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Abstract: In this paper, we consider coupled nonlinear Klein-Gordon equations with weak damping terms, in a bounded domain. The
blow up of the solution with negative initial energy is established.
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1 Introduction

In this paper we consider the following coupled nonlinear
Klein-Gordon equations























utt −△u+m2
1u+ |ut |

p−1ut = f1 (u,v) , (x, t) ∈ Ω × (0,T) ,
vtt −△v+m2

2v+ |vt |
q−1vt = f2 (u,v) , (x, t) ∈ Ω × (0,T) ,

u(x,0) = u0 (x) , ut (x,0) = u1 (x) , x∈ Ω ,

v(x,0) = v0 (x) , vt (x,0) = v1 (x) , x∈ Ω ,

u(x, t) = v(x, t) = 0, x∈ ∂Ω ,

(1)
whereΩ is a bounded domain with smooth boundary∂Ω
in Rn (n= 1,2,3), m1, m2 > 0 andp,q≥ 1 are constants.
The coupled nonlinear Klein-Gordon equation which
models the motion of charged mesons in an
electromagnetic field is investigated [1].

For p = q, Ye [2] studied the global existence and
asymptotic stability of solutions of the problem (1). In
[3], Pişkin proved the global existence, decay and blow
up of solutions of the problem (1). Also, In the case of
p = q = 1, problem was studied by Korpusov [4],
Miranda and Medeiros [5] and Wu [6]. When
m1 = m2 = 0, the problem (1) was considered by many
authors [7,8,9,10].

In this work, the blow up of the solution with negative
initial energy is proved forp = q = 1, by using the
technique of [11].

This paper will be organized as follows. In Section 2,
we present some lemmas and the local existence theorem.
In Section 3, we show the blow up properties of solutions
in the case ofp= q= 1.

2 Preliminaries

In this section, we give some assumptions and lemmas
which will be used throughout this work. Hereafter we
denote by‖.‖ and‖.‖p the norm ofL2 (Ω) andLp (Ω) ,
respectively.

Concerning the functionsf1 (u,v) and f2 (u,v) , we
take

f1 (u,v) = (r +1)
[

a|u+ v|r−1 (u+ v)+b|u|
r−3

2 u|v|
r+1

2

]

,

f2 (u,v) = (r +1)
[

a|u+ v|r−1 (u+ v)+b|u|
r+1

2 |v|
r−3

2 v
]

,

wherea,b> 0 are constants andr satisfies
{

1< r if n≤ 2,
1< r ≤ n

n−2 if n> 2. (2)

One can easily verify that

u f1 (u,v)+v f2 (u,v) = (r +1)F (u,v) , ∀(u,v)∈R2
, (3)

where

F (u,v) =
[

a|u+ v|r+1+2b|uv|
r+1

2

]

. (4)

We have the following result.

Lemma 1.[12]. There exist two positive constants c0
and c1 such that

c0

(

|u|r+1+ |v|r+1
)

≤ F (u,v)≤ c1

(

|u|r+1+ |v|r+1
)

(5)

is satisfied.
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We define the energy function as follows

E (t) =
1
2

(

‖ut‖
2+ ‖vt‖

2
)

+
1
2

(

‖∇u‖2+ ‖∇v‖2

+m2
1‖u‖2+m2

2‖v‖2
)

−

∫

Ω
F (u,v)dx. (6)

The next lemma shows that our energy functional (6)
is a nonincreasing function along the solution of (1).

Lemma 2.E (t) is a nonincreasing function for t≥ 0 and

E′ (t) =−
(

‖ut‖
2+ ‖vt‖

2
)

≤ 0. (7)

Proof.Multiplying the first equation of (1) by ut and the
second equation byvt , integrating over Ω , using
integrating by parts and summing up the product results,
we get

E (t)−E(0) =−
∫ t

0

(

‖uτ‖
2+ ‖vτ‖

2
)

dτ for t ≥ 0. (8)

Next, we state the local existence theorem of the
problem (1), which can be obtained in a similar way as
done in [7].

Theorem 1.(Local existence). Suppose that (2) holds, and
further (u0,v0) ∈ H1

0 (Ω)×H1
0 (Ω) , (u1,v1) ∈ L2 (Ω)×

L2 (Ω) . Then problem (1) has a unique local solution

u,v∈C
(

[0,T) ;H1
0 (Ω)

)

,

ut ∈C
(

[0,T) ;L2 (Ω)
)

∩Lp+1(Ω × [0,T)) and vt ∈C
(

[0,T) ;L2 (Ω)
)

∩Lq+1 (Ω × [0,T)) .

Moreover, at least one of the following statements holds
true:

i) T = ∞,

ii)
‖ut‖

2 + ‖vt‖
2+ ‖∇u‖2+ ‖∇v‖2 +m2

1‖u‖2+m2
2‖v‖2 −→

∞ ast −→ T−.

3 Blow up of solutions

In this section, we are going to consider the blow up of the
solution for the problem (1), whenp= q= 1.

Lemma 3.[11]. Suppose thatψ (t) is a twice continuously
differentiable function satisfying

{

ψ ′′ (t)+ψ ′ (t)≥C0ψ1+α (t) , t > 0,
ψ (0)> 0, ψ ′ (0)≥ 0,

where C0 > 0, α > 0 are constants. Then,ψ (t) blows up
in finite time.

Theorem 2.Let the assumptions of Theorem 1 hold.
Assume further that p= q= 1. If initial data satisfies

E (0)≤ 0,
∫

Ω
(u0u1+ v0v1)dx≥ 0,

then the corresponding solution blows up in finite time. In
other words, there exists a positive constant T∗ such that

lim
t−→T∗

(

‖u‖2+ ‖v‖2
)

= ∞.

Proof.To apply Lemma 3, we define

ψ (t) =
1
2

∫

Ω

(

|u|2+ |v|2
)

dx. (9)

Therefore

ψ ′ (t) =
∫

Ω
(uut + vvt)dx, (10)

and

ψ ′′ (t) =
∫

Ω

(

u2
t + v2

t

)

dx+
∫

Ω
(uutt + vvtt)dx. (11)

Then, eq (1) is used to estimate (11) as follows

ψ ′′ (t) =
(

‖ut‖
2+‖vt‖

2
)

−
(

‖∇u‖2+‖∇v‖2
)

−
(

m2
1‖u‖2+m2

2 ‖v‖2
)

−

∫

Ω
(uut +vvt)dx+(r +1)

∫

Ω
F (u,v)dx. (12)

Now, we exploit (6) to substitute for
m2

1‖u‖2+m2
2‖v‖2 ; we have

ψ ′′ (t)+ψ ′ (t) = 2
(

‖ut‖
2+‖vt‖

2
)

−2E (t)+(r −1)
∫

Ω
F (u,v)dx

≥ c0 (r −1)
(

‖u‖r+1
r+1 +‖v‖r+1

r+1

)

, (13)

wherec0

(

|u|r+1+ |v|r+1
)

≤ F (u,v) is used.

Now, Hölder’s inequality is used to estimates‖u‖r+1
r+1

and‖v‖r+1
r+1 as follows

∫

Ω
|u|2dx≤

(

∫

Ω
|u|r+1dx

)
2

r+1
(

∫

Ω
1dx

)
r−1
r+1

.

Wn is called the volume of the domainΩ , then

‖u‖r+1
r+1 ≥

(

∫

Ω
|u|2dx

)
r+1

2

(Wn)
−( r−1

2 )
, (14)

and similarly

‖v‖r+1
r+1 ≥

(

∫

Ω
|v|2dx

)
r+1

2

(Wn)
−( r−1

2 )
. (15)

Substituting the estimate (14), (15) into (13), we conclude

ψ ′′ (t)+ψ ′ (t)≥ c0 (r −1)(Wn)
−( r−1

2 )
[

(

∫

Ω |u|2dx
)

r+1
2
+
(

∫

Ω |v|2dx
)

r+1
2
]

.

(16)
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In order to estimate the right-hand side in (16), we
make use of the following inequality

(X+Y)ρ ≤ 2ρ−1(Xρ +Yρ) ,

X,Y ≥ 0, 1 ≤ ρ < ∞, applying the above inequality we
have

2−(
r−1

2 )
(

∫

Ω |u|2dx+
∫

Ω |v|2dx
)

r+1
2

≤
(

∫

Ω |u|2dx
)

r+1
2
+
(

∫

Ω |v|2dx
)

r+1
2
.

Consequently, (16) becomes

ψ ′′ (t)+ψ ′ (t) ≥ 2
−
(

r−1
2

)

c0 (r −1) (Wn)
−
(

r−1
2

)
(

∫

Ω
|u|2 dx+

∫

Ω
|v|2 dx

)
r+1

2

= 2c0 (r −1) (Wn)
−
(

r−1
2

)

ψ
r+1

2 (t) .

It is easy to verify that the requirements of Lemma 3 are
satisfied by

C0 = 2c0(r −1)(Wn)
−( r−1

2 )
> 0 andα =

r +1
2

> 0.

Therofereψ (t) blows up in finite.
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