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Abstract: Faults in computer systems sometimes occur intermittently. This paper appliesa standard inspection policy with imperfect
inspection to a computer system: The system is checked at periodic times and its failure is detected at the next checking time with a
certain probability. The expected cost until failure detection is obtained, and when the failure time is exponential, an optimal inspection
time to minimize it is derived. Next, when the system executes computer processes, it is checked at random processing times and its
failure is detected at the next checking time with a certain probability. The expected cost until failure detection is obtained, and when
random processing times are exponential, an optimal inspection time to minimize it is derived. This paper compares optimal times for
two inspection policies and shows that if the random inspection cost is the halfof the periodic one, then two expected costs are almost
the same. Finally, we consider the random inspection policy in which the system is checked at theNth interval of random times and
derive an optimal numberN∗ which minimizes the total expected cost.
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1 Introduction

It has been well-known that faults in computer systems
sometimes occur intermittently [1], [2] and [3]: Faults are
hidden and become permanent failure when the duration
of hidden faults exceeds a threshold level [4] and [5]. To
prevent such faults, some inspection policies for computer
systems were considered [1], [6] and [7], data
transmission strategies for communication systems were
considered [8], and some properties for security measures
of software in computer systems were observed [9]. The
reliability models and a variety of maintenance models
play an important role in manufacturing or computer
systems. Some applications of reliability models in
computer systems, such as communications, backup
policies, checkpoint intervals, were summarized [10]. The
latest work proposed new reliability and fault-tolerant
methods which were applied in manufacturing modules
[11], system reliability allocation based on Bayesian
network [12], supporting real-time data services [13], and
software reliability modeling based on gene expression
[14].

Most systems in offices and industries successively
execute computer processes. For such systems, it would
be impossible to maintain them in a strictly periodic
fashion, because sudden suspension of the working
processes would cause serious production losses. Optimal
periodic and random inspection policies were
summarized in [15]. So that we consider in this paper that
the system executes a job with random processing times
[16] and apply the inspection policy with imperfect
inspection [1] to the system.

First, we apply a standard inspection policy with
imperfect inspection to a computer system in this paper:
The system has to be operated for an infinite time span
and fails. To detect the failure, the system is checked at
periodic times. System failure is detected at the next
checking time with a certain probability, and undetected
failure is detected at the next checking time with the same
probability. Such procedures are continued until the
failure is detected. The expected cost until failure
detection is obtained, and when the failure time is
exponential, an optimal inspection time which minimizes
it is derived analytically and computed numerically.
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Second, it is assumed that the system is checked at
random processing times. System failure is detected at the
next checking time with a certain probability. By the
methods similar to the periodic inspection policy, the
expected cost until failure detection is obtained, and when
each processing time is exponential, an optimal random
time which minimizes it is derived.

Third, we compare optimal times for periodic and
random inspection policies when both failure and
processing times are exponential. It is shown that the
periodic inspection is better than the random one;
however, if the random inspection cost is the half of the
periodic one, then two expected costs are almost the
same.

Furthermore, we consider the random inspection
policy in which the system is checked at theNth interval
of random times and obtain the total expected cost, using
the result of random inspection. An optimalN∗ which
minimizes the expected cost is derived analytically when
the failure time is exponential.

2 Time Inspection

Consider a standard inspection policy [3] with imperfect
inspection: A system should operate for an infinite time
span and is checked at periodic timeskT (k = 1,2, · · ·).
System failure is detected at the next checking time with
probability q (0 < q ≤ 1) and is replaced immediately,
and is not done with probabilityp ≡ 1 − q. The
undetected failure is detected at the next checking time
with the same probabilityq. Such procedures are
continued until the failure is detected.

It is assumed that the system has a failure distribution
F(t) with finite mean 1/λ , irrespective of any inspection.
All times for checks and replacement are negligible. Let
cT be the cost of one check andcD be the loss cost per
unit of time for the time elapsed between a failure and its
detection at some checking time. Then, the probability
that the system fails between thejth and ( j + 1)th
( j = 0,1,2, · · ·) checking times, and its failure is detected
after the (k + 1)th (k = 0,1,2, · · ·) check, i.e., at the
( j+ k+1)th checking time, is

[F(( j+1)T )−F( jT )]pkq.

Clearly,

∞

∑
j=0

[F(( j+1)T )−F( jT )]
∞

∑
k=0

pkq = 1.

Then, the expected number of checks until replacement is

∞

∑
j=0

j[F(( j+1)T )−F( jT )]+
∞

∑
k=0

(k+1)pkq

=
∞

∑
j=1

F( jT )+
1
q
, (1)

and the mean time from failure to its detection is

∞

∑
j=0

∞

∑
k=0

pkq
∫ ( j+1)T

jT
[( j+ k+1)T − t]dF(t)

= T

[
∞

∑
j=1

F( jT )+
1
q

]
−

1
λ
. (2)

Therefore, the total expected cost until replacement is,
from (1) and (2),

CP(T ) = (cT + cDT )

[
∞

∑
j=1

F( jT )+
1
q

]
−

cD

λ
. (3)

In particular, whenF(t) = 1−e−λ t (0< 1/λ < ∞),

CP(T ) = (cT + cDT )

(
1

1−e−λT
+

p
q

)
−

cD

λ
. (4)

DifferentiatingCP(T ) with respect toT and setting it equal
to zero,

p
q
(1−e−λT )2eλT +eλT

−1−λT =
λcT

cD
, (5)

whose left-hand side increases from 0 to∞. Thus, there
exists an optimalT ∗ (0< T ∗ < ∞) which satisfies (5), and
the resulting cost rate is

CP(T ∗)

cD/λ
= (eλT ∗

−1)

[
p2

q2 (1−e−λT ∗

)+
p+1

q

]
. (6)

Clearly,T ∗ increases strictly withq from 0 to a solution of
the equation

eλT
−1−λT =

λT
cD

.

3 Random Inspection

Consider a random inspection policy [3] with imperfect
inspection: Suppose that the system is checked at
successive timesS j ( j = 1,2, · · ·), where S0 ≡ 0 and
Yj ≡ S j − S j−1 ( j = 1,2, · · ·) are independently and
identically distributed random variables, and also,
independent of its failure time. It is assumed that eachYj
has an identical distributionG(t) with finite mean 1/µ .
The system is checked at successive timesS j and its cost
for one check iscR. The other assumptions are the same
as those in Section 2.

The probability that the system fails between thejth
and( j+1)th ( j = 0,1,2, · · ·) checking times and its failure
is detected after the(k+1)th check is
∫ ∞

0
dG( j)(t1)

∫ ∞

t1
[F(t2)−F(t1)]dG(t2− t1)pkq. (7)
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Clearly,
∞

∑
k=0

pkq
∞

∑
j=0

∫ ∞

0
dG( j)(t1)

×

∫ ∞

t1
[F(t2)−F(t1)]dG(t2− t1)

=
∞

∑
j=0

∫ ∞

0
dG( j)(t1)

∫ ∞

0
[F(t1)−F(t1+ t2)]dG(t2)

=
∞

∑
j=0

∫ ∞

0
F(t)dG( j)(t)−

∞

∑
j=1

∫ ∞

0
F(t)dG(t) = 1.

Then, the expected number of checks until
replacement is

∞

∑
j=0

j
∫ ∞

0
dG( j)(t1)

∫ ∞

t1
[F(t2)−F(t1)]dG(t2− t1)

+
∞

∑
k=0

(k+1)pkq =

∫ ∞

0
M(t)dF(t)+

1
q
, (8)

whereM(t) ≡ ∑∞
j=1 G( j)(t) which is the expected number

of checks in [0, t] and is called a renewal function in
stochastic processes [17]. The mean time from failure to
its detection is

∞

∑
j=0

∫ ∞

0
dG( j)(t1)

∫ ∞

t1
dG(t2− t1)

∫ t2

t1
dF(t)

×

∞

∑
k=0

pkq
∫ ∞

t2
(t3− t)dG(k)(t3− t2)

=
∞

∑
j=0

∫ ∞

0
dG( j)(t1)

∫ ∞

t1
dG(t2− t1)

×

∫ t2

t1

(
p

qµ
+ t2− t

)
dF(t)

=
p

qµ
+

∞

∑
j=0

∫ ∞

0
dG( j)(t1)

∫ ∞

0
dG(t2)

×

∫ t1+t2

t1
[F(t1)−F(t)]dt

=
∞

∑
j=0

∫ ∞

0
dG( j)(t1)

∫ ∞

0
G(t)[F(t1)−F(t + t1)]dt

+
p

qµ
=

1
qµ

+
1
µ

∫ ∞

0
M(t)dF(t)−

1
λ
. (9)

Therefore, the total expected cost until replacement is,
from (8) and (9),

CR(G) =

(
cR +

cD

µ

)[∫ ∞

0
M(t)dF(t)+

1
q

]
−

cD

λ
.

In particular, whenG(t) = 1− e−µt (0 < 1/µ < ∞),
i.e., M(t) = µt, the expected cost is a function ofµ which
is given by

CR(µ) =
(

cR +
cD

µ

)(
µ
λ
+

1
q

)
−

cD

λ
. (10)

DifferentiatingCR(µ) with respect toµ and setting it equal
to zero,

(
λ
µ

)2

=
qλcR

cD
, (11)

and the resulting cost is

CR(µ∗)

cD/λ
=

λ
qµ

(
λ

qµ
+2

)
. (12)

Table 1. OptimalT ∗, 1/µ∗, andCP(T ∗)/cD, CR(µ∗)/cD when
q = 0.9 andλ = 1.

cT /cD T ∗ CP(T ∗)/cD 1/µ∗ CR(µ∗)/cD

0.001 0.0403 0.0502 0.0300 0.0678
0.002 0.0566 0.0714 0.0424 0.0965
0.005 0.0893 0.1143 0.0671 0.1546
0.010 0.1256 0.1639 0.0949 0.2219
0.020 0.1764 0.2363 0.1342 0.3204
0.050 0.2746 0.3879 0.2121 0.5270
0.100 0.3824 0.5716 0.3000 0.7778
0.200 0.5282 0.8556 0.4243 1.1650
0.500 0.7994 1.5052 0.6708 2.0463
1.000 1.0757 2.3807 0.9487 3.2193

Suppose thatF(t) = 1 − e−λ t , G(t) = 1 − e−µt ,
cT = cR, andq = 0.9 andλ = 1. Then, Table 1 presents
optimalT ∗, 1/µ∗ and their resulting costs forcT/cD. This
indicates as estimated previously thatT ∗ > 1/µ∗ and
CP(T ∗) < CR(µ∗), i.e., the periodic inspection time is
larger than the random one, and hence, whencT = cR, the
periodic policy is better than the random one.

It has been assumed in Table 1 that two checking
costscT andcR are the same. In general, costcR would be
lower thancT because the system is checked at random
times. Such random inspections may not break off the
random procedures in computers. We computeĉR when
the expected costs of two inspection policies are the same.
From (6) and (12), we computêµ which satisfies

(eλT ∗

−1)

[
p2

q
(1−e−λT ∗

)+ p+1

]

=
1
q

(
λ
µ̂

)2

+
2λ
µ̂

,

and compute

ĉR

cD/λ
=

1
q

(
λ
µ̂

)2

.

Table 2 presents 1/µ̂ , ĉR/cD and ĉR/cT for cT/cD
whenq = 0.9 andλ = 1. This indicates that̂cR is a little
more than the half ofcT . In other words, whencR ≈ cT/2,
two expected costs are almost the same.

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


416 X. Zhao et. al. : Optimal Time and Random Inspection Policies...

Table 2. Values of 1/µ̂ , ĉR/cD andĉR/cT whenq = 0.9 andλ =
1.

cT /cD 1/µ̂ ĉR/cD ĉR/cT

0.001 0.0224 0.0005 0.5039
0.002 0.0318 0.0010 0.5054
0.005 0.0504 0.0025 0.5086
0.010 0.0715 0.0051 0.5118
0.020 0.1016 0.0103 0.5160
0.050 0.1621 0.0263 0.5253
0.100 0.2313 0.0535 0.5352
0.200 0.3312 0.1097 0.5485
0.500 0.5355 0.2868 0.5735
1.000 0.7738 0.5987 0.5987

4 Nth Checking Time

Suppose that the system is checked at times
S jN ( j = 1,2, · · · ,N = 1,2, · · ·), i.e., at timesS1N ,S2N , · · ·
[11]. When N = 1, the system is checked at everyS j in
Section 3. Then, fromCR(G), replacing G(t) with
G(N)(t), 1/µ with N/µ , and M(t) with
M(N)(t) = ∑∞

j=1 G( jN)(t) (N = 1,2, · · ·), the total expected
cost until replacement is

CR(N) =

(
cR +

NcD

µ

)[∫ ∞

0
M(N)(t)dF(t)+

1
q

]

−
cD

λ
(N = 1,2, · · ·). (13)

In particular, whenF(t) = 1−e−λ t ,
∫ ∞

0
e−λ tdM(N)(t) =

[G∗(λ )]N

1− [G∗(λ )]N
,

where G∗(λ ) ≡
∫ ∞

0 e−λ tdG(t), and the expected cost in
(13) is

CR(N) =

(
cR +

NcD

µ

)(
1

1−AN +
p
q

)
−

cD

λ
. (14)

whereA = G∗(λ ) < 1. From the inequalityCR(N + 1)−
CR(N)≥ 0,

1−AN

(1−A)AN

[
1+

p
q
(1−AN+1)

]
−N ≥

cR

cD/µ
, (15)

which increases strictly withN to ∞. Thus, there exists a
unique minimumN∗ (1 ≤ N∗ < ∞) which satisfies (15).
Clearly,N∗ increases strictly withq from 1 to a solution of
the equation

1−AN

(1−A)AN −N ≥
cR

cD/µ
.

Note that whenG(t) = 1− e−µt , A = µ/(λ + µ). In
addition, whenp = 0, (15) agrees with the result of [11].

Table 3 presents the optimalN∗ and the resulting cost
CR(N∗)/cD for 1/µ andcR/cD whenq = 0.9 and 1/λ =
1. This indicates that optimalN∗ decreases with 1/µ and
increases withcR/cD, andN∗/µ are almost the same for

Table 3. OptimalN∗ andCR(N∗)/cD whenq = 0.9 andλ = 1.

cR/cD = 0.5 cR/cD = 1.0
1/µ N∗ CR(N∗)/cD N∗ CR(N∗)/cD

0.01 80 1.5129 108 2.3894
0.02 40 1.5206 54 2.3981
0.05 16 1.5435 22 2.4241
0.10 8 1.5812 11 2.4666
0.20 4 1.6553 6 2.5522
0.50 2 1.8667 2 2.8222
1.00 1 2.1667 1 3.2222

small 1/µ . Compared Table 3 with Table 1, ifcT = cR,
whencR/cD = 0.5, 1/µ∗ < N∗/µ andCR(N∗) > CR(µ∗)
as 1/µ is big enough, other wise,CR(N∗) < CR(µ∗); if
cR ≈ cT/2, whencR/cD = 0.5 andcT/cD = 1.0, 1/µ∗ >
N∗/µ andCR(N∗)<CR(µ∗).

5 Conclusion

We have applied a standard inspection policy with
imperfect inspection to a computer system. The expected
costs of the periodic and random inspection policies are
obtained and the optimal inspection times which
minimize them are derived analytically, when the failure
and random times are exponential. It is shown
numerically that when the costs for periodic and random
inspection are the same, the periodic policy is better than
the random one. However, it is of interest that if the cost
for random inspection is the half of the periodic one, two
expected costs are almost the same.

Furthermore, we have considered the inspection
policy in which the system is checked at theNth interval
and derived analytically optimalN∗ when the failure time
is exponential. It shows from numerical examples that if
cost for random inspection is the half of the periodic one,
policy in Section 4 is better than Section 3, and if the two
costs are the same, then both two cases occur.

Acknowledgement

This work is partially supported by National Science
Council of Taiwan NSC 100-2628-E-0330-002; National
Natural Science Foundation of China 71171110; Natural
Science Foundation of Jiangsu Province of China
BK2010555; Grant-in-Aid for Scientific Research (C) of
Japan Society for the Promotion of Science under Grant
No. 22500897 and No. 24530371.

References

[1] Y. K. Malaiya and S. Y. H. Su, Reliability measure of
hardware redundancy fault-tolerant digital systems with
intermittent faults. IEEE Transactions on Computers,C-30,
600-604 (1981).

c© 2014 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.8, No. 1L, 413-417 (2014) /www.naturalspublishing.com/Journals.asp 417

[2] X. Castillo, S. R. McConner and D. P. Siewiorek, Derivation
and calibration of a transient error reliability model. IEEE
Transactions on Computers,C-31, 658-671 (1982).

[3] T. Nakagawa, Maintenance Theory of Reliability, Springer,
London, (2005).

[4] T. Nakagawa, K. Yasui and H. Sandoh, An optimal
policy for a data transmission system with intermittent
faults. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences,J76-A, 1201-
1206 (1993).

[5] T. Nakagawa, Adcanced Reliability Models and
Maintennace Polices, Springer, London, (2008).

[6] S. Y. H. Su, T. Koren and Y. K. Malaiya, A Continuous-
paremeter markov model and detection procedures for
intermittent faults. IEEE Transactions on Computers,C-27,
567-570 (1978).

[7] Y. K. Malaiya, Linearly corrected intermittent failures. IEEE
Transactions on Reliability,R-31, 211-215 (1982).

[8] K. Yasui, T. Nakagawa and H. Sandoh, Reliability models
in reliability and maintenance. In: Stochastic Models in
Reliability and Maintenance, S. Osaki (Ed.), Springer,
Berlin, 281-301, (2002).

[9] Y. M. Liu and I. Traore, Properties for security measures
of software products. Applied Mathematics & Information
Sciences,1, 129-156 (2007).

[10] S. Nakamura and T. Nakagawa, Stochastic Reliability
Modeling, Optimization and Applications, World Scientific,
Singapore, (2010).

[11] M. Savsar and M. Aldaihani, A stochastic model for
analysis of manufacturing modules. Applied Mathematics
& Information Sciences,6, 587-600 (2012).

[12] W. Qian, X. Yin and L. Xie, System reliability allocation
based on Bayesian network. Applied Mathematics &
Information Sciences,6, 681-687 (2012).

[13] Y. Xiao, H. Zhang, G. Xu and J. Wang, A prediction
recovery method for supporting real-time data services.
Applied Mathematics & Information Sciences,6-2S, 363S-
369S (2012).

[14] Y. Zhang and J. Xiao, A software reliability modeling
method based on gene expression programming. Applied
Mathematics & Information Sciences,6, 125-132 (2012).

[15] X. Zhao and T. Nakagawa, Optimization problems of
replacement first or last in reliability theory. European
Journal of Operational Research,223, 141-149 (2012).

[16] T. Nakagawa, S. Mizutani and M. Chen, A summary
of periodic and random inspection policies. Reliability
Engineering & System Safety,95, 906-911 (2010).

[17] T. Nakagawa, Stochastic Process with Applications to
Reliability Theory, Springer, London, (2011).

Xufeng Zhao received
his B.S. degree in Information
Engineering in 2006
and M.S. Degree in System
Engineering in 2009,
both from Nanjing University
of Technology, China,
and Ph.D. degree in 2013
from Aichi Institute of
Technology, Japan. He is now

a postdoctoral fellow at Graduate School of Management
and Information Sciences, Aichi Institute of Technology,
Japan, and also serves at School of Economics and
Management, Nanjing University of Technology, China.
He is currently interested in reliability theory and
maintenance policies of stochastic systems, shock models
and their applications in computer science. Dr. Zhao is a
member of ORSJ.

Mingchih Chen
received B. S. degree
in Industrial Engineering
from Chung-Yuan Christian
University in 1988, M.S.
and Ph.D. degrees both in
Industrial Engineering from
Texas A&M University in
1990 and 1993, respectively.
She is now with the Graduate

Institute of Business Administration, Fu Jen Catholic
University as a professor. Her research interests include
the reliability and maintainability, optimization and
operation research.

Toshio Nakagawa
received B.S.E. and M.S.
degrees from Nagoya
Institute of Technology in
1965 and 1967, respectively,
and Ph.D. degree from
Kyoto University in 1977.
He worked as a Research
Associate at Syracuse
University for two years from

1972 to 1973. He is now a Guest Professor at the
Department of Business Administration, Aichi Institute of
Technology, Japan. He has published 5 books from
Springer and about 200 journal papers. His research
interests are optimization problems in operations research
and management science, and analysis for stochastic and
computer systems in reliability and maintenance theory.

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	Time Inspection
	Random Inspection
	Nth Checking Time
	Conclusion

