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Abstract: The framework for analog-to-information conversion (AIC) as an alternative to conventional ADC is inspired by the recent
theory of Compressed Sensing (CS). Both of them require that the inputsignal has a sparse representation in some domain. But
mostly, the signals in our daily lives are approximately sparse ones. The modified analog-to-information conversion (MAIC) and a new
approximately sparse signal reconstruction algorithm are proposed. The contour of the input real-time streaming signal is pre-extracted
and the details are compressed, and then adaptive piece-wise basis pursuit (APBP) algorithm is used to reconstruct the input precisely.
The validity of the MAIC framework and APBP algorithm is demonstrated. Asis shown in the simulation, the mean square error of
APBP reconstruction in the MAIC framework is of the order of about 10−14
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1 Introduction

Recent theory of compressed sensing [1]-[4] (CS)
proposed by Donoho, Emmanuel J. Cands, etc. in 2004 is
a brand-new sampling theory compared with traditional
one (Shannon’s sampling theorem).

CS is only oriented to data compression now. The
sampling process often used in the CS defeats one of the
primary purposes of it, which is avoiding high rate
sampling. Whether we can just directly measure the
information that will not end up being thrown away
during analog to digital conversion is the research focus.

Another practical approach to CS, which avoids high
rate sampling, has been presented [5,6], and the name
analog-to-information conversion (AIC) has been
proposed. Generalizing the CS theory to continuous-time
sparse signals, AIC measures the analog compressible
signal at a low rate, compresses and digitizes signal
coincidentally. At the receiving end, aℓ1 norm
minimization is solved to recover the original signal.

However, true signals in our daily lives are always not
absolutely sparse. If the coefficients of the signal in some
domain (e.g. wavelet) attenuate exponentially, the signal
is compressible and approximately sparse. Because the
whole CS theoretical fundament is based on the signal

absolute sparsity, in fact, the lack of sparsity results in the
poor performance of signal recovery even complete
failure.

To reconstruct approximately sparse signal in
compressed sensing, the method of ASL0 (smoothedℓ0
norm with analysis) is proposed based on analysis model
and SL0 [7]. Analysis approach can avoid the
accumulative errors caused by synthesis approach, and
the smoothedℓ0 norm makes the optimization process
simpler. An analog signal measured by a number of
parallel branches of mixers and integrators (BMIs) is
compressed in the meantime [8]. The segmented
compressed sampling (CS) method for AIC is proposed.

In this paper, a modified AIC (MAIC) structure and a
new approximately sparse signal reconstruction algorithm
is proposed. Firstly, the contour of the original signal is
extracted at a low rate. Secondly, the detail of signal
multiplies by transformation matrix and then is measured
by conventional AIC. Last but not least, adaptive
piece-wise basis pursuit (APBP) algorithm is used to
reconstruct the detail information of the original signal.
Contour pre-extraction, signal effectivity detection and
some other techniques are introduced in recovery, and the
simulation displays the excellent performance of
MAIC-APBP reconstruction.
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2 Modified Analog-to-Information
Conversion

The structure of the MAIC and its reconstruction is
shown in Fig.1. Firstly, the contour of the original signal
a[n] is extracted by low rate ADC, and compressing was
applied to measuring only fine scale properties (detail
information) of the signald [m]. Secondly, the detail of
signal multiplies by transformation matrixΨΨΨ and then is
measured by conventional AIC. The detail measurements
and the contour are encoded for next transmitting or store,
and the process of data acquisition is complete. Last but
not least, APBP algorithm is used to reconstruct the detail
information of the original signal. Adding by signal
contour, reconstruction signal ˆx(t) is acquired. Because
of the contour sampling rate is different from the detail
one, the interpolator is supposed to be used to match them
to each other.

As is shown in the structure of the MAIC,ΨΨΨ andΨΨΨT

are some orthogonal sparse transform (e.g. Fourier, DCT,
etc.) matrix and the inverse one. Assuming that T is the
transform operator,ΨΨΨ = T(EEE) whereEEE is a N×N unit
matrix andN is the length of each processing frame. The
components in each row ofΨΨΨ are multiplied by the input
signal which share the clock with the PN series, and the
product is held until next rising edge of the clock. The
circuit design of the multiplier and integrator of this kind
is discussed in [9].

In the structure of MAIC, the input is an analog signal
and the matrixΨΨΨ is pre-stored in the memory. Once the
clock rising edge comes, the sum of products made by
multiplying the elements in each row ofΨΨΨ (ψψψ i,·) and the
signal value in that time is modulated by PN series. Every
frame consists ofN points and the time interval of each
point isT1. It can be expressed as

β (τ) |iT = βi =
N

∑
n=1

ψi (n) ·d(t) |t=nT1 (1)

the detail information measurements in one frame

d [m] =
〈

β (τ) pc (τ) , h∗ (t − τ)
〉

|t=mT2

=

∫ +∞

−∞
β (τ) pc (τ)h(t − τ)dτ |t=mT2 ,m∈ [1,M]

(2)
whereT2 is the sample interval of ADC2 andM is the
number of measurements in a frame. Substituting for
β (τ) in (1), the relations below are obtained.

d [m] =
N

∑
n=1

d(t) |nT1 ·
∫ +∞

−∞
pc (τ) ·ψi (n) ·h(mT2− τ)dτ

and
dddm = ΦΦΦm,ndddn (3)

in matrix format (the indexi andτ are correlated), where

ΦΦΦm,n =
∫ +∞

−∞
pc (τ) ·ψi (n) ·h(mT2− τ)dτ ,

m∈ [1,M],n∈ [1,N]

(4)
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Fig. 1: The structure of MAIC based on contour pre-exaction

is the measurement matrix as an analog system.
The extended measurement matrix in (4) satisfies the

RIP [10].
In the following section, we will improve the

algorithm of AIC signal reconstruction by introducing
signal effectivity judgment, contour protection and detail
sparsifying.

3 Adaptive Piece-wise Basis Pursuit

3.1 The Principle of Adaptive Segmentation

An analog signal measured by a number of parallel BMIs
is first segmented in time into M segments uniformly [8].
In this paper, different from former ones, signal
segmentation depends on the coarse contour information
and the signal effectivity which defines whether the signal
contains useful information or only noise is judged at the
same time. Take voice signal acquisition for example, the
speaker’s voice is an effective signal and the interval
among his voice is not. In general, the input is usually a
real-time streaming signal with unknown effectivity and
the MAIC can be always continuing theoretically, so this
kind of signal should be separated into several pieces to
reconstruct live. The MAIC must work online rather than
offline like CS processing.

In this paper, we detect the signal effectivity and
segment the detail measurements into K-sparse ones
through its contour information. The algorithm schematic
diagram is shown as Fig.2.

Before segment, the contour differential between
current value and previous one is calculated. The
difference is zero (or very tiny) means it is a breathing
space and the frame can be lengthened without increasing
the sparsity, while the difference is nonzero implies the
signal is effective and the detail measurements are
supposed to be segmented once the number of these
nonzero differentials reach a certain value. Associated
with detail segment, the iteration which is a PH
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Fig. 2: The schematic diagram of APBP algorithm

process[11] (proposed by Powell and Hestenes) is applied
to global optimization of sparse signal reconstruction
under BP principle, and adaptive piece-wise basis pursuit
algorithm is proposed.

3.2 Adaptive Piece-wise Basis Pursuit
Algorithm

The principle of BP is to find a representation of the signal
whose coefficients have minimalℓ1 norm [12]. Formally,
one solves the problem

min‖βββ‖1 subject to
∥

∥

∥
dddm−ΦΦΦm,nΨΨΨ T

k,nβββ n

∥

∥

∥

2

2
6 δ (5)

Let AAACS= ΦΦΦm,nΨΨΨT
k,n be the measurement matrix of sparse

coefficientsβββ n.
Input: Contour samplesa[n], detail measurements

d [m] and measure matrixΦΦΦm,n.
Output: The estimation of signal sparse coefficients

β̂ββ n.
Step 0(Initialization): Segment detail measurements,

preset βββ 0 ∈ R
n, λλλ 1 ∈ R, σk > 0, 0 6 ε << 1, ϑ ∈

(0,1) , η > 1. Letk := 1.
Step 1(Solve Sub-problem): Solve the minimum point

βββ k of the unconstrained minimization

minH (βββ ,λk,σk)=min
{

‖βββ‖1−λ T
k ·h(βββ )+

σk

2
‖h(βββ )‖2

2

}

(6)
with the initial valueβββ k−1 and

h(βββ ) =
∥

∥

∥
dddm−AAACSβββ n

∥

∥

∥

2

2
−η .

Step 2(Check Termination Condition): Ifh(βββ k) 6 ε,
the iteration stops and exportsβββ k as the approximately
minimum point of the minimization, or else go toStep 3.

Step 3 (Renew Penalty Parameter): If
∥

∥

∥
AAACSβββ k−dddm

∥

∥

∥

2

2
> ϑ

∥

∥

∥
AAACSβββ k−1−dddm

∥

∥

∥

2

2
, let σk+1 := ησk,

or elseσk+1 := σk.
Step 4 (Renew Multiplier Vector): Let

λk+1 = λk−σkh(βββ ) andk := k+1. Go toStep 1.
PH process is a global optimization of sparse signal

reconstruction by introducing Lagrange function and
proper penalty function. By contrast, the augmented

objective function of previous penalty function algorithm
under BP principle becomes more and more ill-posed
when penalty parameterσk →+∞.

3.3 Theoretical analysis of APBP

There is a connection between BP and LP, and the BP
problem (5) can be equivalently reformulated as a
perturbed linear program defined in terms of a variable
x∈ R

p in the standard form [12]

min f (xxx) subject to h(xxx) = 0,

specifically

mincccTxxx subject to ‖AAAxxx−bbb‖2
2 = η , xxx> 0 (7)

by making the following translations:

p⇔ 2N, AAA⇔
(

AAACS,−AAACS
)

, bbb⇔ dddm, ccc⇔ (111,111)T
, xxx⇔

(

uuu

vvv

)

, βββ = uuu−vvv, η is the relaxation factor which change

inequality constraints into equality ones.
Hence the solution of (5) can be obtained by solving an

equivalent perturbed linear program. Perturbed LP is really
quadratic programming, but it retains a structure similar to
LP. To prove the validity of APBP algorithm, the KT point
(x∗,λ ∗) of equality constraint optimization (7) should be
discussed.

Theorem 1.The Kuhn-Tucker point(xxx∗,λ ∗) of equality
constraint optimization (7) satisfies the 2nd order
sufficiency condition, that is,∇L(xxx∗,λ ∗) = 000 and any
000 6= d ∈ R

2N which satisfies∇hi (xxx∗)
T d = 0 makes

dT∇2
xxL(xxx

∗,λ ∗)d > 0.

Proof. The objective function and constraint condition of
optimization (7) are twice continuously differentiable
( f ′′ (xxx)≡ 0).

According to the definition, KT point(xxx∗,λ ∗) satisfies
∇xL(xxx∗,λ ∗) = 000, i.e., ∇ f (xxx∗)− λ ∗∇h(xxx∗) = 000 and xxx∗

meet the constraint condition thath(xxx∗) = 0.

Obviously,∇L(xxx∗,λ ∗) =

[

∇xxxL(xxx∗,λ ∗)
−h(xxx∗)

]

= 000.

∵ h(xxx) = ‖AAAxxx−bbb‖2
2−η = ‖AAAxxx‖2

2−2bbbTAAAxxx+‖bbb‖2
2−η

∴ ∇2‖AAAxxx‖2
2 = 2AAATAAA, ∇h(xxx) = ∇‖AAAxxx‖2

2 − 2AAATbbb,
∇2h(xxx) = ∇2‖AAAxxx‖2

2 = 2AAATAAA
∵ ∇2

xxxxxxL(xxx,λ ) = ∇2 f (xxx)−λ∇2h(xxx) =−2λAAATAAA
∴ dddT∇2

xxxxxxL(xxx
∗,λ ∗)ddd =−2λdddTAAATAAAddd =−2λ ∗ ‖AAAddd‖2

2

Because of‖AAAddd‖2
2 > 0, ddd 6= 0, the decision rule

dddT∇2
xxxxxxL(xxx

∗,λ ∗)ddd > 0, if λ ∗ < 0,AAAddd 6= 000.
In summary, The Kuhn-Tucker point(xxx∗,λ ∗) ,λ ∗ < 0

of equality constraint optimization (7) satisfies the 2nd

order sufficiency condition.
According to literature [11], we know that if

Kuhn-Tucker point (xxx∗,λ ∗) satisfies the 2nd order
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sufficiency condition,xxx∗ is the rigid local minimum of
augmented objective functionH (xxx,λ ∗,σ) (defined in
(6)). Because the solution of (5) can be obtained by
solving optimization (7), the validity APBP algorithm is
proved.

4 Simulation Results and Discussion

To verify the effectiveness of the MAIC and APBP
reconstruction algorithm, we use a group of signals
(sparse and approximately sparse ones) to simulate in
Matlab/Simulink environment. This section also draws a
reconstruction comparison among several typical
algorithms, such as CoSaMp[13], OMP[10,14], CVX[15]
(internally using SeDuMi), Simplex and Interior-point.

The most signals in our daily lives are not time sparse,
and they may be approximately sparse in some
transformation domain. The recovery performance of
approximately sparse signal sampled by MAIC is
checked.

Fig.3 describes the situation in dimensionN = 256
and the sparsity levelK = 10. It shows the Mean Square
Error as a function of measurement rate that the ratio of
measurements amount to total amount. Each curve
represents a different reconstruction algorithm. As
expected, when the ratio increases, the MSE between the
reconstruction signal and the original one decreases, and
under the same ratio, the MSE of MAIC is lower than that
of AIC. The result may not very satisfactory, because the
MSEs are larger than 10−4 even MAIC is used.

Fig.4 shows the MSEs of MAIC reconstruction versus
the ratio of the number of measurements to the number of
whole frame points (N = 256). The results are shown for
three different sparsity levels (K) of 15, 30 and 45. It can
be seen from the figure that better recovery quality is
achieved by using the APBP algorithm as compared to
the CVX optimization toolbox, and the MSEs are all less
than 10−10, i.e., the signal is reconstructed precisely. As
expected, the recovery performance in the case of the low
sparsity is slightly worse than that in the case of the high
sparsity. The number of measurements had better be
treble the sparsity levelK, obviously, if M < K, the
reconstruction will be failure.

5 Conclusions

A modified analog-to-information conversion structure
and a new approximately sparse signal reconstruction
algorithm are proposed. The contour of the original signal
is pre-extracted and the detail of signal multiplies by
transformation matrix and then is measured by
conventional AIC. To reconstruct the signal, adaptive
piece-wise basis pursuit is used. As is shown in the
simulation, APBP reconstruction in the MAIC framework
can be applied to the signal whether it is a time-sparse
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Fig. 3: Recovery comparison of the approximately sparse signal
based on several typical algorithms: MSE versus M/N
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Fig. 4: Recovery comparison of the approximately sparse signal
based on APBP and CVX: MSE versus M/N

one or approximately sparse one in some transformation
domain and the mean square error of the recovery is of
the order of about 10−14. The validity, effectiveness, and
excellent performance of the proposed MAIC framework
and APBP algorithm are also justified based on our
simulation results.
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