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Abstract: In this paper, we applied the sine-cosine method and the rational functions in exp(ksi) method for the modified Kawachara
equation and the Damped Sixth-order Boussinesq Equation, respectively. New solitons solutions and periodic solutions are explicitly
obtained with the aid of symbolic computation.
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1 Introduction

We are living in a nonlinear world. So many physical
phenomenon modelled by nonlinear partial differential
equations. Therefore solutions of these partial differential
equations will help us to much more understanding these
physical processes. In the last decades, many methods
proposed for obtaining explicit traveling wave solutions
of nonlinear evolution equations such as the rational
functions in exp(ξ ) method [1], tanh method [2,3],
sine-cosine method [4], the exp-function method [5], the
tanh-coth method [6], the (G′/G)-expansion method [7,
9], the solitary wave ansatz method [10,17], the
variational iteration method [18], the multiplier approach
method [19] and so on.

In this paper, we establish solitons and periodic
solutions to the modified Kawachara equation, which
describes the motion of a water waves with surface
tension

ut +ux+u2ux+ puxxx+quxxxx= 0, (1)

p andq are constants [20] and the sixth-order Boussinesq
equation with damping term

utt −uxx−uxxtt−uxxxxxx−auxxt =
(

u2)

xx (2)

where is a real constant. It describes the bidirectional
propagation of small amplitude long capillary-gravity

waves on the surface of shallow water [21]. Local, global
and asymptotic behavior of solution this equation studied
by Polat and Pişkin [22] and blow up of the solution of
this equation studied by Pişkin [23].

2 Analysis of the methods

A partial differential equation (PDE)

P(u,ut ,ux,uxx, ...) = 0 (3)

can be converted to an ordinary differential equation
(ODE)

Q(u,u′,u′′,u′′′, ...) = 0, (4)

upon using a wave variable u(x, t) = u(ξ ),
ξ = x− ct whereu′ denotes∂u

∂ξ . Then (4) is integrated as
long as all terms contain derivatives where integration
constants are considered zeros.

2.1 The sine-cosine method

The sine-cosine method was developed by Wazwaz [4] and
was successfully applied to nonlinear evolution equations
[24,27], to nonlinear equations systems [28].
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224 A. Ertaş, M. Mizrak: Explicit Travelling Wave Solutions ofTwo Nonlinear...

The solutions of the reduced ODE (4) can be expressed
in the form

u(x, t) = λ cosβ (µξ ) , |ξ | ≤ π
2µ

(5)

or in the form

u(x, t) = λ sinβ (µξ ) , |ξ | ≤ π
µ

(6)

whereµ ,λ andβ are parameters that will be determined,
ξ = x− ct, µ and c are the wave number and the wave
speed, respectively.

The assumption (5) gives

(un)′ (ξ ) =−nβ µλ ncosnβ−1(µξ )sin(µξ ) ,
(un)′′ (ξ ) =−n2β 2µ2λ ncosnβ (µξ )+nµ2λ nβ (nβ −1)cosnβ−2(µξ ) ,

(7)
where similar equations can be obtained for the sine
assumption. Substituting the sine-cosine assumptions and
their derivatives into the reduced ODE gives a
trigonometric equation of sinR(µξ ) or cosR(µξ ) terms.
The parameters are then determined by first balancing the
exponents of each pair of cosine to determineR. We next
collect all coefficients of the same power in cosk (µξ )
where these coefficients have to vanish. This gives a
system of algebraic equations among the unknowns
µ ,λ and β that will be determined. The solutions
proposed in (5) and (6) follow immediately.

2.2 The rational functions in exp(ξ ) method

This method firstly proposed by B. Q. Lu and et al. in 1993
[1]. Later studied by many researchers [29,30].

In this method, we shall seek a rational function type of
solution for a given partial differential equation, in terms
of exp(ξ ) of the following form

U =
m

∑
k = 0

ak
(

1+eξ
)k (8)

wherea0,a1, ...,am are some constants to be determined
from the solution of (4).

Differentiating (8) with respect toξ , introducing the
result into (4) and setting the coefficients of the same
power of equal to zero, we obtain algebraic equations.
The rational function solution of the (3) can be solved by
obtaininga0,a1, ...,am from this system.

3 Application of the sine-cosine method

In this section, we will first use the sine-cosine method to
develop solitary wave solutions to the modified Kawachara
equation.

Fig. 1: The periodic solutions of (13) when c=3, p=-2.

Using the wave variableξ = x− ct, (2) into an ODE

(1− c)u+
u2

3
+ pu

′′
+qu(4) = 0 (9)

Substituting the cosine assumption (5) into (9) gives

(1− c)λ cosβ (µξ )+ λ 3

3 cos3β (µξ )− pµ2β 2λ cosβ (µξ )+
pλ µ2β (β −1)cosβ−2(µξ )+qµ4β 4λ cosβ (µξ )
−2qµ4λ β (β −1)

(

β 2−2β +2
)

cosβ−2(µξ )+
qµ4λ β (β −1)(β −2)(β −3)cosβ−4(µξ ) = 0.

(10)
Equating the exponents and the coefficients of like powers
of cosine function leads to

β (β −1)(β −2)(β −3) 6= 0,
β −4= 3β ,

(1− c)λ −4pµ2λ +16qµ4λ = 0,
pµ2λ −120qµ4λ = 0,

λ 3

3 +120qµ4λ = 0.

(11)

Solving this system (11) yields

β =−2,

µ =∓ 1
4

√

5(1−c)
p , p 6= 0

λ =∓ 3
2

√

5(c−1)
2 ,

c= −4p2+25q
25q ,q 6= 0.

(12)

This leads, for1−c
p > 0, the following periodic solutions

u1,2(x, t) =∓ 3
2

√

5(c−1)
2 sec2

(

1
4

√

5(1−c)
p (x− ct)

)

,
∣

∣

∣

∣

1
4

√

5(1−c)
p (x− ct)

∣

∣

∣

∣

< π
2

(13)
and

u3,4(x, t) =∓ 3
2

√

5(c−1)
2 csc2

(

1
4

√

5(1−c)
p (x− ct)

)

,

1
4

√

5(1−c)
p (x− ct)< π .

(14)
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Fig. 2: The periodic solutions of (13) when c=3, p=-2.

Fig. 3: The soliton solutions of (15) when c=3, p=2.

However, for 1−c
p < 0, we obtained the solitons

solutions

u5,6(x, t)=∓3
2

√

5(c−1)
2

sech2
(

1
4

√

5(c−1)
p

(x− ct)

)

,

(15)
and

u7,8(x, t)=±3
2

√

5(c−1)
2

csch2
(

1
4

√

5(c−1)
p

(x− ct)

)

.

(16)

4 Application of rational function type of
solution

Now, we will find a rational function type of solution to
the sixth-order Boussinesq equation with damping term,
in terms ofexp(ξ ). Firstly, we make the transformation

u(x, t) =U (ξ ) ,ξ = α (x−β t) (17)

Fig. 4: The soliton solutions of (16) when c=3, p=2

and (2) becomes

(

β 2−1
)

U ′′+aαβU ′′′−α2β 2U (4)−α4U (6) =
(

U2)′′

(18)
BalancingU (6) with

(

U2
)′′

in (18) givesm= 4. So that,
the rational exponential method assumes finite expansion

U (ξ )= a0+
a1

1+eξ +
a2

(

1+eξ
)2 +

a3
(

1+eξ
)3 +

a4
(

1+eξ
)4

(19)
wherea j( j = 0,1,2,3,4) are constants to be determined
later. Substituting (19) in (18) and equating the
coefficients of the powerseξ , we then get the following
algebraic relations:

−a1−2a0a1−a1α4−aa1αβ +a1β 2−a1α2β 2 = 0,
(20a)

−6a1−12a0a1−4a2
1−4a2−8a0a2+54a1α4−64a2α4−2a1αβ

−8aa2αβ +6a1β 2+4a2β 2+6a1α2β 2−16a2α2β 2 = 0,
(20b)

−14a1−28a0a1−22a2
1−22a2−44a0a2−18a1a2−9a3−18a0a3

−134a1α4+818a2α4−729a3α4+8aa1αβ −26aa2αβ −27aa3αβ+
14a1β 2+22a2β 2+9a3β 2+34a1α2β 2+2a2α2β 2−81a3α2β 2 = 0,

(20c)

−14a1−28a0a1−48a2
1−48a2−96a0a2−84a1a2−16a2

2−42a3

−84a0a3−32a1a3−16a4−32a0a4−434a1α4−588a2α4 +
4998a3α4−4096a4α4+34aa1αβ −12aa2αβ −78aa3αβ
−64aa4αβ +4a1β 2+48a2β 2+42a3β 2+116a4β 2 +
46a1α2β 2+132a2α2β 2−42a3α2β 2−256a4α2β 2 = 0,

(20d)

−50a2
1−50a2−100a0a1−150a1a2−60a2

2−75a3−150a0a3

−120a1a3−50a2a3−60a4−120a0a4−50a1a4−2450a2α4+
−3675a3α4+21540a4α450aa1αβ +50aa2αβ −45aa3αβ

−140aa4αβ +50a2β 2+75a3β 2+60a4β 2+
190a2α2β 2+285a3α2β 2−60a4α2β 2 = 0,

(20e)
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14a1+28a0a1−20a2
1−20a2−40a0a2−120a1a2−80a2

2−60a3

−120a0a3−160a1a3−140a2a3−36a2
3−80a4−160a0a4−140a1a4

−72a2a4+434a1α4+280a2α4−5460a3α4−25880a4α4+34aa1+
80aa2αβ +60aa3αβ −160a0a4−140a1a4−72a2a+434a1α4+

280a2α4−5460a3α4−25880a4α4+34aa1+80aa2αβ+
60aa3αβ −40aa4αβ −14a1β 2+20a2β 2+60a3β 2+80a4β 2

−46a1α2β 2+40a2α2β 2+300a3α2β 2+520a4α2β 2 = 0,
(20f)

14a1+28a0a1+6a2
1+6a2+12a0a2−30a1a2−40a2

2
−15a3−30a0a3−80a1a3−120a2a3−66a2

3−40a4−80a0a4

−120a1a4−132a2a4−98a3a4+134a1α4+1086a2α4+
3585a3α4+8360a4α4+8aa1αβ +42aa2αβ +75aa3αβ+

80aa4αβ −14a1α2−6a2β 2+15a3β 2+40a4β 2

−34a1α2β 2−66a2α2β 2−15a3α2β 2+200a4α2β 2 = 0,
(20g)

6a1+12a0a1+8a2
1+8a2+16a0a2+12a1a2+6a3+12a0a3

−20a2a3−24a2
3−20a1a4−48a2a4−84a3a4−64a2

4
−54a1α4−172a2α4−354a3α4−600a4α4−2aa1αβ +
4aa2αβ +18aa3αβ +40aa4αβ −6a1β 2−8a2β 2−6a3β 2

−6a1α2β 2−28a2α2β 2−66a3α2β 2−120a4α2β 2 = 0,
(20h)

a1+2a0a1+2a2
1+2a2+4a0a2+6a1a2+4a2

2+3a3+6a0a3 +
8a1a3+10a2a3+6a2

3+4a4+8a0a4+10a1a4+12a2a4+ 14a3a4+
8a2

4+a1α4+2a2α4+3a3α4+4a4α4−aa1αβ −2aa2αβ −3aa3αβ
−4aa4αβ ++a1α2β 2+2a2α2β 2+3a3α2β 2+4a4α2β 2 = 0.

(20i)
When the system (20) solved by aid of Mathematica,

we will find the following two sets of solutions

α = −iβ√
13

or α = iβ√
13

a0 =
−169+169β 2+36β 4

338 ,
a1 = 0,

a2 =
−840β 4

169 ,
a3 =−2a2
a4 = a2

(20)

Substituting (20) and (21) in (19), we obtain exact

travelling wave solutions for (2) of the form

u1 (x, t) =
−169+169β 2 +36β 4

338
− 840β 4

169

(

1+e
−iβ√

13
(x−β t)

)2(21)

+
1680β 4

169

(

1+e
−iβ√

13
(x−β t)

)3 − 840β 4

169

(

1+e
−iβ√

13
(x−β t)

)4 ,

and

u2 (x, t) =
−169+169β 2 +36β 4

338
− 840β 4

169

(

1+e
iβ√
13
(x−β t)

)2(22)

+
1680β 4

169

(

1+e
iβ√
13
(x−β t)

)3 − 840β 4

169

(

1+e
iβ√
13
(x−β t)

)4 .

Fig. 5: The soliton solutions of (21) whenα =−i,β =
√

13

Fig. 6: The soliton solutions of (22) whenα = i, β =
√

13

5 Conclusion

The sine-cosine method and the rational functions in
method were effectively used for analytic treatment of the
handled equations.

In this paper, we have shown that the sixth-order
Boussinesq equation with damping term possess periodic
type solution and the modified Kawachara equations
possess periodic and solitary type solutions. We believe
that some of the obtained solutions are new.

The authors are grateful to the anonymous referee for
a careful checking of the details and for helpful comments
that improved this paper.

c© 2014 NSP
Natural Sciences Publishing Cor.



Math. Sci. Lett.3, No. 3, 223-228 (2014) /www.naturalspublishing.com/Journals.asp 227

References

[1] B. Q. Lu, Z. L. Pan, B. Z. Qu, X. F. Jiang, Solitary wave
solutions for some systems of coupled nonlinear equations,
Physics Lett. A 180 (1993) 61-64.

[2] W. Malfliet, W. Hereman, The tanh method: I. Exact
solutions of nonlinear evolution wave equations. Phys.
Sprica 1996; 54: 569-75.

[3] A. J. M. Jawad, M. D. Petkovic, P. Laketa, A. Biswas,
Dynamics of shallow water waves with Boussinesq
equation. Scientia Iranica, Transactions B: Mechanical
Engineering, Volume 20, Issue 1, (2013) 179-184.

[4] A. M. Wazwaz, A sine-cosine method for handling
nonlinear wave equations. Math. Comput. Model. 40:
2004,499-508.

[5] J. H. He, X. H. Wu, Exp-function method for nonlinear wave
equations. Chaos, Solitons & Fractals 2006; 30, 700-708.

[6] A. M. Wazwaz, The tanh-coth method for solitons and
kink solutions for nonlinear parabolic equations. Applied
Mathematics and Computation 188, 2007, 1467-1475.

[7] M. Wang, X. Li, J. Zhang, The -expansion method and
travelling wave solutions of nonlinear evolution equations in
mathematical physics. Phy. Letters A 372, (2008) 417-423.

[8] M. Mızrak, A. Ertaş, Application of -expansion method to
the compound KdV-Burgers-type equations. Mathematical
and Computational Applications, Vol. 17, 2012, No. 1,
pp.18-28.

[9] G. Ebadi, S. Johnson, E. Zerrad, A. Biswas, Solitons
and other nonlinear waves for the perturbed Boussinesq
equation with power law nonlinearity. Journal of King Saud
University -Science, Volume 24, Issue 3, (2012) 237-241.

[10] A. Biswas, Solitary wave solution for generalized Kawahara
equation. Applied Mathematics Letters, Volume 22, Issue 2,
(2009) 208-210.

[11] A. Biswas, D. Milovic, A. Ranasinghe, Solitary
waves of Boussinesq equation in a power law media.
Communications in Nonlinear Science and Numerical
Simulation, Volume 14, Issue 11, (2009) 3738-3742.

[12] A. Biswas, H. Triki, M. Labidi, Bright and dark solitons
of the Rosenau-Kawahara equation with power law
nonlinearity. Physics of Wave Phenomena, Volume 19,
Number 1, (2011) 24-29.

[13] E. V. Krishnan, S. Kumar, A. Biswas, Solitons and other
nonlinear waves of the Boussinesq equation. Nonlinear
Dynamics, Volume 70, Number 2, (2012) 1213-1221.

[14] H. Triki, A. Chowdhury, A. Biswas, Solitary wave and
shock wave solutions of the variants of Boussinesq equation.
University Politechnica of Bucharest Scientific Bulletin,
Series A. Volume 75, Issue 4, (2013) 39-52.

[15] H. Triki, Z. Jovanoski, A. Biswas, Solitary waves, shock
waves and singular solitons of the generalized Ostrovsky-
Benjamin-Bona-Mahoney equation. Applied Mathematics
and Information Sciences, Volume 8, Number 1, (2014) 113-
116.

[16] P. Razborova, B. Ahmed, A. Biswas, Solitons, shock waves
and conservation laws of Rosenau KdV-RLW equation
with power law nonlinearity. Applied Mathematics and
Information Sciences, Volume 8, Number 2, (2014) 485-
491.

[17] A. Biswas, M. Song, H. Triki, A. H. Kara, B. S. Ahmed, A.
Strong, A. Hama, Solitons, shock waves, conservation laws

and bifurcation analysis of Boussinesq equation with power
law nonlinearity and dual-dispersion. Applied Mathematics
and Information Sciences, Volume 8, Number 3, (2014) 949-
957.

[18] M. Labidi, A. Biswas, Application of He’s principles to
Rosenau-Kawahara equation. Mathematics in Engineering,
Science and Aerospace, Volume 2, Number 2, (2011) 183-
197.

[19] A. H. Kara, H. Triki, A. Biswas, Conservation laws of the
Bretherton equation. Applied Mathematics and Information
Sciences, Volume 7, Number 3, (2013) 877-879.

[20] Y. Ruo-Xia, L. Zhi-Bin, New solitary wave solutions to for
nonlinear evolution equations. Chinese Physics, 1009-1963/
2002/ 11(09) / 0864-05.

[21] P. Daripa, Higher-order Boussinesq equations for two-way
propagation of shallow water waves. European Journal of
Mechanics B/Fluids 25 (2006) 1008-1021.
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