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1 Introduction

An Orlicz function M : [0,∞) → [0,∞) is a continuous,
non-decreasing and convex function such thatM(0) = 0,
M(x) > 0 for x > 0 and M(x) −→ ∞ as x −→ ∞.
Lindenstrauss and Tzafriri [17] used the idea of Orlicz
function to define the following sequence space. Letw be
the space of all real or complex sequencesx= (xk), then

lM =
{

x∈ w :
∞

∑
k=1

M
( |xk|

ρ

)

< ∞
}

which is called a Orlicz sequence space. AlsolM is a
Banach space with the norm

||x||= inf
{

ρ > 0 :
∞

∑
k=1

M
( |xk|

ρ

)

≤ 1
}

.

Also, it was shown in [17] that every Orlicz sequence
spacelM contains a subspace isomorphic tolp(p ≥ 1).
The ∆2− condition is equivalent toM(Lx) ≤ LM(x), for
all L with 0< L < 1. An Orlicz functionM can always be
represented in the following integral form

M(x) =
∫ x

0
η(t)dt

where η is known as the kernel ofM, is right
differentiable for t ≥ 0,η(0) = 0,η(t) > 0, η is

non-decreasing andη(t)→ ∞ ast → ∞.
A sequenceM = (Mk) of Orlicz functions is called a
Musielak-Orlicz function see ([18],[20]). A sequence
N = (Nk) of Orlicz functions defined by

Nk(v) = sup{|v|u−Mk(u) : u≥ 0}, k= 1,2, ...

is called the complementary function of the
Musielak-Orlicz function M . For a given
Musielak-Orlicz function M , the Musielak-Orlicz
sequence spacetM and its subspacehM are defined as
follows

tM =
{

x∈ w : IM (cx)< ∞, for somec> 0
}

,

hM =
{

x∈ w : IM (cx)< ∞, for all c> 0
}

,

whereIM is a convex modular defined by

IM (x) =
∞

∑
k=1

Mk(xk),x= (xk) ∈ tM .

We considertM equipped with the Luxemburg norm

||x||= inf
{

k> 0 : IM
(x

k

)

≤ 1
}

or equipped with the Orlicz norm

||x||0 = inf
{1

k

(

1+ IM (kx)
)

: k> 0
}

.
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Let X be a linear metric space. A functionp : X → R is
called paranorm, if

1.p(x)≥ 0, for all x∈ X,
2.p(−x) = p(x), for all x∈ X,
3.p(x+ y)≤ p(x)+ p(y), for all x,y∈ X,
4.if (λn) is a sequence of scalars withλn → λ asn →

∞ and(xn) is a sequence of vectors withp(xn− x) →
0 asn→ ∞, thenp(λnxn−λx)→ 0 asn→ ∞.

A paranormp for which p(x) = 0 implies x = 0 is
called total paranorm and the pair(X, p) is called a total
paranormed space. It is well known that the metric of any
linear metric space is given by some total paranorm (see
[28], Theorem 10.4.2, P-183). For more details about
sequence spaces see( [1], [3], [5], [15], [16], [21], [22],
[23], [24], [25], [26], [27]).
A complex sequence, whosekth term isxk is denoted by
(xk). Let ϕ be the set of all finite sequences. A sequence

x= (xk) is said to be analytic if sup
k
|xk|

1
k < ∞. The vector

space of all analytic sequences will be denoted byΛ . A

sequencex is called entire sequence if lim
k→∞

|xk|
1
k = 0. The

vector space of all entire sequences will be denoted byΓ .
Let σ be a one-one mapping of the set of positive integers
into itself such thatσm(n) = σ(σm−1(n)),m= 1,2,3, · · · .
A continuous linear functionalφ on Λ is said to be an
invariant mean or aσ−mean if and only if

1.φ(x)≥ 0 when the sequencex= (xn) hasxn ≥ 0 for all
n,

2.φ(e) = 1 wheree= (1,1,1, · · ·) and
3.φ({xσ(n)}) = φ({xn}) for all x∈ Λ .

For certain kinds of mappingsσ , every invariant
meanφ extends the limit functional on the spaceC of all
convergent sequences in the sense thatφ(x) = lim x for all
x ∈ C . ConsequentlyC ⊂ Vσ , whereVσ is the set of
analytic sequences all of thoseσ−means are equal. If
x= (xn), setTx= (Tx)

1
n = (xσ(n)). It can be shown that

Vσ =
{

x= (xn) : limm→∞ tmn(xn)
1
n = L uniformly in n, L = σ − limn→∞(xn)

1
n

}

,

where

tmn(x) =
(xn+Txn+ · · ·+Tmxn)

1
n

m+1
.

Given a sequencex = {xk} its nth section is the sequence
x(n) = {x1,x2, · · ·xn,0,0, · · ·}, δ (n) = (0,0, · · · ,1,0,0, · · ·),
in thenth place and zeros elsewhere.
The space consisting of all those sequencesx in w such

that Mk

(

|xk|
1/k

ρ

)

→ 0 as k → ∞ for some arbitrary fixed

ρ > 0 is denoted byΓM and is known as Musielak-Orlicz
space of entire sequences. The spaceΓM is a metric space

with the metric d(x,y) = sup
k

Mk

( |xk− yk|
1/k

ρ

)

for all

x= {xk} andy= {yk} in ΓM .
The space consisting of all those sequencesx in w such

that
(

sup
k

(

Mk

( |xk|
1/k

ρ

)))

< ∞ for some arbitrarily fixed

ρ > 0 is denoted byΛM and is known as Musielak-Orlicz
space of analytic sequences.
A sequence spaceE is said to be solid or normal if
(αkxk) ∈ E whenever(xk) ∈ E and for all sequences of
scalars(αk) with |αk| ≤ 1 (see [20]). The following
inequality will be used throughout the paper. Letp= (pk)
be a sequence of positive real numbers with
0≤ pk ≤ suppk = G, K = max(1,2G−1) then

|ak+bk|
pk ≤ K{|ak|

pk + |bk|
pk} for all k and ak,bk ∈ C.

(1.1)
Also |a|pk ≤ max(1, |a|G) for all a∈ C.
LetM = (Mk) be a Musielak-Orlicz function,X be locally
convex Hausdorff topological linear space whose topology
is determined by a set of continuous seminormsq. The
symbolΛ(X), Γ (X) denotes the space of all analytic and
entire sequences recpectively defined overX. In this paper
we define the following classes of sequences:

ΛM (p,σ ,q,s) =
{

x∈ Λ(x) : sup
n,k

k−s
[

Mk

(

q
( |xσk(n)|

1
k

ρ

))]pk
< ∞ uniformly in

n≥ 0, s≥ 0 and for someρ > 0
}

,

ΓM (p,σ ,q,s) =
{

x∈ Γ (x) :
n

∑
k=1

k−s
[

Mk

(

q
( |xσk(n)|

1
k

ρ

))]pk
→ 0 as k→ ∞

uniformly in n≥ 0, s≥ 0 and for someρ > 0
}

.

If we takep= (pk) = 1, we get

ΛM (σ ,q,s) =
{

x∈ Λ(x) : sup
n,k

k−s
[

Mk

(

q
( |xσk(n)|

1
k

ρ

))]

< ∞ uniformly in

n≥ 0, s≥ 0 and for someρ > 0
}

,

ΓM (σ ,q,s) =
{

x∈ Γ (x) :
n

∑
k=1

k−s
[

Mk

(

q
( |xσk(n)|

1
k

ρ

))]

→ 0 as k→ ∞

uniformly in n≥ 0, s≥ 0 and for someρ > 0
}

.

The main purpose of this paper is to study some entire
and analytic sequence spaces on seminormed spaces
defined by a Musielak-Orlicz functionM = (Mk). We
study some topological properties and inclusion relations
between the spacesΛM (p,σ ,q,s) and ΓM (p,σ ,q,s) in
the second section of this paper. In the third section we
make an effort to study some properties of these sequence
spaces overn-normed spaces.

2 Some topological properties of spaces
ΛM (p,σ ,q,s) and ΓM (p,σ ,q,s)

Theorem 2.1Let M = (Mk) be a Musielak-Orlicz
function and p= (pk) be a sequence of strictly positive
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real numbers. Then the spacesΓM (p,σ ,q,s) and
ΛM (p,σ ,q,s) are linear spaces over the field of complex
numbersC.

Proof. Let x= (xk), y= (yk) ∈ ΓM (p,σ ,q,s). Then there
exist positive numbersρ1 andρ2 such that

n

∑
k=1

k−s
[

Mk

(

q
( |xσk(n)|

1
k

ρ1

))]pk
→ 0 as k→ ∞

and

n

∑
k=1

k−s
[

Mk

(

q
( |yσk(n)|

1
k

ρ2

))]pk
→ 0 as k→ ∞.

Let ρ3 = max(2|α|ρ1,2|β |ρ2). SinceM = (Mk) is non
decreasing, convex andq is a seminorm so by using
inequality(1.1), we have

n

∑
k=1

k−s
[

Mk(q(
|αxσk(n)+βyσk(n)|

1
k

ρ3
))
]pk

≤
n

∑
k=1

k−s
[

Mk

(

q
( |αxσk(n)|

ρ3
+

|βyσk(n)|

ρ3

)
1
k
)]pk

≤
n

∑
k=1

1
2pk

k−s
[

Mk

(

q
( |xσk(n)|

1
k

ρ1

))

+Mk

(

q
( |yσk(n)|

1
k

ρ2

))]pk

≤
n

∑
k=1

k−s
[

Mk

(

q
( |xσk(n)|

1
k

ρ1

))

+Mk

(

q
( |yσk(n)|

1
k

ρ2

))]pk

≤ K
n

∑
k=1

k−s
[

Mk

(

q
( |xσk(n)|

1
k

ρ1

))]pk

+ K
n

∑
k=1

k−s
[

Mk

(

q
( |yσk(n)|

1
k

ρ2

))]pk

→ 0 as k→ ∞.

Thusαx+ βy ∈ ΓM (p,σ ,q,s). HenceΓM (p,σ ,q,s) is a
linear space. Similarly, we can show thatΛM (p,σ ,q,s) is
a linear space.

Theorem 2.2SupposeM = (Mk) is Musielak-Orlicz
function and p= (pk) be a sequence of strictly positive
real numbers. Then the spaceΓM (p,σ ,q,s) is a
paranormed space with the paranorm defined by

g(x) = inf
{

ρ
pm
M : sup

k≥1
k−s

[

Mk(q(
|xσk(n)|

1
k

ρ
))
]

pk
M

≤

1,uniformly in n > 0, ρ > 0
}

, where

M = max(1,sup
k

pk).

Proof. Clearly g(x) ≥ 0,g(x) = g(−x) and g(θ ) = 0,
where θ is the zero sequence ofX. Let
(xk), (yk) ∈ ΓM (p,σ ,q,s). Let ρ1, ρ2 > 0 be such that

sup
k≥1

k−s
[

Mk

(

q
( |xσk(n)|

1
k

ρ

))]

pk
M
≤ 1

and

sup
k≥1

k−s
[

Mk

(

q
( |yσk(n)|

1
k

ρ

))]

pk
M
≤ 1.

Let ρ = ρ1+ρ2 and by using Minkowski’s inequality, we
have

sup
k≥1

k−s
[

Mk

(

q
( |xσk(n)+yσk(n)|

1
k

ρ

))]

pk
M

≤
ρ1

ρ1+ρ2
sup
k≥1

k−s
[

Mk

(

q
( |xσk(n)|

1
k

ρ1

))]

pk
M

+
ρ2

ρ1+ρ2
sup
k≥1

k−s
[

Mk

(

q
( |yσk(n)|

1
k

ρ2

))]

pk
M

≤ 1.

Hence
g(x+ y)

≤ inf
{

(ρ1+ρ2)
pm
M : sup

k≥1
k−s

[

Mk

(

q
( |xσk(n)+yσk(n)|

1
k

ρ1+ρ2

))]

pk
M

≤ 1, ρ1, ρ2 > 0,m∈ N
}

≤ inf
{

(ρ1)
pm
M : sup

k≥1
k−s

[

Mk

(

q
( |xσk(n)|

1
k

ρ1

))]

pk
M

≤ 1, ρ1 > 0, m∈ N
}

+ inf
{

(ρ2)
pm
M : sup

k≥1
k−s

[

Mk

(

q
( |yσk(n)|

1
k

ρ2

))]

pk
M

≤ 1, ρ2 > 0,m∈ N
}

.

Thus we haveg(x+y)≤ g(x)+g(y). Henceg satisfies the
triangle inequality. Now

g(λx) = inf
{

(ρ)
pm
M : sup

k≥1
k−s

[

Mk

(

q
( |xσk(n)|

1
k

ρ

))]

pk
M

≤ 1, ρ > 0, m∈ N
}

= inf
{

(r|λ |)
pm
M : sup

k≥1
k−s

[

Mk

(

q
( |xσk(n)|

1
k

ρ

))]

pk
M

≤ 1, r > 0, m∈ N
}

,

wherer = ρ
|λ | . HenceΓM (p,σ ,q,s) is a paranormed space.

Theorem 2.3Let M = (Mk) be a Musielak-Orlicz
function. Then

ΓM (p,σ ,q,s)∩ΛM (p,σ ,q,s) ⊆ ΓM (p,σ ,q,s).

Proof. The proof is trivial so we omit.

Theorem 2.4ΓM (p,σ ,q,s) ⊆ ΛM (p,σ ,q,s).

Proof. The proof is trivial so we omit.

Theorem 2.5Let 0 ≤ pk ≤ rk and let { rk
pk
} be bounded.

ThenΓM (r,σ ,q,s) ⊂ ΓM (p,σ ,q,s).

Proof. Let x∈ ΓM (r,σ ,q,s). Then

n

∑
k=1

k−s
[

Mk

(

q
( |xσk(n)|

1
k

ρ

))]rk
→ 0 asn→ ∞. (2.1)

Let tk =
n

∑
k=1

k−s
[

Mk

(

q
( |xσk(n)|

1
k

ρ

))]qk
andλk =

pk
rk

. Since

pk ≤ rk, we have 0≤ λk ≤ 1. Take 0< λ < λk. Define

uk =







tk, if tk ≥ 1

0, if tk < 1
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and

vk =







0, if tk ≥ 1

tk, if tk < 1

tk = uk+vk, tλk
k = uλk

k +vλk
k . It follows thatuλk

k ≤ uk ≤ tk,

vλk
k ≤ vλ

k . Sincetλk
k = uλk

k + vλk
k , thentλk

k ≤ tk+ vλ
k . Now

n

∑
k=1

k−s
[[

Mk

(

q
( |xσk(n)|

1
k

ρ

))]rk
]λk

≤
n

∑
k=1

k−s
[

Mk

(

q
( |xσk(n)|

1
k

ρ

))]rk

=⇒
n

∑
k=1

k−s
[

Mk

(

q
( |xσk(n)|

1
k

ρ

))rk
]pk/rk

≤
n

∑
k=1

k−s
[

Mk

(

q
( |xσk(n)|

1
k

ρ

))]rk

=⇒
n

∑
k=1

k−s
[

Mk

(

q
( |xσk(n)|

1
k

ρ

))]pk
≤

n

∑
k=1

k−s
[

Mk

(

q
( |xσk(n)|

1
k

ρ

))]rk
.

But

n

∑
k=1

k−s
[

Mk

(

q
( |xσk(n)|

1
k

ρ

))]rk
→ 0 as n→ ∞ (by(2.1)).

Therefore

n

∑
k=1

k−s
[

Mk

(

q
( |xσk(n)|

1
k

ρ

))]pk
→ 0 as n→ ∞.

Hence x ∈ ΓM (p,σ ,q,s). From (2.1), we get
ΓM (r,σ ,q,s)⊂ ΓM (p,σ ,q,s).

Theorem 2.6(i) Let 0 < inf pk ≤ pk ≤ 1. Then
ΓM (p,σ ,q,s)⊂ ΓM (σ ,q,s),
(ii) let 1 ≤ pk ≤ suppk < ∞. Then
ΓM (σ ,q,s)⊂ ΓM (p,σ ,q,s).

Proof. (i) Let x∈ ΓM (p,σ ,q,s). Then

n

∑
k=1

k−s
[

Mk

(

q
( |xσk(n)|

1
k

ρ

))]pk
→ 0 as n→ ∞. (2.2)

Since 0< inf pk ≤ pk ≤ 1,

n

∑
k=1

k−s
[

Mk

(

q
( |xσk(n)|

1
k

ρ

))]

≤
n

∑
k=1

k−s
[

Mk

(

q
( |xσk(n)|

1
k

ρ

))]pk
→ 0 as n→ ∞.

(2.3)
From (2.2) and (2.3) it follows that,x∈ ΓM (σ ,q,s). Thus
ΓM (p,σ ,q,s)⊂ ΓM (σ ,q,s).
(ii) Let pk ≥ 1 for each k and suppk < ∞ and let
x∈ ΓM (σ ,q,s). Then

n

∑
k=1

k−s
[

Mk

(

q
( |xσk(n)|

1
k

ρ

))]

→ 0 as n→ ∞. (2.4)

Since 1≤ pk ≤ suppk < ∞, we have

n

∑
k=1

k−s
[

Mk

(

q
( |xσk(n)|

1
k

ρ

))]pk
≤

n

∑
k=1

k−s
[

Mk

(

q
( |xσk(n)|

1
k

ρ

))]

n

∑
k=1

k−s
[

Mk

(

q
( |xσk(n)|

1
k

ρ

))]pk
→ 0 as n→ ∞.

This implies that x ∈ ΓM (p,σ ,q,s). Therefore
ΓM (σ ,q,s)⊂ ΓM (p,σ ,q,s).

Theorem 2.7Suppose
n

∑
k=1

k−s
[

Mk

(

q
( |xσk(n)|

1
k

ρ

))]pk
≤ |xk|

1/k, then

Γ ⊂ ΓM (p,σ ,q,s).

Proof. Let x∈ Γ . Then we have,

|xk|
1/k → 0 as k→ ∞. (2.5)

But
n

∑
k=1

k−s
[

Mk

(

q
( |xσk(n)|

1
k

ρ

))]pk
≤ |xk|

1/k, by our

assumption, implies that

n

∑
k=1

k−s
[

Mk

(

q
( |xσk(n)|

1
k

ρ

))]pk
→ 0 as n→ ∞. by(2.5)

Thenx∈ ΓM (p,σ ,q,s) andΓ ⊂ ΓM (p,σ ,q,s).

Theorem 2.8ΓM (p,σ ,q,s) is solid.

Proof. Let |xk| ≤ |yk| and let y = (yk) ∈ ΓM (p,σ ,q,s),
becauseM = (Mk) is non-decreasing

n

∑
k=1

k−s
[

Mk

(

q
( |xσk(n)|

1
k

ρ

))]pk
≤

n

∑
k=1

k−s
[

Mk

(

q
( |yσk(n)|

1
k

ρ

))]pk
.

Sincey∈ ΓM (p,σ ,q,s). Therefore,

n

∑
k=1

k−s
[

Mk

(

q
((|yσk(n)|

1
k

ρ

))]pk
→ 0 as n→ ∞

and hence

n

∑
k=1

k−s
[

Mk

(

q
( |xσk(n)|

1
k

ρ

))]pk
→ 0 as n→ ∞.

Thereforex= {xk} ∈ ΓM (p,σ ,q,s).

Theorem 2.9ΓM (p,σ ,q,s) is monotone.

Proof. The proof is trivial.

3 Sequence spaces over n- normed spaces

The concept of 2-normed spaces was initially developed
by Gähler[11] in the mid of 1960’s, while that ofn-normed
spaces one can see in Misiak[19]. Since then, many others
have studied this concept and obtained various results, see
Gunawan ([12,[13]) and Gunawan and Mashadi [14]. Let
n ∈ N andX be a linear space over the fieldR, whereR
is field of reals of dimensiond, whered ≥ n ≥ 2. A real
valued function||·, · · · , ·|| on Xn satisfying the following
four conditions:

1.||x1,x2, · · · ,xn|| = 0 if and only if x1,x2, · · · ,xn are
linearly dependent inX;

c© 2014 NSP
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2.||x1,x2, · · · ,xn|| is invariant under permutation;
3.||αx1,x2, · · · ,xn||= |α| ||x1,x2, · · · ,xn|| for anyα ∈R,

and
4.||x+ x′,x2, · · · ,xn|| ≤ ||x,x2, · · · ,xn||+ ||x′,x2, · · · ,xn||

is called ann-norm onX, and the pair(X, ||·, · · · , ·||)
is called an-normed space over the fieldR.
For example, we may takeX = Rn being equipped with
the n-norm ||x1,x2, · · · ,xn||E = the volume of the
n-dimensional parallelopiped spanned by the vectors
x1,x2, · · · ,xn which may be given explicitly by the
formula

||x1,x2, · · · ,xn||E = |det(xi j )|,

wherexi = (xi1,xi2, · · · ,xin) ∈ R
n for eachi = 1,2, · · · ,n.

Let (X, ||·, · · · , ·||) be ann-normed space of dimensiond≥
n≥ 2 and{a1,a2, · · · ,an} be linearly independent set inX.
Then the function||·, · · · , ·||∞ onXn−1 defined by

||x1,x2, · · · ,xn−1||∞ =max{||x1,x2, · · · ,xn−1,ai || : i = 1,2, · · · ,n}

is known as an(n − 1)-norm on X with respect to
{a1,a2, · · · ,an}.
Let n ∈ N andX be a real vector space of dimensiond,
where 2≤ n ≤ d. Let βn−1 be the collection of linearly
independent setsB with n−1 elements. ForB∈ βn−1, let
us define

qB(x1) = ‖x1,x2, · · ·xn‖, x1 ∈ X.

ThenqB is a seminorm onX and the familyq= {qB : B∈
βn−1} of seminorms generates a locally convex topology
onX. The seminormsqB have the following properties:

1.ker(qB) = the linear span ofB.
2.ForB∈ βn−1, y∈ B andx∈X\the linear span ofB we

have

qB∪{x}\y(y) = qB(x). See ([10])

A sequence(xk) in an-normed space(X, ||·, · · · , ·||) is said
to converge to someL ∈ X if

lim
k→∞

||xk−L,z1, · · · ,zn−1||= 0 for every z1, · · · ,zn−1 ∈ X.

A sequence(xk) in an-normed space(X, ||·, · · · , ·||) is said
to be Cauchy if

lim
k,p→∞

||xk−xp,z1, · · · ,zn−1||= 0 for everyz1, · · · ,zn−1 ∈X.

If every Cauchy sequence inX converges to someL ∈ X,
thenX is said to be complete with respect to then-norm.
Any completen-normed space is said to ben-Banach
space. For more details aboutn−normed spaces one can
see ([2], [4], [6], [7], [8], [9]) and references therein.
Let M = (Mk) be a Musielak-Orlicz function,X be
locally convex Hausdorff topological real linear
n−normed space whose topology is determined by a set
of continuous seminormsq. The symbolΛ(X), Γ (X)

denotes the space of all analytic and entire sequences
respectively defined overX. In this section, for each
z1, · · · ,zn−1 ∈ X we define the following classes of
sequences:

ΛM (p,σ ,q,s, ||., · · · , .||) =
{

x∈ Λ(x) : sup
n,k

k−s
[

Mk

(

q
(

||
(xσk(n))

1
k

ρ
,z1, · · · ,zn−1||

))]pk

< ∞ uniformly in n≥ 0, s≥ 0 for someρ > 0
}

,

ΓM (p,σ ,q,s, ||., · · · , .||) =
{

x ∈ Γ (x) :

n

∑
k=1

k−s
[

Mk

(

q
(

||
(xσk(n))

1
k

ρ
,z1, · · · ,zn−1||

))]pk

→ 0 ask→ ∞ uniformly in n≥ 0, s≥

0 for someρ > 0
}

.

If we takep= (pk) = 1, we get

ΛM (σ ,q,s, ||., · · · , .||) =
{

x ∈ Λ(x) :

sup
n,k

k−s
[

Mk

(

q
(

||
(xσk(n))

1
k

ρ
,z1, · · · ,zn−1||

))]

< ∞ uniformly in n ≥ 0, s≥

0 for someρ > 0
}

,

ΓM (σ ,q,s, ||., · · · , .||) =
{

x ∈ Γ (x) :

n

∑
k=1

k−s
[

Mk

(

q
(

||
(xσk(n))

1
k

ρ
,z1, · · · ,zn−1||

))]

→ 0 ask→ ∞ uniformly in n≥ 0, s≥

0 for someρ > 0
}

.

In the present section we study some topological
properties of the spacesΛM (p,σ ,q,s, ||., · · · , .||) and
ΓM (p,σ ,q,s, ||., · · · , .||) and also examine some inclusion
relation between these spaces.

Theorem 3.1Let M = (Mk) be a Musielak-Orlicz
function and p= (pk) be a sequence of strictly positive
real numbers. Then the spacesΓM (p,σ ,q,s, ||., · · · , .||)
and ΛM (p,σ ,q,s, ||., · · · , .||) are linear space over the
field of real numbersR.

Proof. Let x = (xk), y = (yk) ∈ ΓM (p,σ ,q,s, ||., · · · , .||).
Then there exist positive numbersρ1 andρ2 such that

n

∑
k=1

k−s
[

Mk

(

q
(

||
(xσk(n))

1
k

ρ1
,z1, · · · ,zn−1||

))]pk
→ 0 ask→∞

and

n

∑
k=1

k−s
[

Mk

(

q
(

||
(yσk(n))

1
k

ρ2
,z1, · · · ,zn−1

))]pk
→ 0 ask→∞.

Let ρ3 = max(2|α|ρ1,2|β |ρ2). SinceM = (Mk) is non
decreasing, convex andq is a seminorm and by using
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inequality(1.1), we have
n

∑
k=1

k−s
[

Mk(q||
((αxσk(n)+βyσk(n))

1
k

ρ3

)

,z1, · · · ,zn−1||
]pk

≤
n

∑
k=1

k−s
[

Mk

(

q||
(α(xσk(n))

ρ3
+

(yσk(n))

ρ3

)
1
k
,z1, · · · ,zn−1||

)]pk

≤
n

∑
k=1

1
2pk

k−s
[

Mk

(

q
(

||
(xσk(n))

1
k

ρ1
,z1, · · · ,zn−1||

))

+ Mk

(

q
(

||
(yσk(n))

1
k

ρ2
,z1, · · · ,zn−1||

))]pk

≤
n

∑
k=1

k−s
[

Mk

(

q
(

||
(xσk(n))

1
k

ρ1
,z1, · · · ,zn−1||

))

+ Mk

(

q
(

||
(yσk(n))

1
k

ρ2
,z1, · · · ,zn−1||

))]pk

≤ K
n

∑
k=1

k−s
[

Mk

(

q
(

||
(xσk(n))

1
k

ρ1
,z1, · · · ,zn−1||

))]pk

+ K
n

∑
k=1

k−s
[

Mk

(

q
(

||
(yσk(n))

1
k

ρ2
,z1, · · · ,zn−1||

))]pk

→ 0 as k → ∞.

Thus αx + βy ∈ ΓM (p,σ ,q,s, ||., · · · , .||). Hence
ΓM (p,σ ,q,s, ||., · · · , .||) is a linear space. Similarly, we
can proveΛM (p,σ ,q,s, ||., · · · , .||) is a linear space.

Theorem 3.2SupposeM = (Mk) is Musielak-Orlicz
function and p= (pk) be a sequence of strictly positive
real numbers. Then the spaceΓM (p,σ ,q,s, ||., · · · , .||) is
a paranormed space with the paranorm defined by

g(x) = inf
{

ρ
pm
M :

sup
k≥1

k−s
[

Mk(q||
( (xσk(n))

1
k

ρ
,z1, · · · ,zn−1)||

)]

pk
M
≤ 1,

uniformly in n> 0, ρ > 0
}

, where

M = max(1,sup
k

pk).

Proof. Clearly g(x) ≥ 0,g(x) = g(−x) and g(θ ) = 0,
where θ is the zero sequence ofX. Let
(xk), (yk) ∈ ΓM (p,σ ,q,s, ||., · · · , .||). Let ρ1, ρ2 > 0 be
such that

sup
k≥1

k−s
[

Mk

(

q
(

||
(xσk(n))

1
k

ρ
,z1, · · · ,zn−1||

))]

pk
M
≤ 1

and

sup
k≥1

k−s
[

Mk

(

q
(

||
(yσk(n))

1
k

ρ
,z1, · · · ,zn−1||

))]

pk
M
≤ 1.

Then

sup
k≥1

k−s
[

Mk

(

q
(

||
(xσk(n)+ yσk(n))

1
k

ρ
,z1, · · · ,zn−1||

))]

pk
M

≤
ρ1

ρ1+ρ2
sup
k≥1

k−s
[

Mk

(

q
(

||
(xσk(n))

1
k

ρ1
,z1, · · · ,zn−1||

))]

pk
M

+
ρ2

ρ1+ρ2
sup
k≥1

k−s
[

Mk

(

q
(

||
(yσk(n))

1
k

ρ2
,z1, · · · ,zn−1||

))]

pk
M

≤ 1.
Hence
g(x+ y)

≤ inf
{

(ρ1+ρ2)
pm
M : sup

k≥1
k−s

[

Mk

(

q
(

||
(xσk(n) +yσk(n))

1
k

ρ1+ρ2
,z1, · · · ,zn−1||

))]

pk
M

≤ 1,

ρ1, ρ2 > 0, m∈ N
}

≤ inf
{

(ρ1)
pm
M : sup

k≥1
k−s

[

Mk

(

q
(

||
(xσk(n))

1
k

ρ
,z1, · · · ,zn−1||

))]

pk
M

≤ 1,

ρ1 > 0, m∈ N
}

+ inf
{

(ρ2)
pm
M : sup

k≥1
k−s

[

Mk

(

q
(

||
(yσk(n))

1
k

ρ
,z1, · · · ,zn−1||

))]

pk
M

≤ 1,

ρ2 > 0, m∈ N
}

.

Thus we haveg(x+y)≤ g(x)+g(y). Henceg satisfies the
triangle inequality. Now
g(λx)

= inf
{

(ρ)
pm
M : sup

k≥1
k−s

[

Mk

(

q
(

||
(xσk(n))

1
k

ρ
,z1, · · · ,zn−1||

))]

pk
M

≤ 1, ρ > 0, m∈ N
}

= inf
{

(r|λ |)
pm
M : sup

k≥1
k−s

[

Mk

(

q
(

||
(xσk(n))

1
k

ρ
,z1, · · · ,zn−1||

))]

pk
M

≤ 1, r > 0,m∈ N
}

,

where r = ρ
|λ | . Hence ΓM (p,σ ,q,s, ||., · · · , .||) is a

paranormed space.

Theorem 3.3Let M = (Mk) be a Musielak-Orlicz
function. Then

ΓM (p,σ ,q,s, ||., · · · , .||)∩ΛM (p,σ ,q,s, ||., · · · , .||)⊆ ΓM (p,σ ,q,s, ||., · · · , .||).

Proof. It is easy to prove so we omit the proof.

Theorem 3.4
ΓM (p,σ ,q,s, ||., · · · , .||)⊆ ΛM (p,σ ,q,s, ||., · · · , .||).

Proof. It is easy to prove so we omit the proof.

Theorem 3.5ΓM (p,σ ,q,s, ||., · · · , .||) is solid.

Proof. Let |xk| ≤ |yk| and let
y = (yk) ∈ ΓM (p,σ ,q,s, ||., · · · , .||), sinceM = (Mk) is
non-decreasing, so

n

∑
k=1

k−s
[

Mk

(

q
(

||
(xσk(n))

1
k

ρ
,z1, · · · ,zn−1||

))]pk

≤
n

∑
k=1

k−s
[

Mk

(

q
(

||
(yσk(n))

1
k

ρ
,z1, · · · ,zn−1||

))]pk
.
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Sincey∈ ΓM (p,σ ,q,s, ||., · · · , .||). Therefore,

n

∑
k=1

k−s
[

Mk

(

q
(

||
(yσk(n))

1
k

ρ
,z1, · · · ,zn−1||

))]pk
→ 0 as n→ ∞.

So that

n

∑
k=1

k−s
[

Mk

(

q
(

||
(xσk(n))

1
k

ρ
,z1, · · · ,zn−1||

))]pk
→ 0 as n→ ∞.

Therefore x = (xk) ∈ ΓM (p,σ ,q,s, ||., · · · , .||). Hence
ΓM (p,σ ,q,s, ||., · · · , .||) is solid.

Theorem 3.6ΓM (p,σ ,q,s, ||., · · · , .||) is monotone.

Proof. The proof is trivial so we omit it.
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