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Abstract: In this article, we present a continuous review perishable inventory system with a service facility. The service facility consists
of a single server and a finite waiting room. If the arriving primary customer finds the waiting hall is empty and the server is idle, he
immediately joins the service. The demanded items are issued by a server after some random time due to service on it. We assume that
the service may interrupted due to some physical phenomena and the service resumes after repair. An arriving primary customer finds
the waiting room is full is permitted to enter into orbit otherwise the customer waits for his service in the waiting hall. The customers in
the orbit are called repeated customers and they retry for their service after some random time. The inventory is replenished according
to an (s,S) ordering policy. The joint probability distribution of the number of customers in the waiting area, the number of customers
in the orbit and the inventory level is obtained for the steady state case. Some important system performance measures in the steady
state are derived. Several numerical examples are presented to illustrate the effect of the system parameters.

Keywords: Continuous review inventory system, Perishable item, Service facility, (s,S) policy, Repeated customer, Service
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1 Introduction

Inventory models considered in the literature, the
demanded items are directly issued from the stock, if
available. The demands that occurred during stock out
period are either not satisfied (lost sales case) or satisfied
only after the replenishment of the ordered items (backlog
case). Latter it is assumed either all (full backlog case) or
only a fixed number of demands (partial backlogging) that
occurred during stock out period are satisfied. The case of
inventories maintained at service facilities, the demanded
items are issued to the customers only after some service
is performed on it. In this situation the items are issued
not immediately to the demand but after a random time of
service. This forces the formation of queues in this type
of models. This necessitates the study of both the
inventory level and the queue length joint distributions.
Study of such models is beneficial to organizations which

–Provide service to customers by using items from a
stock.

–Maintain stock of items each of which needs service
such as assembly or initialization or installation, etc.

Examples for the first type include firms that are engaged
in servicing consumer products such as Television sets,
Computers, etc., and for the second type include firms
that supply bicycles which need assembly of its parts, that
supply food items which need heating or garnishing and
that computers which need installation of basic services.

The concept of retrial demands in inventory was
introduced by Artalejo et al. [1]. They have assumed
Poisson demand, exponential lead time and exponential
retrial time. In that work, the authors proceeded with an
algorithmic analysis of the system. Ushakumari [16]
considered a retrial inventory system with classical retrial
policy. As a variant, we consider a continuous review
retrial inventory system with server interruptions in this
paper. For a brief review of retrial queues, see Artalejo
([2], [3]), Artalejo et al. [4], Artalejo et al. [5], Falin [8]
and Falin and Templeton [9].

Krishnamoorthy and Anbazhagan [11] analyzed a
perishable queueing-inventory system with N policy,
Poisson arrivals, exponential distributed lead times and
service times. The joint probability distributions of the
number of customers in the system and the inventory
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level were obtained in the steady state case. Two other
papers where an inventory model with service time is
considered, are by Krishnamoorthy et.al ([12], [13]). The
article [12] is considered for an inventory model with
instantaneous replenishment and the service process is
subject to interruptions. The discussion in [13] is an
inventory model with positive lead time, server
interruptions and an orbit of infinite capacity, where no
waiting space is provided for customers, other than for the
one whose service gets interrupted.

In this paper, we consider a continuous review (s,S)
retrial inventory system with server interruptions, in
which the server provides K types of heterogeneous
service and each arriving customer has the option of
choosing either type of service. The joint probability
distribution of the number of customers in the waiting
hall, number of customers in the orbit and the inventory
level is obtained in the steady state case. Various system
performance measures are derived and the total expected
cost rate is calculated.

The rest of the paper is organized as follows. In the
next section, we describe the mathematical model and the
notations used in this paper are defined. Analysis of the
model and the steady state solution of the model are dealt
with in section 3. Some key system performance
measures are derived in section 4. In section 5, we
calculate the total expected cost rate. In section 6, we
provide some interesting numerical examples. The last
section is meant for conclusion.

2 Mathematical model

We consider a continuous review inventory system with a
stock of maximum S units. The system consists of a
single server and a finite waiting hall of size N. The
primary customers arrive according to a Poisson process
with parameter λ (> 0). The items are issued by a server
to the customer after some service time due to the service
performed on the items. The service time follows a
negative exponential distribution with parameter µ . An
arriving primary customer finds the waiting hall is empty
and the server is idle, he immediately joins the service.
We assume K types of services are available at service
facility. The customer chooses type i service with

probability pi, i = 1,2, . . . ,K and
K
∑

i=1
pi = 1. Any arriving

customer, who finds the waiting room is full, are
permitted to enter into orbit of finite size M. The
customers in the orbit are called repeated customers. They
retry for their service after some random time. We assume
the time between two successive retrials is an exponential
random variable with parameter θ . In this article, we
assumes the classical retrial policy. That is, the rate of
retrial, when the repeated attempt in an interval (t, t + dt)
given that there are i customers in the orbit at time t is
iθ +o(dt).

While the server serves a customer, the service may

get interrupted with the interruption process governed by
a Poisson process with parameter ν1. It is assumed that
the server is under interruption, no further interruption
can befall the server. On completion of an interruption the
service resumes, with the duration of an interruption
exponentially distributed with parameter ν2. The
demanding customers receive their service one by one
and they demand a single item. The operating policy is
(s,S) ordering policy. According to that, an order for
Q(= S − s > s + 1) items are placed whenever the
inventory level drops to s and the items are received only
after a random time which has exponential distribution
with parameter β (> 0). The life time of each item has
negative exponential distribution with parameter γ(> 0).
We have assumed that an item cannot be perished while in
service. The customer finds both the waiting hall and the
orbit full, is considered to be lost. Various stochastic
processes involved in the system are independent.

2.1 Notations

0 : Zero matrix
[A]i j : entry at (i, j)th position of a matrix A

H(x) :
{

1, if x ≥ 0,
0, otherwise.

δi j :
{

1, if j = i
0, otherwise

δ̄i j : 1−δi j

k ∈V j
i : k = i, i+1, . . . j

Y (t) :

0, if the server is idle at time t
1, if the server is busy at time t
2, if the server is on interruption at time t

k
Ω
i= j

ci :
{

c jc j−1 · · ·ck if j ≥ k
1 if j < k

eT : (1,1, . . . ,1)

3 Analysis

Let L(t), Y (t), X(t) and Z(t) respectively, denote the
inventory level, the server status, the number of customers
(waiting and being served) in the waiting room and the
number of customers in the orbit at time t. From the
assumptions made on the input and output processes, it
can be shown that the stochastic process
{(L(t),Y (t),X(t),Z(t)), t ≥ 0} is a continuous time
Markov chain with state space given by E.
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where E = E1 ∪E2 ∪E3 with

E1 : {(0,0, i3, i4) | i3 = 0,1,2, . . . ,N, i4 = 0,1,2, . . . ,M,}
E2 : {(i1,0,0, i4) | i1 = 1,2, . . . ,S, i4 = 0,1,2, . . . ,M,}
E3 : {(i1, i2, i3, i4) | i1 = 1,2, . . . ,S, i2 = 1,2,

i3 = 1,2, . . . ,N, i4 = 0,1,2, . . . ,M}

The infinitesimal generator of this process is

Θ = ( a((i1, i2, i3, i4);( j1, j2, j3, j4)) ),
(i1, i2, i3, i4),( j1, j2, j3, j4) ∈ E

The infinitesimal generator Θ can be written in terms of
sub matrices Θi1 j1 , namely,

Θ = ((Θi1 j1)),

where

Θi1 j1 =


Ai1 j1 = i1, i1 = 0,1,2, . . . ,S
Bi1 j1 = i1 −1, i1 = 1,2, . . . ,S−1,S
C j1 = i1 +Q, i1 = 1,2, . . . ,s,
C1 j1 = i1 +Q, i1 = 0,
0 Otherwise.

More explicitly,

Θ =

S
S−1

...
s+1

s
s−1

...
1
0



AS BS
AS−1 BS−1

· · ·
· · · As+1 Bs+1

C As Bs
C As−1

· · · · · ·
C · · · A1 B1

C1 A0



where

[C]i2 j2 =


C(0)

00 j2 = i2, i2 = 0
C(0)

11 j2 = i2, i2 = 1
C(0)

22 j2 = 2, i2 = 2
0, otherwise.

[C(0)
00 ]i3 j3 =

{
W (0)

00 j3 = 0, i3 = 0
0, otherwise.

[W (0)
00 ]i4 j4 =

{
β , j4 = i4, i4 ∈V M

0
0, otherwise.

[C(0)
11 ]i3 j3 =

{
W (0)

00 j3 = i3, i3 ∈V N
1

0, otherwise.

[C(0)
22 ]i3 j3 =

{
W (0)

00 j3 = i3, i3 ∈V N
1

0, otherwise.

[C1]i2 j2 =

C(1)
00 j2 = 0, i2 = 1

C(1)
01 j2 = 1, i2 = 0

0, otherwise.

[C(1)
00 ]i3 j3 =

{
W (0)

00 j3 = 0, i3 = 0
0, otherwise.

[C(1)
01 ]i3 j3 =

{
W (0)

00 j3 = i3, i3 ∈V N
1

0, otherwise.

[B1]i2 j2 =


B(1)

00 j2 = 0, i2 = 0
B10 j2 = 0, i2 = 1
B11 j2 = 1, i2 = 1
0, otherwise.

[B(1)
00 ]i3 j3 =

{
W1 j3 = 0, i3 = 0
0, otherwise.

[W1]i4 j4 =

{
γ, j4 = i4, i4 ∈V M

0
0, otherwise.

[B10]i3 j3 =

{
C2 j3 = 0, i3 = 1
0, otherwise.

[C2]i4 j4 =

{
µ j4 = i4, i4 ∈V M

0
0, otherwise.

[B11]i3 j3 =

{
C2 j3 = i3 −1, i3 ∈V M

2
0, otherwise.

For i1 = 2,3, . . . ,S,

[Bi1 ]i2 j2
=



B(i1)
00 j2 = 0, i2 = 0

B(i1)
10 j2 = 0, i2 = 1

B(i1)
11 j2 = 1, i2 = 1

B(i1)
22 j2 = 2, i2 = 2

0, otherwise.

[B(i1)
00 ]i3 j3 =

{
Wi1 j3 = i3, i3 = 0
0, otherwise.

[Wi1 ]i2 j2 =

{
i1γ, j4 = i4, i4 ∈V M

0
0, otherwise.

[B(i1)
10 ]i3 j3 =

{
C2 j3 = i3, i3 = 1
0, otherwise.

[B(i1)
11 ]i3 j3 =

T(i1−1) j3 = i3, i3 ∈V N
1

C2 j3 = i3 −1, i3 ∈V N
2

0, otherwise.
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[T(i1−1)]i4 j4 =

{
(i1 −1)γ, j4 = i4, i4 ∈V M

0
0, otherwise.

[A0]i2 j2 =

{
A(0)

00 j2 = 0, i2 = 0
0, otherwise.

[A(0)
00 ]i3 j3 =


C3 j3 = i3 +1, i3 ∈V N−1

0
C4 j3 = i3, i3 ∈V N−1

0
C5 j3 = i3, i3 = N
0, otherwise.

[C3]i4 j4 =

{
λ , j4 = i4, i4 ∈V M

0
0, otherwise.

[C4]i4 j4 =

{
−(λ +β ), j4 = i4, i4 ∈V M

0
0, otherwise.

[C5]i4 j4 =


λ , j4 = i4 +1, i4 ∈V M−1

0
−(δ̄i4Mλ
+β ), j4 = i4, i4 ∈V M

0
0, otherwise.

For i1 = 1,2,3, . . . ,S,

[Ai1 ]i2 j2
=



A(i1)
00 j2 = 0, i2 = 0

A01 j2 = 1, i2 = 0
A(i1)

11 j2 = 1, i2 = 1
A12 j2 = 2, i2 = 1
A21 j2 = 1, i2 = 2
A(i1)

22 j2 = 2, i2 = 2
0, otherwise.

[A(i1)
00 ]i3 j3 =

{
D(i1) j3 = i3, i3 = 0
0, otherwise.

[D(i1)]i4 j4 =

−(λ+
i1γ + i3θ +β ), j4 = i4, i4 ∈V M

0
0, otherwise.

[A10]i3 j3 =

{
C6 j3 = 1, i3 = 0
0, otherwise.

[C6]i4 j4 =

λ j4 = i4, i4 ∈V M
0

i4θ j4 = i4 −1, i4 ∈V M
1

0, otherwise.

[A(i1)
11 ]i3 j3 =


C3 j3 = i3 +1, i3 ∈V N−1

1
E(i1) j3 = i3, i3 ∈V N−1

1
G(i1) j3 = i3, i3 = N
0, otherwise.

[E(i1)]i4 j4 =


−(λ +(i1 −1)γ+
H(s− i1)β+
ν1 +µ),

j4 = i4, i4 ∈V M
0

0, otherwise.

[G(i1)]i4 j4 =


λ , j4 = i4 +1, i4 ∈V M−1

0
−(δ̄i4Mλ +(i1 −1)γ+
H(s− i1)β +ν1 +µ), j4 = i4, i4 ∈V M

0
0, otherwise.

[A12]i3 j3 =

{
C7 j3 = i3, i3 ∈V N

1
0, otherwise.

[C7]i4 j4 =

{
ν1 j4 = i4, i4 ∈V M

0
0, otherwise.

[A21]i3 j3 =

{
C8 j3 = i3, i3 ∈V N

1
0, otherwise.

[C8]i4 j4 =

{
ν2 j4 = i4, i4 ∈V M

0
0, otherwise.

[A(i1)
22 ]i3 j3 =


C3 j3 = i3 +1, i3 ∈V N−1

1
H(i1) j3 = i3, i3 ∈V N−1

1
J(i1) j3 = i3, i3 = N
0, otherwise.

[H(i1)]i4 j4 =

−(λ +(i1 −1)γ+
H(s− i1)β +ν2), j4 = i4, i4 ∈V M

0
0, otherwise.

[J(i1)]i4 j4 =


λ , j4 = i4 +1, i4 ∈V M−1

0
−(δ̄i4Mλ +(i1 −1)γ+
H(s− i1)β +ν2), j4 = i4, i4 ∈V M

0
0, otherwise.

It may be noted that the matrices Ai1 , i1 = 1,2, . . . ,S, C
and Bi1 , i1 = 2,3, . . . ,S, B1, B2 and C are square matrices
of size (2N + 1)(M + 1). C(0)

00 , W (0)
00 , C(1)

00 , C2, C3, C4, C5,

C6, C7, C8, B(i1)
00 , Wi1 , D(i1), A(i1)

00 , E(i1), G(i1), H(i1), J(i1),
i1 = 1,2, . . . ,S and T(i1−1), i1 = 2,3, . . . ,S are square

matrices of size (M + 1). C01, B11, A12, A21, C(0)
11 , C(0)

22 ,

A(i1)
11 , A(i1)

22 , B(i1)
11 , and B(i1)

22 , i1 = 1,2, . . . ,S are square
matrices of size N(M + 1). A0 and A(0)

00 are square

matrices of size (N +1)(M+1). B1, C1, C(1)
01 , B10 and A01

are matrices of size (2N + 1)(M + 1)× (N + 1)(M + 1),
(N + 1)(M + 1) × (2N + 1)(M + 1),
(N + 1)(M + 1) × N(M + 1), N(M + 1) × M + 1 and
M+1×N(M+1) respectively.

3.1 Steady state analysis

It can be seen from the structure of Θ that the
homogeneous Markov process
{(L(t),Y (t),X(t),Z(t)), t ≥ 0} on the finite space E is
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irreducible. Hence the limiting distribution

ϕ (i1,i2,i3,i4) = lim
t→∞

Pr[L(t) = i1,Y (t) = i2,X(t) = i3,

Z(t) = i4|L(0),Y (0),X(0),Z(0)],

exists. Let

Φ = (ϕ (0),ϕ (1), . . . ,ϕ (S))

partitioning the vector, ϕ (i1) as follows:

ϕ (0) = (ϕ (0,0)),

ϕ (0,0) = (ϕ (0,0,0),ϕ (0,0,1), . . . ,ϕ (0,0,N)),

ϕ (i1) = (ϕ (i1,0),ϕ (i1,1),ϕ (i1,2)), i1 = 1,2, . . . ,S;

ϕ (i1,0) = (ϕ (i1,0,0)), i1 = 1,2, . . . ,S;

ϕ (i1,1) = (ϕ (i1,1,1),ϕ (i1,1,2), . . . ,ϕ (i1,1,N)), i1 = 1,2, . . . ,S;

ϕ (i1,2) = (ϕ (i1,2,1),ϕ (i1,2,2), . . . ,ϕ (i1,2,N)), i1 = 1,2, . . . ,S;

which is partitioned as follows,

ϕ (0,0,i3) = (ϕ (0,0,i3,0),ϕ (0,0,i3,1), . . . ,ϕ (0,0,i3,M)),

i3 = 0,1,2, . . . ,N;

ϕ (i1,0,0) = (ϕ (i1,0,0,0),ϕ (i1,0,0,1),ϕ (i1,0,0,2), . . . ,ϕ (i1,0,0,M)),

i1 = 1,2, . . . ,S;

ϕ (i1,1,i3) = (ϕ (i1,1,i3,0),ϕ (i1,1,i3,1), . . . ,ϕ (i1,1,i3,M)),

i1 = 1,2, . . . ,S; i1 = 1,2, . . . ,N;

ϕ (i1,2,i3) = (ϕ (i1,2,i3,0),ϕ (i1,2,i3,1), . . . ,ϕ (i1,2,i3,M)),

i1 = 1,2, . . . ,S; i1 = 1,2, . . . ,N;

where ϕ (i1,i2,i3,i4) denotes the steady state probability for
the state (i1, i2, i3, i4) of the process, exists and is given by

ΦΘ = 0 and ∑∑∑
(i1,i2,i3,i4)

ϕ (i1,i2,i3,i4) = 1. (1)

The first equation of the above yields the following set
of equations:

ϕ (i1)Bi1 +ϕ (i1−1)Ai1−1 = 0,
i1 = 1,2, . . . ,Q,

ϕ (i1)Bi1 +ϕ (i1−1)Ai1−1 +ϕ (i1−1−Q)C1 = 0,
i1 = Q+1,(∗)

ϕ (i1)Bi1 +ϕ (i1−1)Ai1−1 +ϕ (i1−1−Q)C = 0,
i1 = Q+2,Q+3, . . . ,S,

ϕ (S)AS +ϕ (s)C = 0.

After lengthy simplifications, the above equations,
except (∗), yields

ϕ (i1) = (−1)Q−i1ϕ (Q)
i1+1
Ω

j=Q
B jA−1

j−1,

i1 = Q−1,Q−2, . . . ,0

= (−1)2Q−i1+1ϕ (Q)×
S−i1
∑
j=0

[(
s+1− j

Ω
k=Q

BkA−1
k−1

)
CA−1

S− j

(
i1+1
Ω

l=S− j
BlA−1

l−1

)]
,

i1 = S,S−1, . . . ,Q+1
where ϕ (Q) can be obtained by solving,

ϕ (Q+1)BQ+1+ϕ (Q)AQ+ϕ (0)C1 = 0 and
S
∑

i1=0
ϕ (i1)e= 1,

1
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λ = 1.2, β = 2, γ = 0.3, θ = 3, µ = 2, ν1 = 1, ν2 = 0.5,
p1 = 0.2, p2 = 0.5, p3 = 0.3, K = 3, N = 6, M = 4,

ch = 0.01, cs = 50, cp = 0.5, cl = 0.3, c0 = 2, ci = 6,
cr = 2, cw = 0.4

Fig. 1: A three dimensional plot of the cost function
TC(S,s,N,M)

thatis

ϕ (Q)

[
(−1)Q

s−1
∑
j=0

[(
s+1− j

Ω
k=Q

BkA−1
k−1

)
CA−1

S− j

(
Q+2
Ω

l=S− j
BlA−1

l−1

)]
×

BQ+1 +AQ +

{
(−1)Q 1

Ω
j=Q

B jA−1
j−1

}
C
]
= 0,

and

ϕ (Q)

[
Q−1
∑

i1=0

(
(−1)Q−i1

i1+1
Ω

j=Q
B jA−1

j−1

)
+ I+

S
∑

i1=Q+1

S−i1
∑
j=0

(−1)2Q−i1+1
(

s+1− j
Ω

k=Q
BkA−1

k−1

)
C×

A−1
S− j

(
i1+1
Ω

l=S− j
BlA−1

l−1

)]
e = 1.

4 System performance measures

In this section some performance measures of the system
under consideration in the steady state are derived.
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Fig. 2: Variation of β vs λ on the cost function

4.1 Expected inventory level

Let ηIL denote the average inventory level in the steady
state. Then

ηIL =
S

∑
i1=1

M

∑
i4=0

i1ϕ (i1,0,0,i4)+
S

∑
i1=1

2

∑
i2=1

N

∑
i3=1

M

∑
i4=0

i1ϕ (i1,i2,i3,i4)

4.2 Expected reorder rate

Let ηRR denote the expected reorder rate in the steady
state. Then

ηRR =
M

∑
i4=0

(s+1)γϕ (s+1,0,0,i4)+
2

∑
i2=1

N

∑
i3=1

M

∑
i4=0

sγϕ (s+1,i2,i3,i4)+

N

∑
i3=1

M

∑
i4=0

{
K

∑
r=1

prµ}ϕ (s+1,1,i3,i4)

4.3 Expected perishable rate

Let ηPR denote the expected perishable rate in the steady-
state. Then

ηPR =
S

∑
i1=1

M

∑
i4=0

i1γϕ (i1,0,0,i4)+

S

∑
i1=1

2

∑
i2=1

N

∑
i3=1

M

∑
i4=0

(i1 −1)γϕ (i1,i2,i3,i4)

4.4 Expected interruption rate

Let ηINT R denote the effective interruption rate in the
steady state. Then

ηINT R =
S

∑
i1=1

N

∑
i3=1

M

∑
i4=0

ν1ϕ (i1,1,i3,i4)

4.5 Expected repair rate

Let ηREP denote the effective repair rate is given by

ηREP =
S

∑
i1=1

N

∑
i3=1

M

∑
i4=0

ν2ϕ (i1,2,i3,i4)
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Fig. 3: Variation of β vs µon the cost function

4.6 Expected number of customers lost

Let ηLL denote the expected number of customers lost in
the steady-state. Then

ηLL = λϕ (0,0,N,M)+
S

∑
i1=1

2

∑
i2=1

λϕ (i1,i2,N,M)

4.7 Expected number of customers in the orbit

Let ηOO denote the expected number of customers in the
orbit. Then

ηOO =
N

∑
i3=0

M

∑
i4=1

i4ϕ (0,0,i3,i4)+
S

∑
i1=1

M

∑
i4=1

i4ϕ (i1,0,0,i4)

+
S

∑
i1=1

2

∑
i2=1

N

∑
i3=1

M

∑
i4=1

i4ϕ (i1,i2,i3,i4)
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4.8 Expected waiting time in the waiting room

Let ηWW denote the expected waiting time of the primary
customers in the waiting room. Then

ηWW =
Γ

ηAR
,

where

Γ =
N

∑
i3=1

M

∑
i4=0

i3ϕ (0,0,i3,i4)+
S

∑
i1=1

2

∑
i2=1

N

∑
i3=1

M

∑
i4=0

i3ϕ (i1,i2,i3,i4)

and the effective arrival rate (Ross [15]), ηAR is given by

ηAR =
N−1

∑
i3=0

M

∑
i4=0

λϕ (0,,0,i3,i4)+
S

∑
i1=1

M

∑
i4=0

λϕ (i1,0,0,i4)

+
S

∑
i1=1

2

∑
i2=1

N−1

∑
i3=1

M

∑
i4=0

λϕ (i1,i2,i3,i4)

4.9 Probability that server is busy

Let PB denote probability that server is busy is given by

PB =
S

∑
i1=1

N

∑
i3=1

M

∑
i4=0

ϕ (i1,1,i3,i4)

4.10 Probability that server is idle

Let PID denote probability that server is idle is given by

PID =
S

∑
i1=1

M

∑
i4=0

ϕ (i1,0,0,i4)+
N

∑
i3=0

M

∑
i4=0

π(0,0,i3,i4)

4.11 Probability that server is on interruption

Let PIN denote probability that server is on interruption is
given by

PIN =
S

∑
i1=1

N

∑
i3=1

M

∑
i4=0

ϕ (i1,2,i3,i4)

4.12 The overall rate of retrials

The overall rate of retrials at which the orbiting customers
request his demand is given by

ηRT =
N

∑
i3=0

M

∑
i4=1

(i4θ)ϕ (0,,0,i3,i4)+
S

∑
i1=1

M

∑
i4=1

(i4θ)ϕ (i1,0,0,i4)

+
S

∑
i1=1

2

∑
i2=1

N

∑
i3=1

M

∑
i4=1

(i4θ)ϕ (i1,i2,i3,i4)
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Fig. 4: Variation of β vs γ on the cost function
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Fig. 5: Variation of λ vs µ on ηFR

4.13 The successful retrial rate

The rate at which the orbiting customers successfully
receive his demands is given by

ηSR =
S

∑
i1=1

M

∑
i4=1

(i4θ)π(i1,0,0,i4)

4.14 Fraction of successful rate of retrials

The fraction of successful rate of retrials is given by

ηFR =
ηSR

ηOR
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Fig. 7: Variation of µ vs θ on ηFR

5 Cost analysis

To compute the total expected cost per unit time (total
expected cost rate), the following costs, are considered,

ch : The inventory carrying cost per unit item per unit time
cs : Set up cost (ordering cost) per order
cp : Failure cost per unit item per unit time
cw : Waiting time cost of a primary customer per unit time
co : Waiting time cost of a orbiting customer per unit time
cl : cost due to loss of customers per unit per unit time,
ci : cost per interruption per unit time,
cr : cost per repair per unit time,

The long run total expected cost rate is given by

TC(s,S) = chηIL + csηRR + cpηPR + cwηWW + coηOO

+clηLL + ciηINT R + crηREP
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Fig. 8: Variation of λ vs M on ηOO

1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

10

µ

η O
O

 

 

M=4;
M=8;
M=12;
M=16;

λ = 1.2, β = 2, γ = 0.3, θ = 3,ν1 = 1, ν2 = 0.5,
p1 = 0.2, p2 = 0.5, p3 = 0.3, K = 3, N = 6, ch = 0.01,

cs = 50, cp = 0.5, cl = 0.3, c0 = 2, ci = 6, cr = 2, cw = 0.4

Fig. 9: Variation of µ vs M on ηOO

Substituting the values of η’s we get TC(S, s, N, M)=

cs

M

∑
i4=0

(s+1)γϕ (s+1,0,0,i4)+ cs

N

∑
i3=1

2

∑
i2=1

sγϕ (s+1,i2,i3,i4)+

cs

N

∑
i3=1

{
K

∑
r=1

prµ}ϕ (s+1,1,i3,i4)+ co

M

∑
i4=1

N

∑
i3=0

i4ϕ (0,0,i3,i4)+

co

S

∑
i1=1

M

∑
i4=1

2

∑
i2=1

N

∑
i3=1

i4ϕ (i1,i2,i3,i4)+ co

S

∑
i1=1

M

∑
i4=1

i4ϕ (i1,0,0,i4)+

ch

S

∑
i1=1

M

∑
i4=0

i1ϕ (i1,0,0,i4)+ ch

S

∑
i1=1

2

∑
i2=1

N

∑
i3=1

M

∑
i4=0

i1ϕ (i1,i2,i3,i4)+
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Fig. 10: Variation of µ vs λ on ηLL
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Fig. 11: Variation of β vs γ on ηLL

cp

S

∑
i1=1

M

∑
i4=0

i1γϕ (i1,0,0,i4)+ cp

2

∑
i2=1

N

∑
i3=1

(i1 −1)γϕ (i1,i2,i3,i4)+

clλϕ (0,0,N,M)+ cl

S

∑
i1=1

2

∑
i2=1

λϕ (i1,i2,N,M)+

cr

S

∑
i1=1

N

∑
i3=1

M

∑
i4=0

ν2ϕ (i1,2,i3,i4)+ ci

S

∑
i1=1

N

∑
i3=1

M

∑
i4=0

ν1ϕ (i1,1,i3,i4)+

cw
Γ

ηAR
ci

Due to the complex form of the limiting distribution,
it is difficult to discuss the properties of the cost function
analytically. Hence, a detailed computational study of the
cost function is carried out numerically.
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Fig. 12: Variation of λ vs N on ηWW

6 Numerical Illustrations

In this section, we discuss some numerical examples that
reveal the possible convexity of the total expected cost
rate. A typical three dimensional plot of the total expected
cost function is given in Figure 1. We have studied the
effect of varying the cost and other system parameters on
the optimal values and the system performance measures
and also the results agreed with what one would expect.

Example 1.First, we explore the behaviour of the cost
function by considering as the function of two variables
by fixing the others at a constant level. Tables 1− 5, give
the total expected cost rate as a function of TC(S,s,6,4),
TC(S,3,4,M), TC(34,s,N,9) TC(S,3,N,4), and
TC(34,s,4,M). Towards this end, we first fix the
parameter and cost values as λ = 1.2, β = 2, γ =
0.3, θ = 3, µ = 2, ν1 = 1, ν2 = 0.5, p1 = 0.2,
p2 = 0.5, p3 = 0.3, ch = 0.01, cs = 50,
cp = 0.5, cl = 0.3, c0 = 2, ci = 6, cr = 2, cw = 0.4. In
each table, underlined value denotes the row minimum
and in bold faced value denotes the column minimum.
Hence the both underlined and bold faced value refers the
optimal value of the function.

Example 2.Here, we study the effect of the primary
demand rate λ , the service time µ , the lead time rate β ,
the retrial demand rate θ and the perishable rate γ on the
total expected cost rate. From figure 2 to figure 4, we
observe the following:

–The optimal expected cost rate increases when λ
increases.

–As is to be expected, β increases the total expected cost
rate decreases.

–Again the optimal expected cost rate increases when µ
and γ increase.
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Table 1: Variation of S and s on total expected cost rate
s 1 2 3 4 5

S
31 74.447710 73.623077 73.434792 73.526976 73.771360
32 74.422260 73.607249 73.420889 73.510470 73.748832
33 74.402000 73.596821 73.412924 73.500686 73.734050
34 74.386477 73.591299 73.410327 73.496951 73.726207
35 74.375293 73.590245 73.412597 73.498678 73.724601
36 74.368091 73.593274 73.419293 73.505350 73.728620
37 74.368555 73.600042 73.430025 73.516514 73.737730

Example 3.In this example, we look at the impact of the
primary demand rate λ , the service time µ , the lead time
rate β , the retrial demand rate θ and the perishable rate
γ on the fraction, ηFR of successful retrial from the orbit.
From figure 5 to figure 7, we observe the following:

–The fraction of successful rate of retrial, ηFR decreases
when the primary arrival rate increases.

–As is to be expected as the mean retrial time decreases,
ηFR decreases.

–When β and µ increase ηFR increases.

Example 4.In this example, we illustrate of the effect of
the primary demand rate λ , the service time µ , the lead
time rate β , the retrial demand rate θ and the perishable
rate γ on ηOO. From figure 8 and figure 9, we observe the
following:

–As is to be expected as the primary arrival rate
increases, ηOO increases.

–When µ increase ηOO decreases.

Example 5.In this example, we monitored the effect of the
primary demand rate λ , the service time µ , the lead time
rate β , the retrial demand rate θ and the perishable rate
γ on ηLL. From figure 10 and figure 11, we observe the
following:

–As is to be expected as the primary arrival rate
increases, we lost more customers.

–And also we restrict our customer loss by increasing
the service rate

–The customer loss direct proportional to the life time
of the item and inversely to the β .

Example 6.In this example, we calculate the effect of the
primary demand rate λ on ηww. From figure 12, we
observe the following:

–The expected waiting time increases when as the
primary arrival rate increases.

–As is to be expected the waiting time increases when
N increases.

7 Conclusion

The stochastic model discussed here is useful in studying
a perishable inventory system at a service facility with

Table 2: Variation of S and M on total expected cost rate
M 3 4 5 6 7

S
38 90.760815 90.760717 90.760707 90.760709 90.760710
39 90.735353 90.735259 90.735250 90.735252 90.735254
40 90.719468 90.719378 90.719370 90.719372 90.719373
41 90.712454 90.712369 90.712361 90.712363 90.712365
42 90.713677 90.713596 90.713589 90.713591 90.713593
43 90.722559 90.722483 90.722476 90.722478 90.722479
44 90.738576 90.738504 90.738497 90.738499 90.738501

Table 3: Variation of s and N on total expected cost rate
N 2 3 4 5 6

s
2 75.561406 75.537180 75.581821 75.645130 75.714295
3 74.866968 74.813387 74.835157 74.876939 74.925165
4 74.584315 74.508598 74.511703 74.538037 74.571493
5 74.541601 74.449009 74.437206 74.451010 74.473402
6 74.654382 74.548528 74.524776 74.528235 74.541612
7 74.877131 74.760501 74.726987 74.721804 74.727578
8 75.184026 75.058348 75.016652 75.004119 75.005342

Table 4: Variation of S and N on total expected cost rate
N 4 5 6 7 8

S
27 87.493601 85.841454 85.817954 86.099374 86.524422
28 87.463552 85.813757 85.792280 86.074663 86.500125
29 87.444781 85.796910 85.777199 86.060403 86.486202
30 87.436156 85.789827 85.771646 86.055546 86.481609
31 87.436697 85.791563 85.774699 86.059179 86.485440
32 87.445544 85.801291 85.785551 86.070506 86.496905
33 87.461946 85.818288 85.803495 86.088827 86.515310

Table 5: Variation of s and M on total expected cost rate
M 23 24 25 26 27

s
7 57.704030 57.703918 57.703901 57.703974 57.704129
8 57.682001 57.681882 57.681859 57.681925 57.682075
9 57.675840 57.675715 57.675685 57.675746 57.675891
10 57.685810 57.685679 57.685646 57.685703 57.685844
11 57.712258 57.712126 57.712091 57.712146 57.712285
12 57.755635 57.755504 57.755469 57.755525 57.755666
13 57.816500 57.816374 57.816344 57.816406 57.816552

server interruptions, repeated customers and (s,S) policy.
The joint probability distribution of the number of
customers in the waiting hall, number of customers in the
orbit and the inventory level is derived in the steady state.
Various system performance measures are derived and the
long-run total expected cost rate is calculated. By
assuming a suitable cost structure on the inventory
system, we have presented extensive numerical
illustrations to show the effect of change of values for
constants on the total expected cost rate. The authors are
working in the direction of MAP (Markovian arrival
process) arrival for the customers and service times
follow PH-distributions.
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