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Abstract: In this paper, we present a common fixed point theorem for catimg operators which generalizes Darbo’s fixed point
theorem and some results in the literature. As an applicati@ study the existence of common solutions of a class dditens in
Banach spaces.
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1 Introduction and Preliminaries Moreover, we denote byt the family of all nonempty
bounded subsets & and byMg its subfamily consisting
Fixed point theory is one of the most fruitful and effective of all relatively compact sets.

tools in mathematics which plays an important role in Definition 1([5]). A mappingy : Mg — R, is said to be

nonhneay analysis (for example se&4)). In .th|s PaPer,  measure of noncompactnessin E if it satisfies the following
we are interested in the existence of a fixed point forCOﬂditiOﬂS'

iCnOergumalfittlir(la%:mappmgS {Tilie satistying the following (1)The family kept = {X € Mg : u(X) = 0} is nonempty
and ke C Ng.
H(S(A)) < ¢ (sup(u(Ti(A))), 1) (XY= pX) < p(Y).
<! (3)H(X) = H(X).
or (4)u(ConvX) = u(X).
Y(u(SA) < PuTA)) - ¢uTA), () (5>I~6 )
whereu is a measure of noncompactness on the Banach(G)l[f ’(>]<;1) is a nested sequence of closed sets fim

spaceE, | is the set of indicesS and T for i € | are such thatlimp e (X,) = 0, then the intersection set
continuous functions from a closed bounded and convex y _ e Xn is nonempty
n= )

subset Q of E into E and ¢,¢ : R, — R, are ) i ) )
nondecreasing functions such that jim, ¢"(t) = O for Observe that the intersection 9& from axiom (6) is a

eacht > 0 and @ satisfies some certain conditions, Member of the kgr. In fact, sinceu(Xe) < p(Xy) for any
specified later. Equatiorl) and @), in the caseT; is the ™ We have thafi(X.) = 0. This yields thaX., € ker.
identity function fori € | has been studied i2]. Definition 2([7]). A measureu is called sublinear if it
At the beginning we provide some notations, definitionssatisfies the following tow conditions:

and auxiliary facts which will be needed in the sequel. (1), (AX) = |A|u(Y) for A €R

From now on, assume thitis a given Banach space with (2UX+Y) < u(X)+u(Y)

the norm||.|| and zero elemenf. Denote byB(x,r) the Where XY & 5)?

closed ball inE centered ak and with radiug. We write E-
B; to denoteB(0,r). If X is a subset ofE then the  Definition 3([7]). A measurgu satisfying the condition
symbolsX, ConvX stand for the closure and the closed .

convex hull of X, respectively. The algebraic operations HXUY) = max{u(X), u(¥)}
on sets will be denoted bX +Y and AX (A € R). will be referred to as a measure with maximum property.
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It is worthwhile mentioning that the Kuratowski and Then, we have
Hausdorff measure of nhoncompactness have maximum

property. (1) The set{x C Q : §(x) = x} is nonempty and
o . .. compact.

Definition 4([10]). A mapping T of a convex set M is said

to be affine if it satisfies the identity (2) For any i€ I, Ti has a fixed point and the set

T (ke (1= Ky) = KTx+ (1— K)Ty {xe€ Q:Ti(x) =x} is closed and invariant by S.

(3) If Ti is affine and{Ti}ic| is a commuting family,
then T and S have a common fixed point for evegyli
Theorem 1([1]). Let Q be a nonempty, bounded, closed and the se{x € Q : Ti(x) = S(x) = x,Vi € | } is compact.
and convex subset of a Banach space E. Then each

continuous and compact map:E2 — Q has at least one i )
fixed point inQ. ProofTo prove the first part of theorem we consider the

sequenc&®, defined a2g = Q andQ, = Conv(S(Q2,_1))
Obviously the above theorem constitutes the well knownforn=1,2,3,.... Then, we show that
Schauder fixed point principle. Its generalization, called
the Darbo’s fixed point theorem, is formulated below. QnCQna , Ti(Qn)CTQn , U(2n) < ¢“(u(9n&)

whenevef < k< 1, and Xy € M.

Theorem 2([8]). Let Q be a nonempty, bounded, closed for everyn=1,2,3,... andi € 1.
and convex subset of a Banach space E and lefJT— It is clear thatQ; C Qg and
Q be a continuous mapping. Assume that there exists a
constant ke [0,1) such that
Ti(Q1) € Con§(Ti(Qo)))
H(TX) < ku(X)

c Conv(S(Qo))
for any nonempty subset X 6f, whereu is a measure of = Q.
noncompactness defined in E. Then T has a fixed point in
the setQ. There for, we have
Lemma 1([2]). Let¢ : R, — R, be a nondecreasing and
upper semicontinuous function. Then the following two u(Q1) = u(ConvgQy))
conditions are equivalent: — H1(S(Q0))
(Dlimnp—e ¢"(t) = O for each t> 0. < ¢ (supu(Ti(Qo))
(2)p(t) <tforanyt>O0. icl

< ¢(H(Q0))
2 Main results So @) holds forn = 1. Assuming now that4 is true

forsomen> 1 andi €1. Then
Theorem 3Let E be a Banach spac&) be a convex

closed bounded subset of E, | be a set of indices, and Qny1 =ConVS(Qn))
{Ti}, S be continuous functions frafhinto Q such that c ConVS(Qh-1))

(i) Forany i€ I, T; commutes with S. =

. , and

(i) For any A C Q and i< |, we have
Ti(ConA)) C Con\Ti(A)) where Conv(A) is the convex Ti(Qni1) = Ti(ConV(S(Qn)))
hull of A . .

C Con(S(TiQn))

(i) There exists an upper semicontinuous and c ConvS(Qn))

nondecreasing functiog : R, — R, where ¢ is such — Ot

thatlimp_,. ¢"(t) = 0 for each t> 0 and for any AC Q

for any i € |I. Hence, the assertio)( is true by the

Next, since lim_ ¢"(t) = 0 for eacht > 0 and for

wheneveru is an arbitrary measure of noncompactnessany A ¢ Q and u(Q,) < ¢"(u(Qn)), we have

on E. 1(Qn) — 0 asn — o. Since the sequend®),) is nested,
in view of axiom (6) of Definition 1), Qw = -1 @n is
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nonempty, closed and convex subsetfHenceQ., is
the member of kegr. So,Q., is compact. Next, keeping in
mind thatS mapsQ.. into itself and taking into account
the Schauder fixed point principle as Theoret) e
infer that the operato® has a fixed poink in the setQ..
Obviouslyx € Q. Thus the seF = {x € Q : Sx=x} is
closed by the continuity ofS. On the other handT;
commutes withS for anyi € I, we see thaTix is a fixed
point of Sfor anyx € F.
ThusT;(F) C F, and using lemmalj

W(F) = u(S(F))
< ¢(Siglpu(Ti(F))

< ¢(u(F)),

we conclude thatu(F) = 0 and according to the
closedness df, F is compact.

(2) The second part of the theorem has been proved i

[10].

(3) For everyi € 1, F is convex sinceT; is affine
mapping. Also, we hav&(F) C F and Tj(F) C F for

for any A € Me. Further, let us consider the functign:
Ry — R, defined by the formula

o(t) = H(W(t) — (1))

Observe thap is continuous ofR . Moreover, inequality
(6) can be written in the form

H(S(A)) < ¢ (supu((Ti(A)))

icl

foranyA € Mg, which has the same form as inequalidy (
from Theorem 8). Notice that in view of the fact that the
functiony ! is increasing o, we deduce that far> 0
the following inequality holds

Q) =y (Pt —o(t) <Y H(yY() =t.

Thus, in view of Lemmal), the functionf satisfies the
condition limy_. ¢"(t) = 0 for eacht > 0 from Theorem

r33). This shows that we can apply TheoreB) (vhich
justifies our above stated assertion.

Theorem4let E be a Banach space an@ be a
nonempty convex, closed and bounded subset of E. Let

everyj € | with F is convex, closed and bounded, and for 1, T, and S be continuous functions frathinto Q such

anyA C F, we get
H(S(A) < ¢ (Sjglpu(Tj (A)).

Then by using part (1$ has a fixed point irf, therefore
S and Ti have a common fixed point. Since S is

that
(1) iT, =TTy and TS= ST forany ie {1,2}.

(2) Ty, T, are affine.

continuous and by the hypothesis (3), we see that the set (3) There exists an upper semicontinuous and

of common fixed point o§andT; is a compact.

nondecreasing functiong : R, — R, such that
limp_. ¢"(t) = 0 for each t> 0 and for any AC Q we

(4) The fourth part of the theorem has been proved inhayve

[10].

Remarkin the theorem 3) replacing hypothesis (iii) by
the following condition implies that theoren3)(is still
correct.

(3*) Suppose thatu is an arbitrary measure of
noncompactness angl ¢ : R, — R, are given functions
such thatp is lower semicontinuous angl is increasing
and continuous of® ;. Moreover,$(0) =0 and¢(t) > 0
fort >0and

Y(H(SA) < Y(U(TiA)) — ¢ (u(TiA))
for any nonempty subsétof Q.

(5)

ProofTo prove this fact, we argue similar to the proof of
remark 2.1 in 2]. Let us first observe that from inequality
(5) we infer thaty(t) — ¢(t) > 0 fort > 0. Thus, since
the functiony is invertible and the inverse functigp—*

is defined and continuous on an subintervaRaf, we can
equivalently write inequalityg) in the form

H(SA < ¢ (W(H(TIA) - $ (H(TIA) (6)

H(S(A) < ¢(U(A)).

Then the sefx € Q : Sx=Tix= To,x=x} is nonempty and
compact.

Proof.To prove this fact, we argue similar to the proof of
Theorem 3.2 in 9]. We consider the operator
H(x) = S(T1(X)). It is clear that H maps2 into Q,

commutes withly, and is continuous. Moreover, we have

H(H(A) = u(S(Tu(A) < o (u(T2(A)))

for any A C Q. Hence, by Theoren8], H andT; have a
common fixed point which is a fixed point with Thus,
the nonempty set = {x € Q : Tix = X} is closed, convex
and bounded subset @, for T; being continuous and
affine. Moreover, by (1) we haveS(F) ¢ F and
T2(F) C F. Therefore, we have

H(S(T2(A)) < o (u(T2(A)))

for any A C F. By the same argument as before, we
considerH;(x) = S(x) for x € F. It follows that the set
{x € Q: Sx=Tix = Tox= X} is nonempty and compact.
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for any A € C([0,b],B). Finally, sinceSandT; commute,
we conclude from Theorend) that Ty, T, andS have a
common fixed point. Therefore, equatio, (8), (9), and
(10) have at least one common solutiorG([0, b}, B), and
the proof is complete.
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