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Abstract: Faults in computer systems sometimes occur intermittently. This paper appli@sdard inspection policy with imperfect
inspection to a computer system: The system is checked at periodic timhéts &lure is detected at the next checking time with a
certain probability. The expected cost until failure detection is obtainetyéien the failure time is exponential, an optimal inspection
time to minimize it is derived. Next, when the system executes computeegses, it is checked at random processing times and its
failure is detected at the next checking time with a certain probability. Theatsetg cost until failure detection is obtained, and when
random processing times are exponential, an optimal inspection time to méniinmszlerived. This paper compares optimal times for
two inspection policies and shows that if the random inspection cost is thefttaE periodic one, then two expected costs are almost
the same. Finally, we consider the random inspection policy in which thensystehecked at thalth interval of random times and
derive an optimal numbeéx* which minimizes the total expected cost.
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1 Introduction Most systems in offices and industries successively
execute computer processes. For such systems, it would

It has been well-known that faults in computer systemsbe impossible to maintain them in a strictly periodic
sometimes occur intermittentii]j [2] and [3]: Faults are  fashion, because sudden suspension of the working
hidden and become permanent failure when the duratioProcesses would cause serious production losses. Optimal
of hidden faults exceeds a threshold lev&l4nd [5]. To ~ Periodic and random inspection policies were
prevent such faults, some inspection policies for computegUmmarized in15]. So that we consider in this paper that
systems were consideredl]][ [6] and [7], data the system executes a job w|th rano!om processing times
transmission strategies for communication systems werél6] and apply the inspection policy with imperfect
considered§], and some properties for security measuresinspection 1] to the system.

of software in computer systems were obsen@d The First, we apply a standard inspection policy with
reliability models and a variety of maintenance modelsimperfect inspection to a computer system in this paper:
play an important role in manufacturing or computer The system has to be operated for an infinite time span
systems. Some applications of reliability models in and fails. To detect the failure, the system is checked at
computer systems, such as communications, backuperiodic times. System failure is detected at the next
policies, checkpoint intervals, were summariz&d][ The  checking time with a certain probability, and undetected
latest work proposed new reliability and fault-tolerant failure is detected at the next checking time with the same
methods which were applied in manufacturing modulesprobability. Such procedures are continued until the
[11], system reliability allocation based on Bayesian failure is detected. The expected cost until failure
network [L2], supporting real-time data servicels3], and  detection is obtained, and when the failure time is
software reliability modeling based on gene expressionexponential, an optimal inspection time which minimizes
[14]. it is derived analytically and computed numerically.
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Second, it is assumed that the system is checked aind the mean time from failure to its detection is
random processing times. System failure is detected atthe

next checking time with a certain probability. By the ka/(jH)T[(j+k+1)T—t]dF(t)
methods similar to the periodic inspection policy, the ]Zbk;) iT

expected cost until failure detection is obtained, and when .
each processing time is exponential, an optimal random _ f(jT)qL} _1 @)
time which minimizes it is derived. “ q| A

Third, we compare optimal times for periodic and
random inspection policies when both failure and Therefore, the total expected cost until replacement is,
processing times are exponential. It is shown that thefrom (1) and (2),
periodic inspection is better than the random one;
however, if the random inspection cost is the half of the ©_ . 1
periodic one, then two expected costs are almost th&r(T) = (cr +coT) lz F(JT)Jra
same. =1

Furthermore, we consider the random inspection
policy in which the system is checked at théh interval

Cp

-2 ®)

In particular, wherF (t) = 1— e ' (0 < 1/A < o),

of random times and obtain the total expected cost, using c
the result of random inspection. An optimill which  Cp(T) = (ct +¢pT) ( —5 + p) -2 (4)
minimizes the expected cost is derived analytically when 1-e q A

the failure time is exponential. DifferentiatingCp(T) with respect td and setting it equal

to zero,

)

2 Time Inspection E(lfe_)‘T)ze”Jre”flf/\T:/\CT (5)
q %)

Consider a standard inspection poli@} fvith imperfect
inspection: A system should operate for an infinite time
span and is checked at periodic timés (k= 1,2,---).
System failure is detected at the next checking time with
probability g (0 < g < 1) and is replaced immediately, T+ . 2 . +1
and is not done with probabilityp = 1 —q. The P /\) =T -1 p—z(l—e*)‘T i
undetected failure is detected at the next checking time Co/ 4 q
with the same probabilityq. Such procedures are cjearly, T+ increases strictly itk from O to a solution of
continued until the failure is detected. the equation

It is assumed that the system has a failure distribution

whose left-hand side increases from Octo Thus, there
exists an optimal * (0 < T* < ) which satisfies (5), and
the resulting cost rate is

(6)

F(t) with finite mean JA, irrespective of any inspection. .

All times for checks and replacement are negligible. Lete/\ —1-AT=
cr be the cost of one check amg be the loss cost per

unit of time for the time elapsed between a failure and its

detection at some checking time. Then, the probability .
that the system fails between thgh and (j + 1)th 3 Random Inspection
(j=0,1,2,---) checking times, and its failure is detected

after the (k+ 1)th (k = 0,1,2,---) check,i.e, at the  consider a random inspection policg] [with imperfect

AT

Cp

(J +k+1)th checking time, is inspection: Suppose that the system is checked at
. ey K successive times; (j = 1,2,---), where § = 0 and
FO+DT)-F(T)IPa Yi =S -Si-1 (j = 1,2,---) are independently and
Clearly, identically distributed random variables, and also,
independent of its failure time. It is assumed that e¢ch
d : e e ke has an identical distributiofs(t) with finite mean ¥p.
j;)[F((J +OT)—F(T)] kZop a=1 The system is checked at successive tigeand its cost

for one check ixr. The other assumptions are the same
Then, the expected number of checks until replacement isas those in Section 2.

® - The probability that the system fails between fitle
IF(J+D)T)—F(jT)] + Z (k+1)p*q and(j+1)th(j=0,1,2,---) checking times and its failure

= o is detected after thék+ 1)th check is
© 1 w0 o

=2 RN+ @ [aei) [ Fl)-Fuldst-wie  ©
- 1
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Clearly, DifferentiatingCr(t) with respect tqu and setting it equal
® © o to zero,
K ()
Pq / dGcW(t1) 2
kZO i ]; 0 (z) _ Q?:CR’ (11)
< | [F(ta) ~F(t)jd6( 1) °
. and the resulting cost is
- d) (ty) / [F(ty) — F(t +12)]dG(t2) .
Z/ )2 (L) 12
co/A  agu \qu

_ JZD /O Ft)dcl)(t) — ]il /0 “Etde(t) =

Then, the expected number of checks until Table 1. OptimalT*, 1/u*, andCp(T*)/cp, Cr(H*)/co When

replacement is g=09andA =1.
I oo cr/co| T° Cp(T)/eo  1/p* Cr(M*)/cp
J/O dG(J)(tl)/t [F(t2) — F(t1)]dG(t2 — t1) 0.001]0.0403 0.0502 0.0300 0.0678
. iy

0.002|0.0566 0.0714 0.0424  0.0965
© . 2 1 0.005|0.0893 0.1143 0.0671  0.1546
+ %(kJr 1)p CI=/O M(t)dF(tHa (8) 0.010|0.1256  0.1639  0.0949  0.2219
k= 0.020|0.1764 0.2363  0.1342  0.3204

whereM(t) = $°_, GU)(t) which is the expected number 0.05010.2746 03879  0.2121  0.5270
(t)=371GV() P 0.100|0.3824 05716 0.3000 0.7778

of cEecks in[0,t] and is r?alled a rgnevaal fL:(nﬁtmn in 0200| 05282 08556 04243  1.1650
stochastic processe$7. The mean time from failure to 0500107994 15052 06708 20463

its detection is 1.000|1.0757 2.3807 0.9487 3.2193

© oo . 00 it
> / dc(ty) [ dG(ta—t1) / “dF (1)
=k 0 t ty
Suppose thatF(t) = 1 — e, G(t) = 1—e ¥,

Xy kaK (ts—1)dG™M (t3 —tp) CT = Cr, andq = 0.9 andA = 1. Then, Table 1 presents
kzo o2 optimalT*, 1/u* and their resulting costs fax /cp. This
_ %/ dG“)(tl) dG(t —tr) indicates as estimated previously tiBt > 1/u* and
5]

Cp(T*) < Cr(u*), i.e, the periodic inspection time is
larger than the random one, and hence, whies cg, the

« /tz <p tt, t> dF () periodic policy is better than the random one.
ty H It has been assumed in Table 1 that two checking
Z} / !V lower thancy because the system is checked at random
times. Such random inspections may not break off the

costsct andcr are the same. In general, cagtwould be
(t1) / dG(tp)
t1+t2 ] .
x/ [F(ty) — F(t)]ct random procedures in computers. We compgevhen

the expected costs of two inspection policies are the same.

From (6) and (12), we compuijg which satisfies

_ Zo/ d) (ty) / Gt F(t+tp)]ct .
" p -
b 1 1 1 €T 1) {q(l AT +p+1
==+ [ M({UdF(t) -+ (9)
au  qu W Jo A 1/A\% 2A
Therefore, the total expected cost until replacement is, — q (ﬁ) K
from (8) and (9),

and compute

CR(G) = (cR+ >UM t)dF (t } 2. . _1(/\)2.

In particular, whenG(t) = 1—e M (0 < 1/ < o), /A g
i.e., M(t) = ut, the expected cost is a function pfwhich
is given by

0
Table 2 presents /Hi, €r/cp and €gr/cr for cr/cp
wheng = 0.9 andA = 1. This indicates thair is a little
C 1 o more than the half ofy. In other words, wheog ~ c7/2,
Cr(H) = <CR+D) (“+ )— & (10) g R~ cr/

A q A two expected costs are almost the same.
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Table 2. Values of Afi, €r/cp andCr/cr wheng = 0.9 and)A =
1.

1A
0.0224
0.0318
0.0504
0.0715
0.1016
0.1621
0.2313
0.3312
0.5355
0.7738

Cr/CrT
0.5039
0.5054
0.5086
0.5118
0.5160
0.5253
0.5352
0.5485
0.5735
0.5987

Cr/Cp
0.0005
0.0010
0.0025
0.0051
0.0103
0.0263
0.0535
0.1097
0.2868
0.5987

cr/Cp
0.001
0.002
0.005
0.010
0.020
0.050
0.100
0.200
0.500
1.000

4 Nth Checking Time

Suppose that the system is checked at
Sn(j=1,2,---,N=1,2,---), i.e, at timesSn, S, - -
[11]. When N = 1, the system is checked at eveSyin
Section 3. Then, fromCg(G), replacing G(t) with
GN(), 1/u  with N/y, and M(t) with
MN(t) =5, GUN(t) (N=1,2,---), the total expected
cost until replacement is

Cr(N) = (CRJrNCD> [/ MmN ;

CD P . e

In particular, wherf(t) = 1—

" e MaMM (1) — [ (AN
fy &M = g

’“dG(t) and the expected cost in

(13)

ef)\t,

whereG*(A) = [y’ e

(13)is
Ncp 1 n P\ ¢
u 1-AN g A

whereA = G*(A) < 1. From the inequalitfr(N + 1) —
Cr(N) >0,

1—AN
(1-A)AN C /
which increases strictly witiN to . Thus, there exists a
unique minimumN* (1 < N* < o) which satisfies (15).
Clearly,N* increases strictly witlg from 1 to a solution of
the equation

1-—AN CR
(1-AAV "= o/

Note that whenG(t) = 1 —e M, A= p/(A + ). In
addition, whenp = 0, (15) agrees with the result dt]].
Table 3 presents the optimidl* and the resulting cost
Cr(N*)/cp for 1/u andcgr/cp wheng= 0.9 and VA =
1. This indicates that optimd&* decreases with /ju and
increases witlcr/cp, andN*/u are almost the same for

Cr(N) = <CR+ (14)

{1+ ap(l— AN”)} N> (15)

Table 3. OptimaN* andCr(N*)/cp wheng= 0.9 andA = 1.

CR/CD =05 CR/CD =10
1/p |N* Cgr(N*)/cp N* Cr(N*)/cp
0.01| 80 1.5129 108 2.3894
0.02| 40 1.5206 54 2.3981
0.05| 16 1.5435 22 2.4241
0.10| 8 1.5812 11 2.4666
0.20| 4 1.6553 6 2.5522
0.50| 2 1.8667 2 2.8222
1.00| 1 2.1667 1 3.2222

small 1/u. Compared Table 3 with Table 1, & = cg,
whencg/cp = 0.5, 1/u* < N*/u andCr(N*) > Cr(1*)
as 1/u is big enough, other wis&r(N*) < Cr(u*); if
Cr ~ Cr/2, whencg/cp = 0.5 andcr /cp = 1.0, 1/u* >
N*/p andCr(N*) < Cr(*).

times

5 Conclusion

We have applied a standard inspection policy with
imperfect inspection to a computer system. The expected
costs of the periodic and random inspection policies are
obtained and the optimal inspection times which
minimize them are derived analytically, when the failure
and random times are exponential. It is shown
numerically that when the costs for periodic and random
inspection are the same, the periodic policy is better than
the random one. However, it is of interest that if the cost
for random inspection is the half of the periodic one, two
expected costs are almost the same.

Furthermore, we have considered the inspection
policy in which the system is checked at théh interval
and derived analytically optim&* when the failure time
is exponential. It shows from numerical examples that if
cost for random inspection is the half of the periodic one,
policy in Section 4 is better than Section 3, and if the two
costs are the same, then both two cases occur.
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