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Abstract: Sparse coding theory demonstrates that the neurons in primary visual cortex form a sparse representation of natural scenes
in the viewpoint of statistics. In this paper, we propose a novel sparse coding model based on structural similarity for natural image
patch feature extraction. The advantage for our model is to be able to preserve structural information from a scene, which human visual
perception is highly adapted for. Using the proposed sparse coding model, the validity of image patch feature extraction is testified.
Furthermore, compared with standard sparse coding model, the experimental results show that the quality of reconstructed images
obtained by our method outperforms standard sparse coding model.
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1 Introduction

The computation capabilities and limitations of neurons,
and the environment in which the organism lives, are two
fundamental components driving the evolution and
development of human perceptual systems. At the same
time, the use of environmental constraints is most clearly
evident in sensory systems, where it has long been
assumed that neurons are adapted to the signals to which
they are exposed. Because not all signals are equally like
each other, it is natural to assume that perceptual systems
should be able to best process those signals that occur
most frequently. Thus, it is the statistical properties of the
environment that are relevant for sensory processing.

Efficient coding hypothesis [1] provides a quantitative
relationship between environmental statistics and neural
processing. Barlow hypothesized that the role of early
sensory neurons is to remove statistical redundancy in the
sensory input. Furthermore, Olshausen and Field put
forward a model, called sparse coding (SC), which made
the variables (or neurons stimulated by the same stimulus
in the neurobiology.) be activated (i.e., significantly
non-zero) only rarely [2,3]. Vinje’s experimental results
validated the sparse properties of neural responses under
natural stimuli conditions [4]. Therefore sparse coding
theory was broadly investigated [5,6,7,8,9,10,11,12].

Objective methods for assessing perceptual image
quality traditionally attempted to quantify the visibility of
errors (differences) between a reconstructed image and an
actual image in SC model and improved models. The
simplest and most widely used full-reference quality
metric is the mean squared error (MSE), computed by
averaging the squared intensity differences of
reconstructed and actual image pixels, along with the
related quantity of peak signal-to-noise ratio (PSNR).
These are appealing because they are simple to calculate,
have clear physical meanings, and are mathematically
convenient in the context of optimization. But they are not
very well matched to perceived visual quality [13,14].

In this paper, we propose structural similarity sparse
coding (SS SC) employing a novel quality assessment
method that takes advantage of known characteristics of
the human visual system (HVS). Under the assumption
that human visual perception is highly adapted for
extracting structural information from a scene, we
introduce structural similarity for quality assessment
based on the degradation of structural information.

The rest of this paper is structured as follows. Section
2 describes the SC model and structural similarity
measure. In Section3 we propose SSSC model and
image patch feature extraction approach using SSSC
model. Experiment results are reported and analyzed in
Section4. Finally, we conclude the paper in Section5.
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Fig. 1: Linear superposition model

2 Sparse coding model and structural
similarity

A perceptual system is exposed to a series of small image
patches, drawn from one or more large images, just like the
classic receptive field (CRF) of neurons. Imagine that each
image patch is represented by the vectorI and has been
formed by the linear combination ofN basis functions. The
linear superposition model of image is shown in Figure1.
In this model, images are assumed to be composed of a
linear superposition of basis functions,φi, mixed together
with amplitudessi.

The basis functions form the columns of a fixed
matrix, A. The weight of this linear combination is given
by a vector,S. Each component of this vector has its own
associated basis function, and represents a response value
of a neuron in vision system. The linear synthesis model
is therefore given by:

I = AS =
M

∑
i=1

siφi. (1)

In a cortical interpretation, theS models the responses
of (signed) simple cells, and the column of matrixA
closely related to their CRF’s.

2.1 Sparse coding model

In an influential paper, Olshausen and Field applied two
criteria to seek the optimal basis functions and the
coefficients [3]. One of the criteria is how well the code
describes the input. It can be measured by the squared
error between the input and its reconstruction by the
network:

Error(A,S) =
N

∑
i=1

[Ii −
M

∑
j=1

s jφi, j]
2. (2)

As an additional criteria for sparse coding, Olshausen
and Field proposed the ”sparseness” cost for seeking

sparse codes. The sparseness cost function is given by

Sparseness(S) =
M

∑
i=1

β (
si

σ
) (3)

where σ is a scaling constant, andβ (x) is a nonlinear
function such as|x|, exp(−x2), and log(1+ x2). The cost
sparseness favors the codes which consist of minimal
number of non-zero coefficients. As a result, the network
seeks the coefficients which are statistically independent
each other over an ensemble of input data. In the case that
the data contains some forms of higher-order statistical
structure as found in natural images, it can be captured by
using this sparseness cost function. So the search for a
sparse code can be formulated as an optimization problem
by constructing the following cost function to be
minimized:

E(A,S) =
N

∑
i=1

[Ii −
M

∑
j=1

s jφi, j]
2+λ

M

∑
i=1

β (
si

σ
). (4)

2.2 Structural similarity

Natural image signals are highly structured: their pixels
exhibit strong dependencies, especially when they are
spatially proximate, and these dependencies carry
important information about the structure of the objects in
the visual scene [14].

The HVS is highly adapted to extract structural
information from the visual scene. Therefore, a
measurement of structural similarity should provide a
good approximation to perceptual image quality. Wang
and Bovik et al. [13] developed a Structural Similarity
Index and demonstrate its promise through a set of
intuitive examples, as well as comparison to both
subjective ratings and state-of-the-art objective methods
on a database of images compressed with JPEG and
JPEG2000. Shown in Figure2 is an example. It is
comparison of ”Boat” images with different types of
distortions, all withMSE=210. (a) Original image. (b)
Contrast-stretched image,SSIM=0.9168. (c) Mean-shifted
image, SSIM=0.9900. (d) JPEG compressed image,
SSIM=0.6949. (e) Blurred image,SSIM=0.7052. (f)
Salt-pepper impulsive noise contaminated image,
SSIM=0.7748.

Supposex and y are two nonnegative image signals,
which have been aligned with each other. The structural
similarity between signalsx andy is given by

SSIM(x,y) =
(2µxµy +C1)(2σxy +C2)

(µ2
x +µ2

y +C1)(σ2
x +σ2

y +C2)
(5)
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Fig. 2: Boat images with different distortions with different types
of distortions, all withMSE=210

where

µx = x =
1
N

N

∑
i=1

xi, µy = y =
1
N

N

∑
i=1

yi,

σx = [
1

N −1

N

∑
i=1

(xi −µx)
2]1/2,

σy = [
1

N −1

N

∑
i=1

(yi −µy)
2]1/2,

σxy =
1

N −1

N

∑
i=1

(xi −µx)(yi −µy),

and 0<C1, C2 ≪ 1.

3 Structural similarity sparse coding

On the basis of the Olshausen’s SC model, we propose a
novel sparse coding model based on structural similarity
called SSSC model. Here, we use the minimum
reconstruction error and the sparseness like Olshausen,
but structural similarity for quality assessment between
reconstructed image and actual image is also considered.
As such, the objective function can be constructed as
follows:

E(A,S) = λ1

N

∑
i=1

(Ii − Îi)
2+λ2(1−SSIM(I, Î))

+λ3

M

∑
i=1

β (
si

σ
) (6)

whereI andÎ denotes respectively actual and reconstructed

images,Î =
M
∑

i=1
siφi, φi and si denotes respectively theith

column vector ofA and theith component ofS, λ1,λ2,λ3 ≥
0 is respectively the weights of squared error, structural
similarity and sparseness.

E(A,S) is the sum of three terms: the first term
computes the squared error, which forces the basis
functions, A, to span the input space; the second term
measures how well the code describes the structural
information from the actual image; and the third term
incurs a penalty on the coefficient activities, which
encourages sparse representation.

3.1 Learning algorithm

The goal of efficient coding is to learn the basis functions
that can best account for the structure in images in terms of
statistically independent events. Learning is accomplished
by minimizing Equation (6). The process for minimizing
E(A,S) can be divided into two nested stages. In the inner
stage,E(A,S) is minimized with respect to thesi for a batch
of pattern, holding theA fixed. In the outer stage (i.e., on a
long timescale, over many image presentations),E(A,S) is
minimized with respect to theA.

Let B1 =
N
∑

i=1
(Ii − Îi)

2, B21 = 2µI µÎ +C1, B22 = 2σIÎ +C2,

B23 = µ2
I +µ2

Î
+C1, B24 = σ2

I +σ2
Î
+C2, B3 =

M
∑

i=1
β ( si

σ ), then

∂SSIM(I, Î)
∂ si

=
B21∗B22

B23∗B24
(

1
B21

∂B21

∂ si
+

1
B22

∂B22

∂ si

−
1

B23

∂B23

∂ si
−

1
B24

∂B24

∂ si
)

The inner stage minimization over thesi can be
performed by conjugate gradient method, so thesi is
determined by the differential equation:

∂E(A,S)
∂ si

= λ1
∂B1

∂ si
−λ2

∂SSIM(I, Î)
∂ si

+λ3
∂B3

∂ si
(7)

The outer stage minimization over theA may be
finished by simple gradient descent method. The learning
rule for it is given by

∂ E(A,S)
∂ φi, j

= λ1
∂ B1

∂ φi, j
−λ2

∂ SSIM(I, Î)
∂ φi, j

, (8)

∆φi, j =−η
∂ E(A,S)

∂ φi, j
(9)

whereη is the learning rate.

3.2 Image patch feature extraction using SS SC

Olshausen and Field forcefully argued that the receptive
field is emerged by sparse coding and they applied
successfully a sparseness-maximization network to input
data to testify their theory. Thus, sparse coding technique
can be exploited to perform image patch feature
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Fig. 3: Basis functions learned after training on natural scenes by
SSSC model

extraction. With learned basis functions, image feature
patch extracting is accomplished by minimizingE(A,S)
with respect to thesi for a batch of pattern, holding theA
fixed.

4 Experiment results

In order to test the effectiveness of the SSSC model, we
conduct our experiments on a nature image data set.
Firstly, we must get the input data matrix. Selecting
nature images, which are available on the Internet
http://www.cis.hu-t.fi/projects/ica/data/images/, we
construct the original images sample set. Then, we
sampled randomly subwindows of12× 12 pixels 250000
times from original images, and converted every patch
into one column. Thus, the input data set with the size of
144× 250000 is acquired, here denoted by matrixX.
Consequently, each image patch is represented by a 144
dimensional vector. Secondly, using the updating rules of
A and S in turn, we minimized the objective function
given in Equation (6).

A stable solution was arrived at after 5000 updates
(250000 image presentations) whenη = 0.01, σ = 0.316,
λ1 = 50, λ2 = 10, λ3 = 2.2 andβ (x) = log(1+ x2). Shown in
Figure 3 is a set of 144 basis functions learned after
training on 12×12 image patches extracted from natural
scenes by the SSSC model. The learned basis functions
simply reflects the fact that natural images contain
localized, oriented structures with limited phase
alignment across spatial frequency.

4.1 Image patch feature extraction

We sampled randomly subwindows of12× 12 pixels
10000 times from original images, and converted every
patch into one column. Using the image patch feature
extracting algorithm and 144 learned basis functions
image patch features of the input data set with the size of
144× 10000are extracted. For comparison, we also used
the SC method to extract image patch features from the
same data set, and the experimental results are shown in
Table 1. In Table 1, Avg Sparseness denotes averaged
sparseness cost of reconstructed image patches;Avg Error
denotes averaged squared error between reconstructed
image patch and actual image patch; andAvg SSim denotes
averaged structural similarity between reconstructed
image patch and actual image patch.

Table 1: Comparison of coding capability using different models
Models SC SSSC

Avg Sparseness 8.0153 8.1600
Avg Error 0.0842 0.0753
Avg SSim 0.8542 0.9231

It is easy to see that the SSSC model is promising for
image patch feature extraction. Furthermore, Table1 show
that SSSC model preserves more structural information
than SC model.

It is more important that structural similarity between
reconstructed image patch and actual image patch is
stable in SSSC model. However, in SC model, the
fluctuation range of structural similarity between
reconstructed image patch and actual image patch is wide,
i.e., perceptual quality of some reconstructed image
patches is very poor. Shown in Figure4 is structural
similarity of between reconstructed image patch and
actual image patch in SSSC model and SC model. In SC
model, it’s evident that the fluctuation range of structural
similarity is wider than SSSC.

4.2 Image reconstruction

Four images were selected to reconstruct by SSSC
model, and these images were used widely in the image
processing field. Each image is randomly sampled 5000
times with12×12 pixels to get the data set. Moreover, in
order to find the accurate position of any image patch, we
must remember the positions of each image patch
appeared. Because of sampling randomly, the same pixel
might be found in different image patches. Therefore, we
averaged all reconstructed pixels’ values of one sample
pixel, and used the averaged pixel value as the
approximation of the original pixel.

Actually, because of the computation capabilities and
limitations of neurons, neural responses are sparser than
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Fig. 4: Structural similarity of between reconstructed image
patch and actual image patch

shown in Table1. We extract sparser image patch feature
through increase the weight of sparseness, and then
reconstruct images. Shown in Figure5 are original
images and reconstructed images by different model
under similarAvg Sparseness when responses are sparser,
i.e., Avg Sparseness is smaller. (a-d) Reconstructed
images using SC model. (e-h) Reconstructed images
using SSSC model. (i-l) Original images.
(a) Avg SSim=0.3365,Avg Sparseness=6.6830.
(b) Avg SSim=0.3358,Avg Sparseness=6.7997.
(c) Avg SSim=0.2852,Avg Sparseness=6.7820.
(d) Avg SSim=0.3820,Avg Sparseness=7.6822.
(e) Avg SSim=0.7300,Avg Sparseness=6.6190.
(f) Avg SSim=0.7641,Avg Sparseness=6.7566.
(g) Avg SSim=0.7061,Avg Sparseness=6.7628.
(h) Avg SSim=0.7995,Avg Sparseness=7.6775.

Obviously, reconstructed images using SSSC
preserve more structural information than SC model, and
the quality of reconstructed images of the former
outperforms the latter.

5 Conclusion

In this paper, we proposed a novel sparse coding model
based on structural similarity for extracting natural image
features. Basis functions obtained by our method much
resemble the receptive fields of neurons in primary visual
cortex, which behave clearer localized, oriented,
bandpass. In order to validate performance of our sparse
coding model, we conducted the experiments of image
reconstruction. The experimental results showed that
SS SC model can preserve the original image structural
information as possible as. Furthermore, the structural

similarity of reconstructed image patch using SSSC
model is more stable and greater than using SC model. It
is most valuable that the quality of reconstructed images
by SSSC model outperforms SC model under similar
Avg Sparseness.
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