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Abstract: In this paper, a novel double glowworm swarm co-evolution optimization algorithm based Ĺevy flights is presented.
According to the different colors of light emitted by glowworm swarm, a certain amount of glowworm swarm was divided into two
groups. Ĺevy flights with higher randomness were introduced into one group. Thenthe two groups of glowworm swarm seek the
optimal solution simultaneously and co-evolution for achieving the global optimization. The numerical simulation results show that
double glowworm swarm co-evolution optimization algorithm based Lévy flights has greatly improved than the basic algorithm in
terms of overall and convergence.
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1 Introduction

Swarm intelligence algorithm is derived from the
inspiration of the law of the natural or biological
population. According to its principle and imitating its
own rules, the algorithm was designed for solving the
problems [1]. With the development of computational
intelligence techniques in recent years, some new
biological intelligent algorithm have been proposed, such
as ant colony algorithm, particle swarm algorithm,
cuckoo search, glowworm swarm optimization algorithm,
and so no. The expert of bionics’ research result shows
that, in the nature, glowworms communicate with each
other by releasing luciferin. Glowworms release luciferin
when they are flying, so they can give out fluorescent
light. Glowworms attract others around them by giving
out fluorescent light. The higher the concentration of
fluorescein, the greater the intensity of fluorescence, then
glowworm can be able to attract more other glowworms.

Inspired by the behavior of natural glowworm swarm,
Glowworm Swarm Optimization (GSO) algorithm which
is a novel swarm intelligence algorithm was advanced by
Indian scholars Krishnanand and Ghose in 2005 years [2,
3]. At present, GSO algorithm has been successfully used
in the noise test, simulation of the sensor machine crowd
[4], clustering analysis [5,6], numerical optimization

calculation [7,8], knapsack problem [9], etc. But the basic
GSO algorithm has some shortcomings, such as slow
convergence, low precision and easy to fall into local
optimization. These shortcomings limited the range of
application of GSO algorithm greatly. Based the analysis
of defects in the basic GSO algorithm, this algorithm was
improved and the Ĺevy flights [10,11,12] was used in it,
so double glowworm swarm co-evolution optimization
algorithm based Ĺevy flights was presented.

2 Basic Glowworm Swarm Optimization
Algorithm and Analysis

2.1 The basic GSO

In the basic GSO algorithm, a swarm of glowworms are
randomly distributed in the search space of object
functions. Accordingly, these glowworms carry a
luminescent quantity called luciferin along with them and
they have their own decision domainri

d(0< ri
d ≤ rs). The

glowworms emit light which intensity is proportional to
the associated luciferin and interact with other
glowworms within a variable neighborhood. The
glowworms’ luciferin intensity is related to the fitness of
their current locations. The higher the intensity of
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luciferin, the better the location of glowworm, in other
words, the glowworm represents a good target value.
Otherwise, the target value is poor. A glowwormi
considers another glowwormj as its neighbor if j is
within the neighborhood range ofi and the luciferin level
of j is higher than that of i. In particular, the
neighborhood is defined as a local-decision domain that
has a variable neighborhood rangeri

d bounded by a radial
sensor rangers(0 < ri

d ≤ rs). Each glowworm selects,
using a probabilistic mechanism, a neighbor that has a
luciferin value higher than its own and moves toward it.
That is, glowworms are attracted by neighbors that glow
brighter. In addition, the size of the neighborhood range
of each glowworm is influenced by the quantity of
glowworms in the neighborhood range. The
neighborhood range of the glowworm is proportional to
the density of its neighbors. If the neighborhood range
covers low density of glowworms, the neighborhood
range will be increased. On the contrary, the
neighborhood range will be reduced.

In short, GSO algorithm includes four stages: the
initial distribution of glowworms, Luciferin-update phase,
Movement-phase, Neighborhood range update.

(1) The initial distribution of glowworms phase
The initial distribution of glowworms phase, in other

words, it is initialization phase. Purpose is to make the
glowworms randomly distribute in the search space of
object functions. Accordingly, these glowworms carry the
same intensity luciferin and they have the same decision
domainr0.

(2) Luciferin-update phase
The glowworms’ luciferin intensity is related to the

fitness of their current locations. The higher the intensity
of luciferin, the better the location of glowworm, in other
words, the glowworm represents a good target value.
Otherwise, the target value is poor. In the algorithm of
each iteration process, all the glowworms’ position will
change, and then the luciferin value also follows updates.

At time t, the location of the glowwormi is xi(t),
corresponding value of the objective function at
glowwormi’s location at timet is J(xi(t)), put theJ(xi(t))
into theli(t). li(t) Represents the luciferin level associated
with glowwormi at timet. The formula as follows:

li(t) = (1−ρ)li(t−1)+ γJ(xi(t)) (1)

whereρ is the luciferin decay constant(0 < ρ < 1), γ is
the luciferin enhancement constant.

(3) Movement-phase
At the movement phase, every glowworm selects a

nei-ghbor and then moves toward it with a certain
probability. As the glowwormi’s neighbor need to meet
two requirements: one, the glowworm within the decision
domain of glowwormi; two, the luciferin value is larger
than the glowwormi’s. Glowworm i moves toward a
neighbor j which comes fromNi(t) with a certain
probability, the probability ispi j(t). Using the formula
(2) calculates it:

pi j(t) =
l j(t)− li(t)

∑
k∈Ni(t)

lk(t)− li(t)
(2)

Glowwormi after moving, then the location is updated,
the location update formula is:

xi(t +1) = xi(t)+ st∗
( x j(t)− xi(t)

‖x j(t)− xi(t)‖
)

(3)

wherest is the step size.
(4) Neighborhood range update phase
With the glowworm’s position updating, it

neighborhood range also follow update. If the
neighborhood range covers low density of glowworms,
the neighborhood range will be increased. On the
contrary, the neighborhood range will be reduced. The
formula of neighborhood range update as follows:

ri
d(t +1) = min{rs,max{0,ri

d(t)+β (nt −|Ni(t)|)}} (4)

whereβ is a constant parameter andnt is a parameter used
to control the number of neighbors.

The basic GSO algorithm as follows [1]:
Set number of dimensions= m;
Set number of glowworms= n;
Let S be the step size;

Let xi(t) be the location of glowwormi at timet;
Deploy−agents−randomly;
For i = 1 to n do li(0) = l0;
ri

d(0) = r0;
Set maximum iteration number=iter−max;
While (t < iter−max) do
{

For each glowworm i do:%Luciferin-update phase;
li(t) = (1−ρ)li(t−1)+ γJ(xi(t)); %See (1)
For each glowworm i do:%Movement-phase
{
Ni(t) = { j : di j(t)< ri

d(t); li(t)< l j(t)}
For each glowworm j ∈ Ni(t) do;

pi j(t) =
l j(t)−li(t)

∑
k∈Ni(t)

lk(t)−li(t)
; %See(2)

xi(t +1) = xi(t)+ st∗
(

x j(t)−xi(t)
‖x j(t)−xi(t)‖

)

; % See(3)

j = select−glowworm (−→p );

ri
d(t +1) = min{rs,max{0,ri

d(t)+β (nt −|Ni(t)|)}};
%See(4)

}
t← t +1 :

}.
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2.2 Analysis of the basic GSO algorithm

In the present model of GSO algorithm, each glowworm,
according to the luciferin value, decides to move toward a
neighbor that has a luciferin value higher than its own.
Finally, glowworms are attracted to neighbors with glow
brighter. Glowworms seek the glowworm with the
brightest light through moving toward it. In the present
GSO algorithm, glowworms search in a certain area. If
there are a lot of glowworms in the certain area, each
glowworm have more neighbors which can increase the
number of glowworms that the glowworm must be
researched. This can result in having more time to seek
the optimal solution, that is, slow convergence. If there
are little glowworms in the certain area, each glowworm
has little neighbors which lead to inadequate among
glowworms and not timely collaboration and easy to fall
into local optimization. That is low precision.

In nature, glowworms emit a luminescence through
releasing luciferin. There are different kinds of
glowworms. Because of this, different kinds of
glowworms emit different colors of light. The yellow and
green colors are usually seen. The glowworms with same
color move toward each others. In the present model of
GSO algorithm, this phenomenon is not considered.
Based on this, the strategy that double glowworm swarm
was used. In the Cuckoo Search algorithm, in order to
enhance the randomness of Cuckoo searching the optimal
solution, Cuckoo uses a specified flight way that with
higher randomness-Lévy flights. This flight mode greatly
improved the randomness of Cuckoo searching the
optimal solution. In this paper, Levy flights is applied in
the double glowworm swarm, so the double glowworm
swarm co-evolution optimization algorithm based Lévy
flights (LDGSO) was presented.

3 Lévy Flights

In the Cuckoo Search (CS) algorithm [12], the cuckoo
seeks the nest by the Lévy flights. Cuckoo gains the best
path of looking for the nest by Ĺevy flights. During the
search, the flight path of the cuckoo is a combination by
different length fight path that some long and some short.
There have a small angle between the adjacent flight
paths. The short paths appear with a higher frequency,
while the appearance of longer path is relatively sparse.
This is an optimal search strategy known as Lévy flights.
Actually Lévy flights provided a random walking path.
The random pace comes from a wide range of Lévy
flights. The formal of Ĺevy flights as follows.

X (t+1)
i = X t

i +α⊕Lévy(λ ) (i = 1,2, · · · ,n) (5)

whereX t
i represents the location of the glowwormi at the

time t. ⊕ represents the point to point multiplication.α is
a parameter used to control the seize of steps.L(λ )

represents the random search path of Lévy. In the Cuckoo
Search algorithm, the expression can be approximated
described as follow:

Lévy ∼ u = t−λ
,(1< λ ≤ 3) (6)

whereλ is a constant.

4 Double Glowworm Swarm Co-evolution
Optimization Algorithm Based L évy Flights

4.1 The strategy of the improved algorithm

When using the GSO algorithm optimize the functions,
according to the different colors of light, a certain amount
of glowworm swarm is divided into two groups. The
glowworms with yellow luminescence make up a
sub-population, the glowworms with green luminescence
make up another sub-population. The two groups of
glowworm swarm simultaneously seek the optimal
solution in the search time. One group searches the
optimal solution according to the way of basic GSO;
another group takes the way of Lévy flights to get the
optimal solution.

When reaching a certain number of iterations, the
glowworms of two populations basically converge to the
around of optimal value, then the two populations of
glowworms are seen as two glowworms. Each glowworm
will be seen as the glowworm with the brightest light in
the sub-populat-ion. Next, one glowworm moves toward
another one that has a higher luciferin value. This
collaborative way between two populations is helpful for
glowworms out of local optimum and the speed of
convergence will be improved greatly. According to this
strategy the double glowworm swarm co-evolution
optimization algorithm based Lévy flights (LDGSO) is
designed.

4.2 The steps of the improved algorithm

The steps of double glowworm swarm co-evolution
optimization algorithm based Lévy fights can be
described as follows:

Step 1: Initialize the population: set dimension ism,
the number of glowworms is 2n, step size isst, and so on.

Step 2: According to the different colors of light, a
certain amount of glowworm swarm is divided into two
groups. The size of sub-population isn.

Step 3: Placing the two groups of 2n glowworms
randomly in the search space of the object function.

Step 4:Using the formula (1) put theJ(xi(t)) into the
li(t). li(t) represents the luciferin level associated with
glowworm i at timet. J(xi(t)) represents the value of the
objective function at glowwormi’s location at timet.
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Step 5:Each glowworm selects a neighbor that has a
luciferin value higher than its own to make up theNi(t).

Step 6:Each glowworm using the formula (2) selects
a neighbor.

Step 7: The glowworms of one group move by Lévy
flights and then using the formula (5) update the location
of the glowworms.

Step 8: The glowworms of another group move by
basic GSO and using the formula (3) update the location
of the glowworms.

Step 9:Using the formula (4) update the value of the
variable neighborhood range.

Step 10: Selecting the glowworm with the brightest
light of each sub-population at timet.

Step 11:If reached the specified number of iterations
and do not reached the maximum number of iterations,
one sub-population move toward another. Otherwise,
executing the step (4).

Step 12:If reached the maximum number of iterations,
executing the step (10); otherwise, executing the step (4).

Step 13:Output the results. The end.

5 Experimental Results and Analysis

Environment for running programs of this experiment:
processor: CPU E4500, main frequency: 2.19GHz,
memory: 1.00GB, operating system: Microsoft Windows
XP Professional, Version 2002 Mathematical software for
programming: Matlab 7.0.

5.1 Test Functions

Values of algorithm parameters that are kept fixed for all
the experiments in Table 1. According to the different test
functions, the values of other algorithm parameters take
different values.

Table 1 The values of algorithm parameters

ρ β γ st nt l0 α λ

0.4 0.08 0.6 0.03 5 5 1 -2

Test functions as follows [13]:

f1(x) = 0.5+
((sin(

√

x2
1+ x2

2))
2−0.5)

(1+0.001∗ (x2
1+ x2

2))
2

;

f2(x) =
30

∑
i=1

x2
i ;

f3(x) = 100∗ (x2
i − x2

2)
2+(1− x1)

2;

f4(x) = x2
i −10∗ (cos(2∗π ∗ xi))+10;

f5(x) =
30

∑
i=1

i∗ x2
i ;

f6(x) = 1+
1

4000

30

∑
i=1

x2
i −

30

∏
i=1

cos(
xi√

i
);

f7(x) =
30

∑
i=1

(0.2∗ x2
i +0.1∗ x2

i ∗sin2xi);

f8(x) = (x2
1+ x2

2)
0.25∗ (sin2(50∗ (x2

1+ x2
2)

0.1)+1.0);

Table 2 Test functions

Function Function nameSearch space sizeMinumum

f1(x) Schaffer F6 [-100,100] 0

f2(x) Sphere [-100,100] 0

f3(x) Rosen Brock [-30,30] 0

f4(x) Restringing [-10,10] 0

f5(x)
Axis parallel

[-5.12,5.12] 0
hyper ellipsoid

f6(x) Grievance [-100,100] 0

f7(x) Function 15 [-10,10] 0

f8(x) Schaffer F7 [-100,100] 0

5.2 Experimental results

Experimental results are shown in Table 3, Table 4 and
range Figure 2 to Figure 9. The results of Table 3 and
Table 4 are taken from 10 experiments. Figure 2 to Figure
9 respectively show the optimization results of the basic
algorithm and the improved algorithm to eight test
functions. In the Figures, solid lines represent the basic
GSO algorithm; dotted lines represent the improved GSO
algorithm.

5.3 Experimental result analysis

The data from Table 3 can be drawn that the improved
GSO algorithm is superior to the basic GSO algorithm in
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Fig. 1 The f1(x) convergence cures of the GSO and IGSO

Fig. 2 The f2(x) convergence cures of the GSO and IGSO

Fig. 3 The f3(x) convergence cures of the GSO and IGSO

Fig. 4 The f4(x) convergence cures of the GSO and IGSO

Fig. 5 The f5(x) convergence cures of the GSO and IGSO

Fig. 6 The f6(x) convergence cures of the GSO and IGSO

Fig. 7 The f7(x) convergence cures of the GSO and IGSO

Fig. 8 The f8(x) convergence cures of the GSO and IGSO
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Table 3 Experimental results under different functions

Function Algorithm Optimal valve Wrost value Average value

f1(x)

GSO
5.057416284 6.469566980

1.8609e-004
187655e-005 986108e-004

IGSO
3.019746600 3.927655619

1.3617e-004
796402e-005 168635e-004

f2(x)

GSO
1.282756843 5.777756989

2.0133e-011
401603e-012 937466e-011

IGSO
4.819881950 1.412424004

4.8326e-012
685840e-014 542435e-011

f3(x)

GSO
4.584493371 0.004353462

0.0023
919619e-004 426470

IGSO
1.081526661 5.663705545

2.6732e-004
234373e-004 683880e-004

f4(x)

GSO
2.772885920 6.886615368

8.9155e-007
876433e-009 628668e-006

IGSO
1.033324537 1.029835026

1.6376e-008
047520e-010 145065e-007

f5(x)

GSO
3.206368190 1.320524458

6.9909e-009
292584e-011 972470e-008

IGSO
2.356952193 3.279002228

1.2722e-009
305129e-011 164048e-009

f6(x)

BGSO
2.142730437 7.612799279

3.0680e-012
526552e-014 854698e-012

IGSO
9.880984919 7.542855229

2.3683e-013
163893e-015 303314e-013

f7(x)

GSO
3.367640317 1.800146785

5.2947e-011
619063e-012 306065e-010

IGSO
1.039759602 8.066891419

1.1412e-011
732340e-014 328334e-011

f8(x)

GSO
0.08878537 0.181853623

0.1433
8430453 576050

IGSO
0.04616282 0.12661467

0.0831
3998851 8347334

Table 4 The average number of iterations and the average search
time

Functions f1(x) f2(x) f3(x) f4(x)

The average
GSO 116 124 128 137.7

NO. of iterations IGSO 96 59 144 95

The average
GSO 4.6812 5.0372 4.1716 4.9006

search time IGSO 2.8235 3.0058 2.4109 2.9995

Functions f5(x) f6(x) f7(x) f8(x)

The average
GSO 92 104 106 143.7

NO. of iterations IGSO 56 103 55 59.8

The average
GSO 4.8173 5.4011 4.8562 4.3883

search time IGSO 2.8821 3.3623 3.0479 2.7513

the accuracy. From Table 3 we can see that the accuracy
in the improved GSO algorithm is higher than in the basic
algorithm. The data from Table 4 can be drawn that the
improved GSO algorithm is better than the basic GSO
algorithm in the average number of iterations and the
average search time. So that we can draw the improved
GSO algorithm is superior to the basic GSO algorithm in
the speed of convergence. From Figure 2 to Figure 9: the
convergence map of basic and improved GSO algorithm,
which can prove the improved GSO algorithm is better
than the basic GSO algorithm. The experimental results
show that the double glowworm swarm co-evolution
optimization algorithm based Lévy flights is superior to
the basic GSO algorithm.

6 Conclusion

In this article, firstly, the model of the basic glowworm
swarm optimization algorithm has been introduced and
analyzed at some length. The analysis shows that the
basic glowworm swarm optimization has some
disadvantages. On this basis, according to the different
colors of fluorescent light, a certain amount of glowworm
swarm was divided into two groups. In order to increase
the randomness of the whole population, Lévy flights
with higher randomness were introduced into one group.
Then the two groups of glowworm swarm seek the
optimal solution simultaneously. It can be seen from the
experimental results, the proposed algorithm has a great
improvement in the convergence and in terms of overall.
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