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Abstract: Learning from the concept of potential field in physics, the hybrid virtualpotential field of the wireless sensor network was
constructed based on the hop and the residual energy of nodes. Aimedat maximizing the network lifetime, we proposed an energy
optimized routing algorithm for multi-sink wireless sensor networks, using virtual force of the virtual potential field as the routing
decision criteria. Avoid strategy for low-energy nodes and load balancing strategy for multiple sinks were applied to dynamically adjust
the potential value and achieve balanced energy consumption of nodes.Simulation results show that the routing algorithm balances the
energy consumption of nodes effectively and extends the network lifetime, compared with similar algorithms.
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1 Introduction

Wireless Sensor Networks (WSNs) are composed by a
large number of micro-sensor nodes through wireless
communication [1,2]. In contrast to traditional wireless
networks, wireless sensor nodes are usually powered by
batteries and deployed in unmanned outdoors or
dangerous regions. So, constrained energy is a prominent
feature for wireless sensor networks. Since the radio
transceiver typically consumes more energy than any
other hardware component onboard a sensor node,
designing energy optimized routing algorithm is of great
importance to prolong network lifetime.

In multi-sink wireless sensor networks, routing
mechanisms continue to attract the attention of
researchers. Based on the mobility of the sink, the
research work can be divided into two categories: mobile
multi-sink wireless sensor networks [3,4] and fixed
multi-sink wireless sensor networks. In the research of
routing protocols for fixed multi-sink WSNs, multi-sink
deployment and routing for data transmission are
formulated as an integer linear programming task [5,6].
In [7,8,9], the routing is built based on the minimum hop
from sensor nodes to the sink. The residual energy of
sensor nodes is considered when finding efficient routes
in [10,11]. In [12,13], multi-sink wireless sensor
networks are simulated as electrostatic field and a series

of partial differential equations are exported depending on
the nature of electric field. By solving partial differential
equations, the optimal route and load distribution are
determined.

In this paper, we develop an energy optimized routing
algorithm (EORA) for multi-sink wireless sensor
networks using the concept of potential in classical
physics. The cornerstone of the EORA is to construct a
hybrid virtual potential field based on the hop and residual
energy of sensor nodes. Avoid strategy for low-energy
nodes and load balancing strategy for multiple sinks are
designed to adjust the potential value of sensor nodes, so
as to achieve the balanced energy consumption of sensor
nodes. Simulation results show that the proposed routing
algorithm EORA has a better balancing for node energy
consumption and has prolonged network lifetime.

2 System Model and Defination

Sensor nodes periodically sense the environment and send
the data to sinks. In order to describe the routing
algorithm more clearly, we define wireless sensor
networks and neighbors.

Wireless sensor networks. A wireless sensor
network can be expressed by an undirected graph
G(V,E), in which V denotes the set of all nodes andE
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denotes the set of wireless links among nodes which can
communicate directly.

V = VN ∪VS , whereVN represents the set of sensor
nodes andVS represents the set of sinks.

E = {(i, j)|i, j ∈ VN} ∪ {(i, j)|i ∈ VN , j ∈ VS}, the
distance of nodei and j is less than the maximum
communication distanceR.

Neighbor. The neighbor set of nodei is defined as
N(i) = { j| j ∈ V,di j < R}, wheredi j denotes the distance
between nodei and j.

3 Virtual Potential Field

Fig. 1 shows the topology of a typical multi-sink wireless
sensor network. The data collected by sensor nodes is
transmitted to the sink through the intermediate nodes
with hop-by hop manner. Data transmission in WSNs is
the many-to-one traffic pattern and the spatial distribution
of the data shows obviously centripetal feature, which has
similarities with the potential field in physics [14,15]. In
this paper, we will borrow the concept of potential in
classical physics and construct multiple potential fields
using different network state variables, and then
superpose them into a hybrid virtual potential field. Field
strengths are used to drive data packets toward the sink
along the direction of the great change of the potential
gradient.
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Fig. 1: Topology of wireless sensor networks

3.1 Hop Virtual Potential Field

At the beginning, the sinks in turn broadcast the update
message, nodes one hop away from the sink will get their
own hop count by adding 1 to the hop in the update

message. Then, the other nodes will also obtain their own
hop by receiving update message from its neighbors
which already have its hop just in the same way as the
nodes one hop away. For example, the hop of sensor node
i to sink v can be expressed asH(i,v). When the hop of
sensor nodes to all sinks are determined, the minimum
will be chosen as the hop of senor nodes, which can be
expressed as

H(i) = min{H(i,v)|i ∈VN ,∀v ∈VS}. (1)

To provide the basic routing function, namely to relay
packets toward the sink, we define the hop of sensori as
the potential value in hop virtual potential fieldPh(i):

ph(i) = H(i). (2)

Set nodej as nodei’s neighbor, in accordance with the
definition of the potential field, the virtual force between
nodei and j is given by

Fh(i, j) =
Ph(i)−Ph( j)

Ci j
, i ∈VN , j ∈ N(i), (3)

where Ci j denotes the cost of link between these two
nodes, which is expressed by the distance between nodes.
Considering that forwarding data is between one hop
neighbor nodes, so the distance between sending and
receiving nodes can be unified set as 1. The virtual force
can be expressed as follows:

Fh(i, j) = Ph(i)−Ph( j). (4)

If only to build hop potential field, the data will be
transmitted to the sink along the shortest path in the role
of the maximum virtual force. Nodes on the forwarding
path, especially near the sink, will suffer heavy
forwarding task and cause fast energy consumption, easy
to premature failure. In order to prolong network lifetime,
it should be rational and practical to make an appropriate
trade-off between energy efficiency and balanced energy
consumption.

3.2 Residual Energy Virtual Potential Field

We define the potential value of nodei in residual energy
virtual potential field as:

Pe(i) =−
RE(i)

E0
, (5)

where,RE(i) denotes the residual energy of nodei andE0
denotes its initial energy. The virtual force between nodei
and j is defined as follows:

Fe(i, j) = Pe(i)−Pe( j), i ∈VN , j ∈ N(i). (6)

From (5) and (6), we can get

Fe(i, j) =
RE( j)−RE(i)

E0
(7)
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In residual energy potential field, the neighbor node
with the most remaining energy will be chosen as the next
hop node. This method can achieve the balanced energy
consumption of sensor nodes, but can not guarantee that
data sent towards the sink and eliminating the routing
loops. Therefore, it should add residual energy potential
field with hop potential field to build the hybrid potential
field, so as to achieve the combination of energy
efficiency and energy balance.

3.3 Hybrid Virtual Potential Field

Hybrid virtual potential field has both characteristics of
hop potential field and residual energy potential field and
adjusts the proportion of different potential fields through
variableα(0 ≤ α ≤ 1). The potential value of nodei in
hybrid virtual potential field is defined as

Pm(i) = (1−α)Ph(i)+αPe(i). (8)

Virtual force between nodei and j in hybrid potential
field is given by

Fm(i, j) = Pm(i)−Pm( j) (9)

= (1−α)(Ph(i)−Ph( j))+α(Pe(i)−Pe( j)).

From (4), (6) and (9), the virtual force can be
simplified as follows:

Fm(i, j) = (1−α)Fh(i, j)+αFe(i, j). (10)

In hybrid potential field, the neighbor node with
maximum virtual force is selected to forward data, which
will guarantee the data flows to the sink and achieve
balanced energy consumption among sensor nodes.

4 Dynamic Adjustment Strategy for Potential
field

4.1 Avoid Strategy for Low-energy Nodes

Nodes with less residual energy should be reduced the
opportunity to be selected as the relay node through
dynamically adjusting its potential value in residual
energy potential field. In this paper, we set the node as
low-energy node when its residual energy is less than
10% of the initial energy. In the routing process, the
low-energy node with less hop is avoided by adjusting its
potential value and the node with the same hop will be
selected as relay node. In this section, we will describe
the avoid strategy for low-energy nodes.

When j,k ∈ N(i),H(i) = H( j) = H(k) + 1, virtual
force between nodei and j, node i and k in hybrid
potential field can be expressed respectively as follows:

Fm(i, j)= (1−α)(Ph(i)−Ph( j))+α(Pe(i)−Pe( j)). (11)

Fm(i,k)= (1−α)(Ph(i)−Ph(k))+α(Pe(i)−Pe(k)). (12)

If low-hop nodek is the low-energy node, it should be
avoided in the routing process.Fm(i, j) > Fm(i,k) is
required. ForH(i) = H( j) = H(k)+1, we can get

Pe(k)>
1−α +αPe( j)

α
. (13)

Due to nodej is not a low-energy node, soPe( j) <
−0.1. The right part of (13) can be expressed as follows:

1−α +αPe( j)
α

<
1−1.1α

α
. (14)

If the potential value of low-energy nodek is set to

Pe(k) =
1−1.1α

α
, (15)

it will be discarded in the routing process and the node
with more hop will be selected as relay node.

4.2 Load Balancing Strategy for Multiple Sinks

When sending data to the sink, sink’s neighbors must be
used as relay nodes. The average residual energy of sink’s
neighbors can reflect the load of the corresponding sink.
If the average residual energy of a sink’s neighbors is
relatively low, it indicates that the amount of data
received by this sink is large, and some measures should
be taken to make some sensor nodes transmit data to the
other sink. In this paper, we dynamically adjust the hop of
node to the sink which is suffering heavy load, so as to
achieve the load balancing of multiple sinks.

Shown in Fig.1, the network contains four sinks and
the node hop to the corresponding sink within the dotted
box area in the Fig. is three. In initial stage of the network
operation, the nodes have the same amount of residual
energy. In accordance with the minimum hop routing, the
direction of the arrow in the Fig. indicates the path of data
transmission. After some network operational time, the
difference of average residual energy of sink’s neighbors
is larger because of different sink’s load. Assume that the
average residual energy of Sink(1)’s neighbors is the
least, we adopt the load balancing strategy for multiple
sinks to appropriately increase node hop to Sink(1). In
this paper, we increase one hop. Node A and B in the
dotted box area, which have selected Sink(1) as
destination, renew the choice of the destination after the
increase of hop. Shown in Fig.2, the data of node A and
B is sent to Sink(4) and Sink(2) respectively. So the
amount of data sent to Sink(1) is reduced and the load
balancing of multiple sinks is achieved.
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Fig. 2: Routing after hop adjustment Fig. 3: Distribution of nodes in wireless sensor network

5 Results and Discussion

In this section, we evaluate the performance of our
proposed Energy Optimized Routing Algorithm (EORA)
for multi-sink wireless sensor networks via matlab. For
simplicity, an ideal Media Access Control (MAC) layer
and error-free communication links are assumed. We
calculate the energy consumption of each node from data
packet transmission and reception. We define the lifetime
of the wireless sensor network as the time when the
residual energy of the sensor node becomes zero firstly,
which is counted by round. We compare the performance
of EORA with Energy Level-Based Routing (ELBR) [9]
and Shortest Path Based Routing (SPBR) [7]. In our
simulations, sensor nodes are randomly and uniformly
deployed over the square monitoring area. Sinks are
uniformly distributed at the outside of the monitoring
area. Other simulation parameters are given in Table1.

Table 1: Simulation parameters
Parameter Value
Network coverage /m2 100*100
Number of sensors 100
Number of sinks 1∼ 8
Initial Energy/J 0.5
Eelec/(nJ ·bit−1) 50
εamp/(pJ ·bit−1 ·m−2) 10
Data packet size/B 500
Control packet size/B 12
Maximum transmission range 30
α 0.75

If the network contains 4 sinks which are uniformly
distributed at peripheral 10m outside of the monitoring

area, the distribution of nodes is shown in Fig.3. In the
initial stage of the network, the potential value of sensor
nodes in the hybrid virtual potential field is shown in Fig.
4. In the subsequent simulation, the number of sinks
changes from 1 to 8. For further evaluating the
performance of EORA, the following of this paper will
give the behavior of this algorithm with different number
of sinks. EORA will be compared with ELBR and SPBR
on network lifetime, residual energy of nodes, the average
hop of packets and the variance of data received by sinks.

Fig. 4: Potential value

Fig. 5 gives the network lifetime when the number of
sinks changes from 1 to 8. It can be seen from the figure
that EORA has extended the network lifetime compared
with ELBR and SPBR. SPBR only considers the node
hop when making routing decisions and has the shortest
network lifetime. The routing path once be constructed
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Fig. 5: Network lifetime
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Fig. 6: Average residual energy of sensor nodes
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Fig. 7: Average residual energy of Sink’s neighbors
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Fig. 8: Average hop of data packets

will no longer change, so the nodes on the forwarding
path suffer heavy load and has serious impact on network
lifetime. ELBR has considered the residual energy of
sensor nodes in routing, but more energy is consumed in
the process to obtain the energy level of the path. So its
network lifetime is between EORA and SPBR.

Fig. 6 and 7 show the average residual energy of
sensor nodes and the average residual energy of sink’s
neighbors when the first node is failure in the network.
The figures show that the average residual energy of
sensor nodes and the average residual energy of sink’s
neighbors in EORA is less than ELBR and SPBR. In
EORA, residual energy potential field is superimposed on
hop potential field and the avoid strategy for low-energy
nodes is adopted, so the energy consumption of sensor
nodes is balanced. As the result of load balancing strategy
for multiple sinks, EORA has balanced the energy
consumption of sink’s neighbors which play a decisive
role on the network lifetime. SPBR has not taken any

measures to balance node’s energy consumption, so the
average residual energy of nodes is the most.

Fig. 8 describes the average hop when data packets
are transmitted to sink in different routing algorithms. In
this figure, the average hop decreases with the
increasement of the number of sinks, because the average
distance from sensor nodes to sinks is decreased.
Comparing the average hop of data packets in different
routing algorithms, the average hop in SPBR is the least.
In EORA, the residual energy of sensor nodes is
considered when making routing decisions and some
sensor nodes select long path to transmit data, so its
average hop of data packets is the most.

6 Conclusion

Energy is one of the most critical resources for WSNs. It
should make an appropriate trade-off between energy
efficiency and energy balance. With this mind, in this
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paper we construct hybrid virtual potential field based on
the hop of nodes to sinks and the residual energy of nodes
and design a virual potential field based multi-sink
routing algorithm, according to the feature of concentric
in data transmission. The avoid strategy for low-energy
nodes and load balancing strategy for multiple sinks are
adopted to achieve effective and balanced energy
consumption. Simulation results show that the routing
algorithm proposed in this paper has extended the
network lifetime and balanced energy consumption,
compared with ELBR and SPBR.

In our future work, we will deploy sinks within the
monitoring region and research the optimization of
multi-sink deployment and data routing with the goal of
maximizing network lifetime.
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