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1 Introduction whereN is a nonlinear operatof,is a known function, and
we are seeking the solution satisfying (1). We assume
g thatfor everyf, Eq. (1) has one and only one solution.
The Adomian technique consists of approximating the
solution of (1) as an infinite series

The so called Adomian Decomposition Metho
(ADM) is an analytic approximation to the solution of
linear and non-linear problems which does not require
linearization or perturbation 1[2,3,4]. The main o
objective of this paper is to explore the possibilities of Y= Zyn, (2)
this method in Boundary Value Problems with n=0
discontinuous coefficients and/or driving terms. This is a
field of growing interest in the theory of differential
equations and in many areas of application$,7,8] In i
recent papers910,11,12] the ADM has been applied to Ny=>Y A, 3)
a broad range of BVP’s, but the case of discontinuous n=0
coefficients or discontinuous solutions has not beenyhere A, are polynomials (called Adomian polynomials)
investigated. In 13] an application of ADM is given to o, 4 [1 2 3 4] given by
impulsive Initial Value Problems. In1f] Casasus and
Al-Hayani applied ADM to Initial Value Problems with _1ar N i": \eus —0.1.2
discontinuities. The existence of solutions of boundary ™ "~ pnld\n = Yi —o PEH S
problems with impulse was studied 14 and [16)].

Classical techniques are affected near discontinuitiets, b 1, proofs of the convergence of the ser% y» and
ADM is well suited to deal with these situations. In this =0
paper we analyze the behavior of ADM in the presence of X

discontinuous coefficients and/or driving terms like ;::0 An are given in §,17,18,19,20,21]. Substituting (2)

and decomposing the nonlinear operafcas

Heaviside or Dirac delta functions. and (3) into (1) yields
Let us consider the general functional equation - -
Yn — An - .f
y—Ny=Ff, 1) ,;) ,;)
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Thus, we can identify To give a sufficient condition for convergence, we
yo = f derive an extension of the fixed point theorems used in
' ' [23] and [24]. To this end, we reformulate (1) as follows:

y71+1:An(yOa"'7yn)a n:O,1,2,.... Ly:Ny+Ry+f (8)
Thus all components af can be calculated once thg,

are given. We then define theterm approximant to the where L is the second derivative operatds, a linear

(possibly) discontinuous operator amd the nonlinear
solutiony by ¢, [y] = Z y; or equivalentlyg,, 11[y] = operator. Applying the inverse operafor® to both sides

of (8)
N(yo + ¢nly]) with hm ¢n[ yl =y _1 1 1
y=0+L Ny+L Ry+L"f 9)
) wheref is determined by the boundary conditions.
2 ADM applied to a BVP ADM defines the solution by = lim ¢,[y], where
n—oo

Consider the general BVP:

y' +2hg (y.yf) + K21 (@) y = M (), 0 < 2 < 2
(4) Theorem 1. Let N be an operator from a Hilbert space
H to itself. Let the problem defined by (8) and (9) have a
y(0) =, y(2) = B (5)  unique solutiony. Then, if there is a real constait <
a < 1 such that||y,+1] < aly.|| forn =0,1,2,...,
then lim ¢, [y] = ¢

n—1
dnly] = Z:O yiandyo =60 + L' f.

whereh, k, A\, « andg are real constantg,is a (possibly)
nonlinear function ofy, ¢’ and f,, f» are functions with
some discontinuity.

Applying the decomposition method as ih,2,3,4]
Eq. (4) can be written as

Proof. It is enough to show thafe,[y]},—, is a Cauchy
sequence il. We have

[6n+1ly] = Snlylll = llyns1ll < @llynll < &2 lyn-all < - < @™ lyoll
Ly=Af2(z) =20 Ny —k*fi ()y,  (6) g .
) On the other hand/ m,n € N, m > n we have
- _
whereL, = is the linear operator al y = g (v,v’) Iom ] = onlulll =
[(@mlv] = Sm—108D) + (bm—11v] = Sm—alv]) + - + (dpp1lu]l — dnluD]
is the nonhnear operator. Operating on both sides of Eq.
(6) Wlth the inverse operator OfL (namely < o0 - 6p 1t + [om 1000 — ot =+ [onp1lol — ntul
= [y Jy []dzdz) yields
< a™ lyoll + ™ Hlygll + - + ™yl

y(z) = ci4com+ AL o (:75)—2hL_1 Ny—k2 LA (z) vy,

wherecy, ¢y are constants of integration evaluated from
the given conditions (5).
Upon using (2) and (3) it follows that

a"+1
llyoll -
—a

IN

Therefore, Tim [|gm[y] — éu[y]l| = 0 and{nly]};2,
is a Cauchy sequence which is equivaleriito converge

toalimité : lim ¢,[y] = ¢ € H. Thereforep = i Yi-
—

Zyn—cl—i—ch—i—/\L fo(x) — 2R L~ 1ZA nee . . i=0
o = The nonlinear operator is continuous, so we can use

- the iterationg,,1[y] = N(yo + ¢n[y]) defined by ADM
_ k2 L—l fl ({E) Z Un. (7) to write

N(yo+ ¢) = N (yo + lim (pn2
From Eq. (7), the iterates defined using the Standard (wo ) <y0 "—’OO( [y]))

Adomian Method are determined in the following = lim N (yo + ¢n [y])
recursive way: .
= lim =
yo =c1+cx+ AL fa (), Jim iy = ¢
i.e., ¢ is a solution of (8). O
Yni1 = —2h L A, — KL fi (@) y, n=0,1,2,... . ¢ ®)
and the iterates defined using the Modified Techni@2 | According to this result, it is enough to compute the
are determined in the following recursive way: quotients
= —+ s
Yo = C1 + C2x = ||ﬁn+ﬁ” —0,1,2,... (10)
y1 = AL fo(z) — 2R L™  Ag — 2L 1 (2) yo, o ,
to have guaranteed the convergence of the method if there
Yn+2 = —QhL_lAn+1—k}2L_1 fl (l‘)yn+1, n=0,1,2.... is aa:max{”qﬁn[y]ﬂ}zozo,a < 1.
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Table 1

h 3 1 0 0 -1 —-1| -4\ -4
k 1 13 1 12 1 8
n|3|34|4)|35 | 11 30 34 16

—_

Table 2
h -1 | -2 -2|-3|-3]| —4
k 13 11 13 11 13 10
no 27 17 21 15 19 15

2.1 Linear Problems

In the case of a linear problem we take in (4)
g (y,y’) = v'. In our computations we choose= 1 and
a=p=0.

2.1.1 Example 1

In this case we take in (4)f1(z) = 1 and
f2(x) = H(x — 1), the Heaviside function with jump at
r=1.

The exact solutiory (x) can be computed by Laplace
Transform techniques. In Tablé we represent the
minimum ordern of the approximation for which the
norm of the error is smaller thard—3 for some values of
(h, k).

Numerical instabilities can arise for some pdiksk)
whenk is relatively large. In these cases, the divergence
of the method is manifested by the following behavior.
The approximantsp,, () approach the solution fon
smaller than a certaing, then forn > ng ¢, (z) has
oscillations at the right side of the discontinuity > 1).
Some of these pairg, k) are shown in Table 2 and the
numerical instability is represented in Figures 4, 5. These
oscillations dissapear if the computations are carried out
with more precision, e.@0 or more digits.

In the following Figures 1-6, we represent the exact
solutiony (x) with the symbok and our approximations
¢n (x) = phi[n] (z) with a continuous line.
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Fig.1:h=1,k=9
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Fig.2:h=-1,k=12
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Fig.3:h=-3, k=8
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Fig. 4:h=-2, k=12

0.00722

.0072
0.00718:
000716
000714
000712

71

11 112 114 116 118 12

oooooo

5cm

Fig. 5: Spurious oscillations for h =-4, k = 12

The exact solutiony (x) for h = k = 1, obtainable by
Laplace Transform techniques is

1
y(z) = —5% e hze T4 (1—ze ") H(z—1).
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In order to analyze the error near the discontinuity, we use

the estimated Local Order of Convergence, which is
defined as follows:

Definition 1.Let ¢,, (x), n = 1,2,... be the successive
approximations to the solutiop(z) of a problem. If the
positive constant&’, p exist such that

|¢n+1 (xz) —Y (9Cz)|

"

K=l
no00 [ (35) — y (2:)

then we call p the (estimated) Local Order of

Convergence at the point;. The constantk is called
Convergence Factor at;.

In this case, the value qf is 1.174 atx = 0.9 and
1.169 atx = 1.1. So, they have essentially the same value
on both sides of the discontinuity. Both the exact solution
and¢q, () are represented in Fig. 6.

ooooo

5cm

2.1.2 Example 2

Again, this is a linear case where we take in (4)

f1<x>:i6(x—§),f2<x>=H<x—1>

where¢ is the Dirac delta function anH (x — 1) is the
Heaviside function with jump at = 1. In this case, the
exact solution is not available. In Fig. 7 we show two
successive approximations; (z) andegg ().

2.1.3 Example 3

Now we take in (4)

f1<w>=i5(w—§),f2(x>:x+1.

n=1

In Fig. 8 we show two successive approximatigns ()
andgaz ().
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oooooo phi27x)
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Fig. 7:h=2,k=5
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2.1.4 Example 4

In this case we take in (4)

fl(ar)=23:5(

n=1

x—g),fg(x)=x3

Again, we compare in Fig. 9 two of our approximations

¢26 ($) and¢25 ({,U)

5cm
Fig.9:h=2,k=5

2.2 Nonlinear Problems

Here we consider two different nonlinearities in (4):

(y,y') = yy' andg (y,y') = y?, withk = 1 anda = 1,
0.

g
B
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In the first case, the nonlinear term is 2.2.2 Example 2
Ny=9.y)=yy ZOA”’ In (4) we take fi(z) = ¢ (a: - 5) and

=H(x—1).
and the corresponding Adomian polynomials are [25]: f2(@) (z=1)

n
Ay =3 Yn—iy;,n>14,n=0,1,2,....
=0

For the second case, the nonlinear term is 08
0.6

04

o0
Ny=guy)=y"=>_ An, 0
n=0

and the corresponding Adomian polynomials are [25]: ey - 7 ]
5cm

n
An — Z Yn—ili, N > i, n = 07 1’ 27 o Flg 11: h=0.0005\ = 0.01

=0

Now we consider two examples with small and
moderate values of the coefficielmin the nonlinear term

2hg (y,y'), whereg (y,y') = yy'.
2.2.1 Example 1

In (4) we takef; (z) = 1 and fa(z) = H(z — 1.7), the
Heaviside function with jump at = 1.7.

5cm

Fig. 12: h=0.5\ = 0

"" In the following Figures 13 and 14, we represent the
o2 residual error for two consecutive low order
L R approximations.
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(b) h=0.0005) = 0.01 Fig. 13: ¢4 (z), h = 0.0005, A = 0.01

Fig. 10
Our following nonlinear examples 3 and 4 are

wherey [Num] (x) is the numerical solution with a intended to show some limitations of the ADM in the
finite difference method. nonlinear discontinuous problems.
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2.2.4 Example 4

* The results are very similar when we movegtQy, y') =

200 y?, leaving the rest as in Example 3 a can be shown in
Table 4.

tels Figures 17 and 18 show a case of convergence,
according to (10), foh = 10~ ! and\ = 1.

b [ i 15 2
5cm *

Fig. 14: ¢5 (x), h = 0.0005, A = 0.01

2.2.3 Example 3

We consider some values of the parameteasid \ in the
case g(y,y') = wy, with fi(x) = 1 and
fa(x) = H(x —1). The following Table 3 summarizes
the results of applying Theorem 1 to a range of values of
h and.

Figures 15 and 16 show clearly a case of divergence,
according to (10), foh = 1 andX = 1.
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Fig. 15: Plot of ”ﬁ“i”? forn=0,1,...,18
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Fig. 17: Plot of o111 forn =0,1,...,18
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Fig. 16: Residual Errokp1g (z)

3 Conclusions

To our best knowledge this is the first result on the
application of Adomian Method to BVP’s with these
classes of discontinuities. For some of the Examples
considered in this work it would be difficult to find an
approximate analytical solution with the existing
methods.

. d> . :
TakingL = ) in (6) with the Green function as the
X
inverse operator, the convergence of the method is worse.

2
For other choices likeL = d— + 2hi and
) dx? dx

d . . .
L = ) + k2 in (6) with the Green function as the
€Z

inverse operator, we find difficulties in carrying out the
integrations, which makes the method impracticable. In
all previous cases, the results with the Modified
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Table 3
h 1 1071 1072 1 1071 1072 1 1007 ] 1077
A 1 1 1 1071 1071 1071 1072 1072 ] 10°°
ADM | Diverg. | Diverg. | Conv. | Diverg. | Diverg. | Conv. | Diverg. | Conv. | Conv.

Table 4
h 1 107" ] 1072 1 107" [ 1072 1 1077 [ 1072
A 1 1 1 1071 100" [ 100" ] 107 [ 1077 | 1077
ADM | Diverg. | Conv. | Conv. | Diverg. | Diverg. | Conv. | Diverg. | Conv. | Conv.

Technique did not differ significantly from those obtained [14] Luis CasasUs, Waleed Al-Hayani, Appl. Math. Comp@tL 1
previously with the Standard Adomian Method. 245-251 (2002).

Moreover, we give a simple result on the convergence15] P. W. Eloe, J. Henderson, Dyn. Contin. Discret. Imp.tSys
of the method, allowing to simultaneously checking if 4, 285-294 (1998).
convergence holds. As an application, we show somd16] P. W. Eloe, M. Sokol, Dyn. Syst. Appl. 7, 441-449 (1998).
cases of severe nonlinearity where the method is notl7] K. Abbaoui, Y. Cherruault, Math. Comput. Modelling 28
convergent. For these cases we are presently developing a__ (5), 103-109 (1994).
new and promising form of ADM, with continuation 18] EO ?Egg‘;‘igg\gfhe”“amt' Comput. Math. Appl. 29 (7),
techniques to be presented in a forthcoming paper, - =0 :
Prelim?nary experimpents with some Partial Diffgre?ntfal [19] K. Abbaoui, Y. Cherruault, Math. Comput. Modelling 20

. . . - . (9), 60-73 (1994).
Equations with discontinuous terms confirm that Our[20] Y. Cherruault, G. Adomian, Math. Comput. Modelling 18

results can be extended to this area. (12), 103-106 (1993).
[21] S. Guellal, Y. Cherruault, Int. J. Biomed Comput. 36322
228 (1994).
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