the unit circle we have
P(2)] = |(|24—2X (8~ B1) + X*(4— Bu)))
— (1244 2X (44 B1) + X?B1]) |,
Q)| <[Y[(|10+XB1|
+]16—X(4—B1)|+2).

Therefore,(X,Y) € S if the following set of inequalities
are satisfied

|(|24—2X (8~ B1) + X3(4— By)]

(26)

(27)

)

— (|24+2X(4+ 1) + X2 )| (28)
Y1 (1104 X[ +[16— X (4= B1)[ +2),
and
24+ 2X(A+P) X B | 4 o)

24— 2X(8— 1) +X?(4—B1)
It can be seen thaX € Sy where Sy is the A-stability
region of the present methods for solving ordinary
differential equation if and only if39) is satisfied, we
refer to Hairer et al. 9] for more details concerning the
A-stability concept. It is easy to see thag) is satisfied if
B1 € (—,2]. Moreover, theP-stability region for various
values of 31 € (—»,2] is determined by solving the
system of inequalities28) and @9). Thus we establish
the following.

Theorem 1. For the present methods, the region of P-
stability satisfies the relation

SNR={(X,Y):|Y|< =X and|Y| < ¢(X)}

Yni1= where
+ (AN)?Ba] yn -+ Hh([(10+ AhBL)Y(x0 — T) ) Tox for X=-3
+ (16— Ah(4— B1))y(Xns1 — T) — 2uhy(Xns2 — T)] P=Y 2 ox g 12 o o3
(24) T 7ox  or As<-
@© 2014 NSP
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for By =0.
Proof. The proof follows immediately from inequality
(28).

Theorem 2. For the present methods the region of
P-stability satisfy the relation

SNR={(X,Y):Y < —-Xand|Y| < ¢(X)},

where

(2—-B)X2—12X . -10
@opXE A 10
22-X) B’

for B1 € (0,2].
Proof. The proof follows immediately from inequality
(28).

Theorem 3. For the present methods the region of
P-stability satisfy the relation

SNR={(xy):]Y] < =X andY< ¢(X) },

where (BL—2)X2—12X BL+4
1 - ; 1+
(1 p)X 14 "fx>’< Br )
~ (B1+4>224
- B B’
oX) = 2X2— (1-2B1)X +24 ifx<_<ﬁl+4>
14— X(1—-B) B
B <31+4>2_24
B B’

for ﬂl € (*00,0).

Proof. The proof follows immediately from inequality
(28).

The Fig. 1 shows the different regions of tHe-stability
with respect to different values .

4 Convergence factor for the present methods

In this section, we present the main result concerning the

convergence factor of the methodk3), (21) and @2) with
B1 = 0. This case may be expressed in the form

. h . .
Yéljll) =Yn+ 12 [an +8f (Xn+l»ymlayh(]) (a(Xnt1)))

1029V @002)| =1

VD0 = Yoot 5 (109 et (14800,

for x<x<x1;, k=0,1,...
(30)
Whereyﬂl is an initial approximation to the solutignat
Xni1 andyﬁl’ll, j > 1 are Picard iterations.
Now, we state and prove the following theorem.

................. N
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40 . o
""""" \ -20
................ -
----------- /Y=-X a
4
S, .
hN
| '8 : )
= 4
------------- \Y=x
......... -8
..... 60
............. a
........... :
............... !
S— T
r "
-60 -40 . _ -"

Fig. 1: TheP-stability region forf3; parameter set equal to10, 2
and 0 (Top-Bottom).

Theorem 4. If the sequence{yf]jll} given by 80) is
bounded by a constant C and the condition

—2R1+2 R2+6R2
hL < V.1

R>

(31)
R =4+ 3!’%

Ry =r3+42r,45

is satisfied, whereyrry € (0,1] and L= max{Li,L;}.
Then, the method() is convergent.

Proof. From @21) with [ = 0, when
a(Xnt1) € (% %1], k=0,1,....,n—1, we have
h
=Y+ = [1— 52 2f
Y(a (1)) =Y+ > [ (a(Xn+1)) " fk (32)

+(1+96 (a(xn+1)))2fk+1]
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Moreover, ifd (Xn+1) € (Xn, Xnt1], We put

PlaG) =yt 3 (1= F@bea)l oo
+ (14 8(a (Xn41)))* |
and
Y0 (@tni1)) = Yot 3 (1 82(@(xai2)) o

+(1+ 8@ 00 )))?F 6012,V 1 Y0 (@ 0050))) ]
(34)
Sincea (Xnt1) — Xn < h, we let o (Xn+1) — Xn = r1h with

r1 € (0,1]. Then, from 83) and @4) we obtain

Y (@0n2) ~ (@ (i1)| =

h
5(14- o(a(Xny1))) ‘f Xn+1,yn+)17yh( >(U(Xn+1)))
- f(Xn+17Yn+1ayh(a(Xn+1)))‘-
(35)
Using the Lipschitz condition, it follows that
- hLr? i
Y0 (@ () =Y (@O0 2))| € iy Vs = Yo
2—hLrg
(36)
Similarly, leta (Xn12) — Xn+1 = r2hwith rp € (0, 1], we get
Y (@0nr2) Y@ 0e2)) | < ST )~y
(37)
From 37), it follows
(i) SULN()
yn+2 - Yn+2‘ < 2_ er% yn+1 - Yn+l‘ . (38)
Using 36), (37) and (38), we obtain
v —yna| <Gy —voua| =01 (39)
where
hL (16+4hL+hL(1+r2)?)

12(2—hLr2)

The constantC is referred as the convergence factor.

Thus, the iterative proces8(Q) is convergent ifC < 1, or
if hL satisfies the conditiorBQ). This completes proof of
the theorem.

Remarkn the same manner,
convergence factor for different values@f.

5 Error estimate

We state and prove the error estimate for the methbgs (
(21) and @2). Our error estimate is given by the following
theorem:

Theorem 5. Let y, be obtained by the method43,
(21) and 22). Then, at each mesh poing,xwve have the
following error estimate:

=|y() —ya <C1h*, n=12...,N  (40)

where G is independent of n and h.
Proof. Without loose of generality, we tak@ = O.

Subtracting 13) from (10) with the coefficients in 1),
we obtain

—Ynt1=Y(%a) = ¥n
+ 25 (8(F 0, Y00)).¥(@(50)
)

- f(memyh( a(%a)))

+8(f(Xn+17 (Xn+1)7Y(o’(Xn+l))) (41)
—f(Xn—s-laYn—s-l’yh(a(Xn 1))

= (f(Xnt2,Y(Xn+2), Y(a (Xn12)))

- f(Xn+27yn+2ayh(a(Xn+ ))))}

+t(Xns1)

Y(Xn+1)

From the definition ofe, in (40) and the Lipschitz
condition @), we obtain

h
€1 < en+ P [5(L1en+Loey,)

+8(LaeniatLo€ay)  (42)
+L1éni2+ Loa, ]
+[t(Xnr1)|
where
ean = |Y(@(x0)) ¥ (@ (x0)| (43)
and
éni2 = [Y(Xn12) —Yni2l- (44)

Form (15), the inequality 42) can be rewritten as follows

h
i1 ent 5 [5(L1en+ Loeq,)
+8(Lient1+Loeq,,,)
+L16v:2 + Lo€q,,,] +O(h?).

(45)

Now, we estimates the quantitieg,, €, ;, €a,,,, aNd€n 2
in (42). From (L6) and Q1) with the coefficient in 19), we
obtain

one can determine the

€an < &+ 01(Xn) (L16x + Loy, )
+02(Xn) (L1&kt 1+ Lo€yy.,)

46
)], (46)
for x¢ < a (%) <x:1,k=0,1,...
where h
o1(x) = 5(1—52(0!00)) (47)
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and N
Ge(x) = 5(1+3(a(x))> (48)
Let us consider
En= Ofgkasﬁ%
and
Eq, = maxeg,.
0<k<n

Then @6) with (20) leads to the following estimation

Eap i <Ent 91(%n+ ) (LaEn + L2Eq,)

+ 02(%n+j) (L1Ens1+ L2Eq,, ;) (49)
+0(h%); j=0,1,2
and
Eni2 < En+2h(L1En1 + LoEq,.,) +O(h%),  (50)

where
E,o= max &
M2 = o e,

Assume thah is sufficiently small to satisfg;(x)Ly < 1
andgz(x)Lz < 1. Using @9), we rewriteEg, ; in terms of
En.j, for j =0,1, as follows

Ean < = (04(%)En + Go(%)L1Ens1) + O(H) (51)
93(Xn)

and

Eap,y < (95(%n)En +g6(Xn)Ens1) + (M%),  (52)

03(Xn)

where

g3(X) = 1-g1(X)L2 — Ga(x+h)L2

+01(X)G2(X+ )L3 — g1 (x+ h)ga(X)L3,

ga(X) = 14+ 01(X)L1 — g2(x+h)L
=01 (X)G2(x+h)L1l2 + g2 (X)L2
+01(X+h)g2(x)L1Lo,

g5(X) =1—g1(X)L2+g1(x+h)(L1 +L2),

06(X) = g2(x+h)L1 —g1(X)g2(x+h)L1L2
+01(X+h)gz2(x)L1Lo.

(53)

Substituting 1) and 62) into (49) for j = 2, we get

Eonir < (14 01(Xn12)L1)En +02(Xns2)L1Enta

and

Eni2 <En+2h L1Ent1

2hL (55)
+ =2 [gs(%n)En + Go(Xn)Enta] + O(R%).
03(Xn)
Using @9-52) and @2), we obtain
En1 < (1+h81(Xn))En+hG2(Xn)Ens1+ BhA'7 (56)

whereB is a nonnegative constant and tpeahdd, are
defined as follows

) 1
G1(x) = 7 [6La+ Lo+ LaLoga (x-+21)

o0 (5 010+ L)L

+(8+ 2hlL; + 92(X+ 2h)L2)95(X) Lz] ,

~ 1
gz(X) = 1—2 [8L1 + 2hL§ + gz(X—‘r Zh) L1L2]

1
+ 5+ g1 (x+ 2h)L3)ga (X)L
1205 [(5+a( )L3)g2(X)La
+(8+2hLy)gs(X)L2].
(57)
Thus, 66) can be rewritten as
1+ hgl(xn) 4

Enp1 < = + — h™. 58
n+1 > 1—hgz(Xn) n 1_hgz(Xn) ( )

Assume thah is sufficiently small to ensurbgz(x) < 1.
Then, there exists two positive constamtsandw, such

that R
14-hg1(xn)

1— (%) <1+hw, 59)
h74 < h4W2
1-h@2(xn) — '
Then,
Eni1 < (1+hwy)En + Bwoh?, (60)

Applying Henrici Lemma11] to the inequality 60) yields

3
En < Eot T woB(e"M _ 1). (61)
W1
SinceEg = 0, then
h3 h
En < —woB(e"™ —1). (62)
Wy

This complete the proof of the Theorésn

2
T %) [940) 91 (X01-2) B 6 Numerical tests
(54)
+05(%n)G2(%n-2)En In this section, we validate our methods3), (21) and
+020%) 91 (%n+2)L1Eni1 (22) numerically for different values ofB.. The
+ 06(%n)92(Xny2)Enta] +O(h%), comparison with6-methods for different values d is
© 2014 NSP
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considered as well. We restrict our study to equidistant’@Ple 2: Comparison of Extended one-step method with

steps size time. parametef set to equal 1 with th@-methods withf set to equal
Example 1 0.5 for Example 2.
6-methods
1 x X X y]_(X) yZ(X)
y(x) = zezy(z)+zy(x),0<x< 1 N EN RV EN RN
2 202 (63) 10 1.12E-02 8.93E-03
y(0)=1 20 2.80E-03 2.00 2.23E-03 2.00
o 40 7.00E-04 2.00 5.57E-04 2.00
The exact solution ig(x) = €. 80 1.75E-04 2.00 1.39E-04 2.00

160 4.37E-05 2.00 3.48E-05 2.00
Extended one-step methods

Table 1: Comparison of Extended one-step method with Nyl(x) N KZ(X) N
paramete3 set to equal 0 and 1 with th@methods withd set N E R E R
to equal 0, & and 1 for Example 1. 10 4.00E-06 3.49E-07
6-methods 20 5.00E-07 3.00 4.33E-08 3.01
6=0 0=0.5 6=1 40 6.26E-08 3.00 5.39E-09 3.01
N EN RN EN RN EN RN 80 7.80E-09 3.00 6.73E-10 3.00
10  5.83E-02 6.93E-04 6.28E-02 160 9.74E-10 3.00 8.40E-11 3.00

20 297E-02 0.97 1.73E-04 2.00 3.08E-02 1.03

gg %-535'82 g-gg ‘1‘-325‘85 5-88 %-535'82 1'81 values of parameteB; € (—,2]. We showed that the
160 3'§7E-03 0'99 2'70E'_0‘2 2' 00 3.§8E-03 1‘ 00 larger P-stability region occurs fo = 0. Moreover, the
' ' ' ‘ ' " methods arelL-stable for solving ODEs for the case
Extended one-step methods

corresponding t@ = 0. The effectiveness of our methods

N ENB:O RN ENle RN is clearly indicated with the numerical results. Our
10 5.37E-06 1 07E-05 research perspective is to extend the current study for
20 663E-07 302 1.32E-06 3.01 integral-deferential equations.

40 8.24E-08 3.01 1.65E-07 3.01
80 1.03E-08 3.00 2.05E-08 3.00
160 1.28E-09 3.00 2.56E-09 3.00 References
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