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José Gutiérrez Abascal, 2, 28006 Madrid, Spain.

Received: 7 Jan. 2015, Revised: 20 Apr. 2016, Accepted: 26 Apr. 2016
Published online: 1 Jan. 2017
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1 Introduction

The so called Adomian Decomposition Method
(ADM) is an analytic approximation to the solution of
linear and non-linear problems which does not require
linearization or perturbation [1,2,3,4]. The main
objective of this paper is to explore the possibilities of
this method in Boundary Value Problems with
discontinuous coefficients and/or driving terms. This is a
field of growing interest in the theory of differential
equations and in many areas of applications [5,6,7,8] In
recent papers [9,10,11,12] the ADM has been applied to
a broad range of BVP’s, but the case of discontinuous
coefficients or discontinuous solutions has not been
investigated. In [13] an application of ADM is given to
impulsive Initial Value Problems. In [14] Casasus and
Al-Hayani applied ADM to Initial Value Problems with
discontinuities. The existence of solutions of boundary
problems with impulse was studied in [15] and [16].
Classical techniques are affected near discontinuities, but
ADM is well suited to deal with these situations. In this
paper we analyze the behavior of ADM in the presence of
discontinuous coefficients and/or driving terms like
Heaviside or Dirac delta functions.

Let us consider the general functional equation

y −N y = f, (1)

whereN is a nonlinear operator,f is a known function, and
we are seeking the solutiony satisfying (1). We assume
that for everyf , Eq. (1) has one and only one solution.

The Adomian technique consists of approximating the
solution of (1) as an infinite series

y =

∞
∑

n=0

yn, (2)

and decomposing the nonlinear operatorN as

N y =

∞
∑

n=0

An, (3)

whereAn are polynomials (called Adomian polynomials)
of y0, . . . , yn [1,2,3,4] given by

An =
1

n!

dn

dλn

[

N

(

∞
∑

i=0

λiyi

)]

λ=0

, n = 0, 1, 2, . . . .

The proofs of the convergence of the series
∞
∑

n=0

yn and

∞
∑

n=0

An are given in [3,17,18,19,20,21]. Substituting (2)

and (3) into (1) yields

∞
∑

n=0

yn −

∞
∑

n=0

An = f.
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Thus, we can identify

y0 = f,

yn+1 = An(y0, . . . , yn), n = 0, 1, 2, . . . .

Thus all components ofy can be calculated once theAn

are given. We then define then-term approximant to the

solutiony by φn[y] =
n−1
∑

i=0

yi or equivalentlyφn+1[y] =

N(y0 + φn[y]) with lim
n→∞

φn[y] = y.

2 ADM applied to a BVP

Consider the general BVP:

y′′ + 2hg (y, y′) + k2f1 (x) y = λf2 (x) , 0 ≤ x ≤ 2
(4)

y(0) = α, y(2) = β (5)

whereh, k, λ, α andβ are real constants,g is a (possibly)
nonlinear function ofy, y′ andf1, f2 are functions with
some discontinuity.

Applying the decomposition method as in [1,2,3,4]
Eq. (4) can be written as

L y = λf2 (x)− 2hN y − k2f1 (x) y, (6)

whereL =
d2

dx2
is the linear operator andN y = g (y, y′)

is the nonlinear operator. Operating on both sides of Eq.
(6) with the inverse operator of L (namely
L−1 [·] =

∫ x

0

∫ x

0
[·] dxdx) yields

y(x) = c1+c2x+λL−1
f2 (x)−2hL−1 N y−k

2 L−1
f1 (x) y,

wherec1, c2 are constants of integration evaluated from
the given conditions (5).

Upon using (2) and (3) it follows that

∞
∑

n=0

yn = c1 + c2x+ λL−1 f2 (x)− 2hL−1

∞
∑

n=0

An

− k2 L−1 f1 (x)

∞
∑

n=0

yn. (7)

From Eq. (7), the iterates defined using the Standard
Adomian Method are determined in the following
recursive way:

y0 = c1 + c2x+ λL−1
f2 (x) ,

yn+1 = −2hL−1
An − k

2 L−1
f1 (x) yn, n = 0, 1, 2, . . . .

and the iterates defined using the Modified Technique [22]
are determined in the following recursive way:

y0 = c1 + c2x,

y1 = λL−1
f2 (x)− 2hL−1

A0 − k
2 L−1

f1 (x) y0,

yn+2 = −2hL−1
An+1 − k

2 L−1
f1 (x) yn+1, n = 0, 1, 2, . . . .

To give a sufficient condition for convergence, we
derive an extension of the fixed point theorems used in
[23] and [24]. To this end, we reformulate (1) as follows:

L y = N y +R y + f (8)

where L is the second derivative operator,R a linear
(possibly) discontinuous operator andN the nonlinear
operator. Applying the inverse operatorL−1 to both sides
of (8)

y = θ + L−1 N y + L−1R y + L−1 f (9)

whereθ is determined by the boundary conditions.
ADM defines the solution byy = lim

n→∞

φn[y], where

φn[y] =
n−1
∑

i=0

yi andy0 = θ + L−1 f .

Theorem 1. Let N be an operator from a Hilbert space
H to itself. Let the problem defined by (8) and (9) have a
unique solutiony. Then, if there is a real constant0 ≤
α < 1 such that‖yn+1‖ ≤ α ‖yn‖ for n = 0, 1, 2, . . . ,
then lim

n→∞

φn[y] = φ.

Proof. It is enough to show that{φn[y]}
∞

n=0
is a Cauchy

sequence inH. We have

‖φn+1[y]− φn[y]‖ = ‖yn+1‖ ≤ α ‖yn‖ ≤ α2 ‖yn−1‖ ≤ · · · ≤ αn+1 ‖y0‖

On the other hand,∀ m,n ∈ N, m > n we have
‖φm[y] − φn[y]‖ =
∥

∥

∥
(φm [y] − φm−1[y]) + (φm−1[y] − φm−2[y]) + · · · + (φn+1[y] − φn[y])

∥

∥

∥

≤
∥

∥

∥
φm[y] − φm−1[y]

∥

∥

∥
+

∥

∥

∥
φm−1[y] − φm−2[y]

∥

∥

∥
+ · · · +

∥

∥

∥
φn+1[y] − φn[y]

∥

∥

∥

≤ α
m

‖y0‖ + α
m−1

‖y0‖ + · · · + α
n+1

‖y0‖

≤
αn+1

1 − α
‖y0‖ .

Therefore, lim
m,n→∞

‖φm[y]− φn[y]‖ = 0 and{φn[y]}
∞

n=0

is a Cauchy sequence which is equivalent inH to converge

to a limit φ : lim
n→∞

φn[y] = φ ∈ H. Thereforeφ =
∞
∑

i=0

yi.

The nonlinear operator is continuous, so we can use
the iterationφn+1[y] = N(y0 + φn[y]) defined by ADM
to write

N(y0 + φ) = N
(

y0 + lim
n→∞

(φn[y])
)

= lim
n→∞

N (y0 + φn[y])

= lim
n→∞

φn+1[y] = φ

i.e.,φ is a solution of (8).

According to this result, it is enough to compute the
quotients

αn =
‖yn+1‖

‖yn‖
, n = 0, 1, 2, . . . (10)

to have guaranteed the convergence of the method if there
is aα = max {‖φn[y]‖}

∞

n=0
, α < 1.
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Table 1

h 3 1 0 0 −1 −1 −4 −4
k 1 9 1 13 1 12 1 8
n 35 34 4 35 11 30 34 16

Table 2

h −1 −2 −2 −3 −3 −4
k 13 11 13 11 13 10
n0 27 17 21 15 19 15

2.1 Linear Problems

In the case of a linear problem we take in (4)
g (y, y′) = y′. In our computations we chooseλ = 1 and
α = β = 0.

2.1.1 Example 1

In this case we take in (4)f1 (x) = 1 and
f2 (x) = H (x− 1), the Heaviside function with jump at
x = 1.

The exact solutiony (x) can be computed by Laplace
Transform techniques. In Table1 we represent the
minimum ordern of the approximation for which the
norm of the error is smaller than10−3 for some values of
(h, k).

Numerical instabilities can arise for some pairs(h, k)
whenk is relatively large. In these cases, the divergence
of the method is manifested by the following behavior.
The approximantsφn (x) approach the solution forn
smaller than a certainn0, then forn ≥ n0 φn (x) has
oscillations at the right side of the discontinuity(x > 1).
Some of these pairs(h, k) are shown in Table 2 and the
numerical instability is represented in Figures 4, 5. These
oscillations dissapear if the computations are carried out
with more precision, e.g.20 or more digits.

In the following Figures 1-6, we represent the exact
solutiony (x) with the symbol⋄ and our approximations
φn (x) ≡ phi[n] (x) with a continuous line.

5cm

Fig. 1: h = 1, k= 9

5cm

Fig. 2: h = -1, k = 12

5cm

Fig. 3: h =-3, k = 8

5cm

Fig. 4: h =-2, k = 12

5cm

Fig. 5: Spurious oscillations for h =-4, k = 12

The exact solutiony (x) for h = k = 1, obtainable by
Laplace Transform techniques is

y(x) = −
1

2
x e2−x +x e1−x +

(

1− x e1−x
)

H(x− 1) .
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In order to analyze the error near the discontinuity, we use
the estimated Local Order of Convergence, which is
defined as follows:

Definition 1.Let φn (x), n = 1, 2, . . . be the successive
approximations to the solutiony(x) of a problem. If the
positive constantsK, p exist such that

K = lim
n→∞

|φn+1 (xi)− y (xi)|

|φn (xi)− y (xi)|
p ,

then we call p the (estimated) Local Order of
Convergence at the pointxi. The constantK is called
Convergence Factor atxi.

In this case, the value ofp is 1.174 at x = 0.9 and
1.169 atx = 1.1. So, they have essentially the same value
on both sides of the discontinuity. Both the exact solution
andφ12 (x) are represented in Fig. 6.

5cm

Fig. 6: h=k=1

2.1.2 Example 2

Again, this is a linear case where we take in (4)

f1 (x) =

3
∑

n=1

δ
(

x−
n

2

)

, f2 (x) = H (x− 1)

whereδ is the Dirac delta function andH(x− 1) is the
Heaviside function with jump atx = 1. In this case, the
exact solution is not available. In Fig. 7 we show two
successive approximationsφ27 (x) andφ26 (x).

2.1.3 Example 3

Now we take in (4)

f1 (x) =
3

∑

n=1

δ
(

x−
n

2

)

, f2 (x) = x+ 1.

In Fig. 8 we show two successive approximationsφ28 (x)
andφ27 (x).

5cm

Fig. 7: h = 2, k = 5

5cm

Fig. 8: h = 2, k = 5

2.1.4 Example 4

In this case we take in (4)

f1 (x) =

3
∑

n=1

δ
(

x−
n

2

)

, f2 (x) = x3

Again, we compare in Fig. 9 two of our approximations
φ26 (x) andφ25 (x).

5cm

Fig. 9: h = 2, k= 5

2.2 Nonlinear Problems

Here we consider two different nonlinearities in (4):
g (y, y′) = yy′ andg (y, y′) = y2, with k = 1 andα = 1,
β = 0.

c© 2017 NSP
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In the first case, the nonlinear term is

N y = g (y, y′) = yy′ =
∞
∑

n=0

An,

and the corresponding Adomian polynomials are [25]:

An =
n
∑

i=0

yn−iy
′

i, n ≥ i, n = 0, 1, 2, . . . .

For the second case, the nonlinear term is

N y = g (y, y′) = y2 =

∞
∑

n=0

An,

and the corresponding Adomian polynomials are [25]:

An =
n
∑

i=0

yn−iyi, n ≥ i, n = 0, 1, 2, . . . .

Now we consider two examples with small and
moderate values of the coefficienth in the nonlinear term
2hg (y, y′), whereg (y, y′) = yy′.

2.2.1 Example 1

In (4) we takef1 (x) = 1 andf2(x) = H (x− 1.7), the
Heaviside function with jump atx = 1.7.

5cm
(a) h = 0.0005,λ = 0.01,

(b) h = 0.0005,λ = 0.01

Fig. 10

wherey [Num] (x) is the numerical solution with a
finite difference method.

2.2.2 Example 2

In (4) we take f1 (x) = δ

(

x−
1

2

)

and

f2(x) = H (x− 1).

5cm

Fig. 11: h=0.0005,λ = 0.01

5cm

Fig. 12: h=0.5,λ = 0

In the following Figures 13 and 14, we represent the
residual error for two consecutive low order
approximations.

5cm

Fig. 13: φ4 (x) , h = 0.0005, λ = 0.01

Our following nonlinear examples 3 and 4 are
intended to show some limitations of the ADM in the
nonlinear discontinuous problems.

c© 2017 NSP
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5cm

Fig. 14:φ5 (x) , h = 0.0005, λ = 0.01

2.2.3 Example 3

We consider some values of the parametersh andλ in the
case g (y, y′) = yy′, with f1 (x) = 1 and
f2 (x) = H (x− 1). The following Table 3 summarizes
the results of applying Theorem 1 to a range of values of
h andλ.

Figures 15 and 16 show clearly a case of divergence,
according to (10), forh = 1 andλ = 1.

5cm

Fig. 15: Plot of
‖yn+1‖2
‖yn‖2

for n = 0, 1, . . . , 18

5cm

Fig. 16: Residual Errorφ19 (x)

2.2.4 Example 4

The results are very similar when we move tog (y, y′) =
y2, leaving the rest as in Example 3 a can be shown in
Table 4.

Figures 17 and 18 show a case of convergence,
according to (10), forh = 10−1 andλ = 1.

5cm

Fig. 17: Plot of
‖yn+1‖2
‖yn‖2

for n = 0, 1, . . . , 18

5cm

Fig. 18

3 Conclusions

To our best knowledge this is the first result on the
application of Adomian Method to BVP’s with these
classes of discontinuities. For some of the Examples
considered in this work it would be difficult to find an
approximate analytical solution with the existing
methods.

TakingL =
d2

dx2
in (6) with the Green function as the

inverse operator, the convergence of the method is worse.

For other choices likeL =
d2

dx2
+ 2h

d

dx
and

L =
d2

dx2
+ k2 in (6) with the Green function as the

inverse operator, we find difficulties in carrying out the
integrations, which makes the method impracticable. In
all previous cases, the results with the Modified

c© 2017 NSP
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Table 3

h 1 10−1 10−2 1 10−1 10−2 1 10−1 10−2

λ 1 1 1 10−1 10−1 10−1 10−2 10−2 10−2

ADM Diverg. Diverg. Conv. Diverg. Diverg. Conv. Diverg. Conv. Conv.

Table 4

h 1 10−1 10−2 1 10−1 10−2 1 10−1 10−2

λ 1 1 1 10−1 10−1 10−1 10−2 10−2 10−2

ADM Diverg. Conv. Conv. Diverg. Diverg. Conv. Diverg. Conv. Conv.

Technique did not differ significantly from those obtained
previously with the Standard Adomian Method.

Moreover, we give a simple result on the convergence
of the method, allowing to simultaneously checking if
convergence holds. As an application, we show some
cases of severe nonlinearity where the method is not
convergent. For these cases we are presently developing a
new and promising form of ADM, with continuation
techniques to be presented in a forthcoming paper.
Preliminary experiments with some Partial Differential
Equations with discontinuous terms confirm that our
results can be extended to this area.
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