
Appl. Math. Inf. Sci.8, No. 1L, 333-340 (2014) 333

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/081L42

The Comparisons of OpenCL and OpenMP Computing
Paradigm
Slo-Li Chu∗ and Chih-Chieh Hsiao

Department of Information and Computer Engineering, Chung Yuan Christian University, Chung Li, 32023, Taiwan

Received: 18 May. 2013, Revised: 12 Sep. 2013, Accepted: 13 Sep. 2013
Published online: 1 Apr. 2014

Abstract: Graphics processing units (GPUs) in a computer system are increasinglyadopted to create a realistic environment in 3D
applications. Despite the extremely high parallelism of these devices with a tremendous amount of processing elements, GPUs are
seldom used in scientific applications owing to their difficulty in programming. Additionally, vendor-provided APIs are too specific to
cross platform. An open standard, OpenCL, has subsequently been developed to provide universal APIs and programming paradigms
for various GPUs. This work demonstrates the capabilities of OpenCL with several platforms, based on a preliminary example. The
proposed benchmarks with different attributes are implemented by OpenMP and OpenCL sequentially to compare their differences.
The benchmarks are then targeted on several GPUs and conventionalservers. Experimental results indicate that inexpensive GPUs
perform better than servers if OpenCL paradigms are adopted.

Keywords: Heterogeneous Platform, Parallel Programming, OpenCL, OpenMP, Graphics Processing Units, Supercomputing.

1 Introduction

The growing 3D applications have led computer systems
into a new computing era. Complex objects in 3D scenes
have significantly increased the requirement of
computational power of computer systems. Such
computer systems adopt add-on graphics processing unit
(GPU) cards or streaming processors, subsequently
forming a heterogeneous platform to satisfy higher
workload demands. More realistic 3D scenes have
increased the requirement of computing power of GPUs
or streaming processors, even dominating the main
processor of a computer system. Therefore, some parallel
programming paradigms have been developed to utilize
the capabilities of these heterogeneous platforms,
including CUDA [1], and OpenCL [2]. This work
describes several workloads with different parallel
programming paradigms, then targets on conventional
multi-core processors and these heterogeneous platforms.
Finally, their performances are compared, especially
difficulties in coding programs.

Previously, programmers needed to familiarize
themselves with graphics APIs or vendor specific APIs to
program parallel applications for high-performance
heterogeneous computer systems. These APIs and

programming paradigms are extremely difficult to
implement. Meanwhile, conventional parallel
programming paradigms e.g., OpenMP [6] and MPI are
infeasible for GPU-based heterogeneous platforms. GPU
vendors have provided CUDA and CAL in recent years to
utilize the computational power of GPUs. However,
designed for specific platforms, these parallel paradigms
have difficulty in migrating to other platforms [11,12].
Therefore, to solve this problem, industries have
collaborated in establishing an open standard for
programming such platforms, the open computing
language also known as OpenCL. Since establishment of
this standard, the code written in OpenCL can be easily
migrated between these diverse architectures without
modifying parallel programs.

This study, based on our early work [5], examines
more compiling combinations for these architectures and
presents an example to illustrate source code migration
from OpenMP to OpenCL, which utilizes these
ubiquitous devices. Several benchmarks are also designed
to evaluate the performance of these platforms.

The rest of this paper is organized as follows. Section
2 reviews the background of these architectures. Section 3
then describes two parallel programming paradigms and
compares their differences. Next, Section 4 summarizes

∗ Corresponding author e-mail:slchu@cycu.edu.tw

c© 2014 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/081L42

334 S. L. Chu, C. C. Hsiao: The Comparisons of OpenCL and OpenMP Computing...

the experimental results. Conclusions are finally drawn in
Section 5.

2 Evaluation Platforms

This section reviews the hardware platforms used in this
work

2.1 ATi Radeon HD5800 series

As the latest GPU family announced by ATi in 2009,
Radeon HD5800 series [3] is designed mainly for 3D
game rendering with over 2720 GFLOPs computing
capability. Figure 1 shows the HD5800 architecture. The
main computing power originates from 20 SIMD engines.
Each engine consists of 16 thread processors with 5
stream cores as fundamental processing elements, in
which all of the chips contain 1600 stream cores. Each
stream core can perform IEEE754 compatible floating
point operations, even fused-multiply-add operations.

�
�
�
�
��
�
	

�
��
�

��
�
�

�
�
�
�
��
�
�
�
��
�
��
�
�

�
�
�
�
�
��
�
�
�
�
�
��
�
�
�
��
�

 !"#
$%&'()'*'
+,'-.

/0

/0

/0

/0

/0

/0

/0

/0

/0

/0

/0

/0

/0

/0

/0

/0S
IM

D
 E

n
g

in
e

 !"#
$%&'()'*'
+,'-.

/0

/0

/0

/0

/0

/0

/0

/0

/0

/0

/0

/0

/0

/0

/0

/0

 !"#
$%&'()'*'
+,'-.

/0

/0

/0

/0

/0

/0

/0

/0

/0

/0

/0

/0

/0

/0

/0

/0

 !"#
$%&'()'*'
+,'-.

/0

/0

/0

/0

/0

/0

/0

/0

/0

/0

/0

/0

/0

/0

/0

/0

 !"#
$%&'()'*'
+,'-.

/0

/0

/0

/0

/0

/0

/0

/0

/0

/0

/0

/0

/0

/0

/0

/0

Fig. 1: The organization of ATi HD5800 series.

This architecture is designed by mixing SIMD and
VLIW approaches. From a high-level perspective, the
architecture consists of 20 SIMD engines; each SIMD
engine has a width of 16 SIMD machines, where each of
its elements is called a thread processor with a five-issue,
VLIW-style design, consisting of four basic stream cores
and responsible for typical operations like floating and
integer add, sub, multiply. The architecture also contains

one core for special functions, including sine, cosine, and
reciprocal functions. Additionally, a branch unit in each
thread processor solves simple branch problems during
execution. Moreover, the architecture contains large
general purpose registers (GPRs) to maintain the thread
status for thread switching.

2.2 nVidia GeForce GT200 series

nVidia announced its GT200 series [4] GPU in early
2009. Its design focuses on both 3D graphics rendering
and general purpose computing capabilities with over
1060 GFLOPs. Figure 2 shows the architecture of nVidia
GT200.

The GT200 architecture consists of ten
texture/processor clusters (TPCs). Each TPC consists of
three streaming multiprocessors (SMs) and a texture unit.
The main computing elements in GT200 are streaming
processors (SPs), as shown in Fig. 2, where the eight SPs
work in a single instruction multiple data (SIMD)
manner, or so referred to as single program multiple data
(SPMD) by nVidia. Both SPs and special function units
(SFUs) share the same instructions, data and instruction
L1 cache, instruction retrieval and dispatch unit in a SM.
A GT200 GPU has a total of 240 SPs.

123

123

123

123

123

123

123

123

123

123

123

123

Fig. 2: The organization of nVidia GT200 series.

2.3 IBM Cell Processor

Figure 3 illustrates the architecture of IBM Cell processor
[7]. Power processor element (PPE) is the main control
unit of the cell processor, and synergistic processor
elements (SPEs) are designed for data-intensive and
streaming processing computations. PPE consists of a
power processor unit (PPU) which is an in-order, 2-way
simultaneous multi-threading, 64-bit power architecture
with VMX extension, with L2 cache. SPE consists of a

c© 2014 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.8, No. 1L, 333-340 (2014) /www.naturalspublishing.com/Journals.asp 335

synergistic processor unit (SPU) and its memory flow
control synergistic memory flow (SMF) control. Each
SPU has a dual-issue 128-bit SIMD architecture with
deep pipelining. These processor elements, memory
controller, and I/O are attached onto an element
interconnect bus (EIB) [9], which is implemented as a
circular ring comprising four 16B-wide unidirectional
channels with counter-rotating in pairs. To access the
external memory, SPEs can rely only on DMA to move
data from/to the memory controller. Meanwhile, the
memory controller is shared by all processor elements,
thus limiting the memory bounded applications and
programming paradigm. Additionally, the Cell processor
in Sony PlayStation3 enables only six SPEs.

45
67
8

9:
;<
=>
?:
@A

B
C
D
EF
GH

I
JK
L
M
N
GH

45
67
8

9:
;<
=>
?:
@A

B
C
D
EF
GH

I
JK
L
M
N
GH

Fig. 3: The organization of IBM Cell processor.

2.4 Sun UltraSPARC T2

Sun UltraSPARC T2 [10] is used in this work as one of
the reference machines for demonstrating OpenMP.
Figure 4 show the architecture of UltraSPARC T2. Each
SPARC core is a 2-way superscalar with fine-grained
multi-threading of eight threads. A total of 64 threads run
in the same time over eight cores. The memory subsystem
of UltraSPARC T2 is quite efficient since it uses multiple
memory banks and four memory controllers to increase
the total memory bandwidth. Although the working
frequency is lower than other workstation products, this
feature improves the performance in memory bounded
applications.

2.5 Summary

Table 1 [3,4,7,10,13] lists the architectural configurations
of the computing devices studied in this work. Some of
the entries are inconsistent with previous discussions since
its high-end version is lacking in this work. For instance,
HD5870 has 1,600 PEs while HD5850 in this work has
only 1,440 PEs.

O
P
Q
R
S
T
U
V
R
W
X
Y
Y
Z
S
W

Fig. 4: The organization of Sun UltraSPARC T2.

Table 1: The summary of evaluated architectures.

20881062.7220445.2811.2
GFLOPS
(single)

418891545.2811.2
GFLOPS
(double)

14402401+648
Number

of PE

2.15B

725MHz

ATi
Radeon
HD5850

1.4B241M825M503M
Transistor

count

1.47GHz3.2GHz2.83GHz1.4GHz
Clock rate

of PE

nVidia
GeForce
GTX285

IBM Cell
in PS3

Intel
Xeon
E5440

Sun
UltraSPARC

T2

20881062.7220445.2811.2
GFLOPS
(single)

418891545.2811.2
GFLOPS
(double)

14402401+648
Number

of PE

2.15B

725MHz

ATi
Radeon
HD5850

1.4B241M825M503M
Transistor

count

1.47GHz3.2GHz2.83GHz1.4GHz
Clock rate

of PE

nVidia
GeForce
GTX285

IBM Cell
in PS3

Intel
Xeon
E5440

Sun
UltraSPARC

T2

3 Parallel Programming Paradigms

This section introduces two programming paradigms and,
then, discusses their differences. Finally, an example
illustrates how to transform OpenMP parallelized
programs into OpenCL codes.

3.1 OpenMP Programming Model

Open multi-processing (OpenMP) [6], a parallel
programming paradigm, supports shared memory
multiprocessing programming in C, C++, and Fortran, as
well as focuses on many parallel systems, including Unix
and Microsoft Windows based platforms. This paradigm
consists of a set of compiler directives, library routines,
and environment variables that influence the run-time
behavior of a program.

As a multithreading paradigm, OpenMP consists of a
”master thread” (i.e. a series of instructions executed
consecutively) and a specified number of ”slave threads”
spawned by the master thread. Accordingly, the task is
divided and parallelized by these threads, Fig. 5. These
threads are then executed concurrently, managed by a

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

336 S. L. Chu, C. C. Hsiao: The Comparisons of OpenCL and OpenMP Computing...

runtime environment that can spawn threads and allocate
necessary resources for these threads.

To apply OpenMP accurately, programmers must
analyze their program and identify the parallelizable part
to add appropriate compiler directives. Consider a
program that must contain shared variables or reductions
in the loops that attempted to be parallelized. That
program must be protected and written in a directive to
inform a compiler and OpenMP runtime. When the
program is highly parallelizable, OpenMP can easily
enhance its performance with additional threads on an
increasing number of processing elements.

A B C

Task Set 1 Task Set 2

L N OML N OM

Task Set 3

H IH I

A

B

C

M

O

L

N

M

O

L

N

I

H

I

H

Task Set 1 Task Set 2 Task Set 3

Master Thread

Fig. 5: The OpenMP programming paradigm.

3.2 OpenCL Programming Model

OpenCL [2] is an open standard for cross-platform,
parallel programming paradigm of modern processors in
a computer system. The target of OpenCL is written
accelerated portable code across different devices and
architectures with a wide range of applications. Therefore
OpenCL can utilize of CPUs, GPUs and other DSPs to
accelerate compute-intensive or data parallel applications.

[\]̂
_̀
àbc
de_
f_
bg

[\]̂
_̀
àbc
de_
f_
bg

[\]̂
_̀
àbc
de_
f_
bg

[\]̂
_̀
àbc
de_
f_
bg

[\]̂
_̀
àbc
de_
f_
bg

[\]̂
_̀
àbc
de_
f_
bg

[\]̂
_̀
àbc
de_
f_
bg

[\]̂
_̀
àbc
de_
f_
bg

[\]̂
_̀
àbc
de_
f_
bg

[\]̂
_̀
àbc
de_
f_
bg

[\
]̂
_̀
àbc
de_
f_
bg

[\
]̂
_̀
àbc
de_
f_
bg

[\
]̂
_̀
àbc
de_
f_
bg

[\
]̂
_̀
àbc
de_
f_
bg

[\
]̂
_̀
àbc
de_
f_
bg

[\]̂
_̀
àbc
de_
f_
bg

[\]̂
_̀
àbc
de_
f_
bg

[\]̂
_̀
àbc
de_
f_
bg

[\]̂
_̀
àbc
de_
f_
bg

[\]̂
_̀
àbc
de_
f_
bg [\]̂

_̀
àbc
de_
f_
bg

[\]̂
_̀
àbc
de_
f_
bg

[\]̂
_̀
àbc
de_
f_
bg

[\]̂
_̀
àbc
de_
f_
bg

[\]̂
_̀
àbc
de_
f_
bg

[\]̂
_̀
àbc
de_
f_
bg

[\]̂
_̀
àbc
de_
f_
bg

[\]̂
_̀
àbc
de_
f_
bg

[\]̂
_̀
àbc
de_
f_
bg

[\]̂
_̀
àbc
de_
f_
bg

[\
]̂
_̀
àbc
de_
f_
bg

[\
]̂
_̀
àbc
de_
f_
bg

[\
]̂
_̀
àbc
de_
f_
bg

[\
]̂
_̀
àbc
de_
f_
bg

[\
]̂
_̀
àbc
de_
f_
bg

[\]̂
_̀
àbc
de_
f_
bg

[\]̂
_̀
àbc
de_
f_
bg

[\]̂
_̀
àbc
de_
f_
bg

[\]̂
_̀
àbc
de_
f_
bg

[\]̂
_̀
àbc
de_
f_
bg

Fig. 6: The OpenCL programming paradigm.

Figure 6 shows the OpenCL programming model. The
host may be a personal computer, embedded system or
super computer, which provides OpenCL APIs and a
runtime compiler. A computer device might be a CPU,
GPU, DSP or Cell processor, which executes OpenCL
kernels written in C99-based OpenCL language. Each
computer device has multiple computer units consisting
of multiple processing elements. The local data shares
and shared memory in ATi and nVidia GPUs are designed
to map this memory hierarchy. All memory data transfers
by work-items must be copied explicitly through the host
memory, global memory, and local memory and, then,
sent back. It implies that programmers must handle
memory management explicitly. To write a program with
a satisfactory performance in OpenCL, programmers
must familiarize themselves with underlying architectures
to adjust appropriate parameters for execution. A host
program is necessary to establish the entire environment
for OpenCL execution. However, as long as it is written,
the host program can act as a template to migrate to
different platforms with simple modifications, as shown
in Fig. 7.

Despite the difficulty of writing an OpenCL program,
porting to different platforms requires only a few
modifications, as shown in Fig. 7. For GPUs, an
appropriate number of work-items and work-items per
work-group must be set, Fig. 7(a)(b). To port on the IBM
Cell, not only must the number of work-items and
work-items per work group be changed, but the device
type must also be modified as an ACCELERATOR, Fig.
7(c). The current ATi OpenCL implementation also
supports x86 CPUs, which involves modifying the device
type as a CPU, Fig. 7(d).

Fig. 7: Porting OpenCL host code to different platforms.

c© 2014 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.8, No. 1L, 333-340 (2014) /www.naturalspublishing.com/Journals.asp 337

3.3 Migrating from OpenMP to OpenCL

This subsection discusses how OpenMP and OpenCL
differ by using a simple example, ”Prime Number.”
Figure 8(a) shows the corresponding OpenMP version.
Since variableprime is independent of each parallel
section and inaccessible to other threads, this variable
must be declared as ”private” by OpenMP directive. A
parallel reduction is then performed on variable sum,
which must be protected by OpenMP when
multi-threaded execution performed with ”reduction”
declaration in a directive. OpenMP runtime divides the
loop into multiple threads with appropriate iterations
when executed.

Fig. 8: Migrating OpenMP program to OpenCL version.

Two considerations must be concerned for migrating
this OpenMP program to OpenCL. First, programmers
specify the number of iterations in each work-item, and
programmers must be taken care when writing programs.
Second, the parallel reductions must be hand-coded.
During this migration, the parallel reduction operations
are left for the host processor to finish in order to simplify
the OpenCL kernel.

Each OpenCL kernel must begin with kernel
declaration, and attributes of input data must be indicated.
Input argumentpartial result is used to return the partial
results of each work-item to the host for parallel
reduction. Another argumentchunk specifies the number
of global work-items in execution. In this kernel, each
work-item calculates a small portion of iterations, which
are specified bylower bound and upper bound. The
global ID gid, as retrieved by get global id call,
calculates the initial value in each work-item. Once
calculated, the results are stored intopartial result with

indexing by gid, and wait to copy back to the host for
parallel reduction. The OpenCL kernels are normally
saved as a text file with.cl file extension. The kernel file
can be easily migrated to different architectures with an
appropriateNDRange execution specified by OpenCL
API of the host without modifications.

4 Experimental Results

This section describes the compiling combinations of five
platforms and two parallel programming paradigms by
using four benchmarks. Table 2 lists the environmental
conditions for the experiment. In the following figures,
the ”OMP” and ”OCL” denote the programs are coding
by ”Open MP” and ”OpenCL” paradigms, respectively.
The ”icc” and ”gcc” denote the programs are compiled by
Intel C Compiler and GNU C Compiler, respectively. The
”suncc -fast” and ”suncc” represent the programs are
compiled by Sun C compiler with and without -fast
options, respectively. The ”Static” and ”Dyn” mean that
the programs are compiled statically and compiled
dynamically, respectively. The ”Static” compilation can
save execution time since the compiling time will not be
counted into execution time. In contrast, the ”Dyn”
compilation will waste the execution time to compile the
program on-the-fly.

Table 2: The experimental characteristics of five target
platforms.

Visual
Studio 2008

Visual
Studio
2008

GCC 4.1.2

GCC 4.1.1,
Intel C

Compiler
11.0

Sun C 5.9Compiler

StreamSDK
2.0.1

GPU
Computing
SDK 2.3A

Cell SDK
3.1.0 +

OpenCL
SDK 0.1.1

N/AN/A
OpenCL
runtime

Intel Core-
i5 750

Intel Core-
i5 750

Power
Processor
Element

Intel Xeon
E5440 h 2

UltraSPARC
T2

Host

Windows7
(32-bit)

ATi
Radeon
HD5850

Windows7
(32-bit)

Linux 2.6.21
(64-bit)

Linux 2.6.9
(32-bit)

SunOS 5.10OS

nVidia
GeForce
GTX285

IBM Cell
in PS3

Intel Xeon
E5440

Sun
UltraSPARC

T2

Visual
Studio 2008

Visual
Studio
2008

GCC 4.1.2

GCC 4.1.1,
Intel C

Compiler
11.0

Sun C 5.9Compiler

StreamSDK
2.0.1

GPU
Computing
SDK 2.3A

Cell SDK
3.1.0 +

OpenCL
SDK 0.1.1

N/AN/A
OpenCL
runtime

Intel Core-
i5 750

Intel Core-
i5 750

Power
Processor
Element

Intel Xeon
E5440 h 2

UltraSPARC
T2

Host

Windows7
(32-bit)

ATi
Radeon
HD5850

Windows7
(32-bit)

Linux 2.6.21
(64-bit)

Linux 2.6.9
(32-bit)

SunOS 5.10OS

nVidia
GeForce
GTX285

IBM Cell
in PS3

Intel Xeon
E5440

Sun
UltraSPARC

T2

The first benchmark, pi calculation, is a highly
computation-intensive program. Performance of the
OpenCL test is observed using various numbers of
work-items. Figure 9 summarizes the experimental results
of pi calculating with OpenCL, where Y-axis denotes the
execution time and X-axis refers to the number of
work-items on four platforms. The ”optimized” denotes
that benchmark is optimized exhaustively to reveal the
lower bounds of four platforms.

Since both GPU vendors do not provide offline
OpenCL compiler, the execution times of two GPUs must
include kernel compilation time. IBM provides offline

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

338 S. L. Chu, C. C. Hsiao: The Comparisons of OpenCL and OpenMP Computing...

Pi Calculation: Execution Time vs. Number of Work-Items

0.89

0.52

0.34
0.26

0.21

2.07

1.14

0.71
0.50 0.50

5.10

2.55

1.68 1.68

0.41

21.17 18.60 18.10 18.24 17.76

0.1

1

10

100

500; 2 1000; 4 2000; 6 4000; 12 Optimized

Number of Work-Items (GPU; PS3)

E
xe

cu
tio

n
 T

im
e

(s
ec

)

ATi Radeon HD5850
nVidia GeForce GTX285
PS3_Static_Compiling
PS3_Dyn_Compiling

Fig. 9: The execution time of Pi Calculation by OpenCL
paradigm.

and runtime kernel compilers; the results of PS3 thus have
dynamic and static compilation versions. In both GPUs,
the number of work-items is allocated from 500 to 4,000.
However, the number of processing elements is less in
PS3 cases and the numbers of work-items are 2, 4, 6 and
12. The evaluated results indicate that the best number of
work-items per work group for ATi GPU is multiple of
64, according to the suggestion of the developer’s guide
[8]. The 64 work-items can be packed into an ATi GPU
thread called ”wavefront” in ATi HD5800 series.
Although the best number of work-items per work group
of nVidia GPU is 32 since 32 threads can be packed into a
warp, nVidia’s runtime is set to 1, significantly affect the
performance. To improve performance, this value is set to
100 manually for GTX285. For PS3, the number of
work-items per work group is specified by its runtime,
which is 1. Because SPEs are not designed for
multithreading execution, increasing the number of
work-items per work group degrades the performance.
According to the experimental results, an increasing
number of work-items imply a more improved
performance, even when a GPU has more work-items
than processing elements. In the IBM Cell processor, the
amount of SPEs is the upper bound of improved
performance, since it is not a multithreaded design and
unable to achieve fast thread switching.

According to the profiling results, the computing
kernel does not fully utilize these devices, since the
OpenCL runtime compiler fails to pack instructions into
ATi GPU’s five-issue VLIW and IBM Cell’s four-way
SIMD engine efficiently. Moreover, according to our
analytical results, if this kernel can be vectorized, the
performance is improved, as shown in ”Optimized”.

Figure 10 shows the performance results in each
platform and parallel paradigms. The x-axis in the bottom
portion of this figure denotes the number of threads for
CPU, GPU, and OpenMP, respectively. When the number
of work-items is insufficient, the conventional superscalar
out-of-order processor Intel Xeon is the fastest one. Also,
the Intel C compiler can generate better quality codes

Pi Calculation: Execution Time vs. Thread Number

1.01

0.61 0.61 0.64
0.81

1.96

1.10 1.05
1.19 1.07

13.26

6.70

4.12 3.79

15.06

7.94

5.24
4.42 3.96

1.95

0.89

0.52

0.34
0.26

2.07

1.14

0.71

0.50

5.10

2.55

1.68 1.68 1.68

21.17
18.60 18.10 18.24 17.76

3.90

0

1

10

100

4; 200; 2 8; 500; 4 16; 1000; 6 32; 2500; 12 64; 4000; 24

Thread Number (CPU;GPU;PS3)

E
xe

cu
tio

n
 T

im
e

(s
ec

)

Xeon_E5440x2_icc_OMP
Xeon_E5440x2_gcc_OMP
T2_suncc_-fast_OMP
T2_suncc_OMP
ATi Radeon HD5850_OCL
nVidia GeForce GTX285_OCL
PS3_Static_Compiling_OCL
PS3_Dyn_Compiling_OCL

Fig. 10: The execution time of Pi Calculation with OpenMP and
OpenCL paradigms on various platforms.

than GNU C compiler. However, the GPU outperforms
CPUs with an increasing number of work-items. ATi
GPU is nearly quadruple faster than the optimized
dual-socket Xeon server when there are 4,000
work-items. This execution time includes OpenCL kernel
compilation and memory data movement between the
host and GPU. If only the execution times are compared,
ATi GPU performs nearly 20 times faster than
UltraSPARC T2 due to its higher frequency. Moreover,
PS3Static performs worse than GPUs since the number
of computer units is significantly less than that of GPUs;
however, it still outperforms UltraSPARC T2.

Prime: Execution Time vs. Thread Number

0.41 0.41

0.61 0.61

0.29 0.26 0.25

7.54

3.87

1.99

1.15

8.12 8.03 8.03

0.71

0.53 0.50

0.36

1.90 1.89 1.89 1.89

8.22 8.12 8.03 8.03

0.42

8.22

0.73

0.38

0.53 0.50

0.1

1

10

100

8; 5000; 2 16; 10000; 4 32; 25000; 6 64; 40000; 12

Thread Number (CPU; GPU; PS3)

E
xe

cu
tio

n
 T

im
e

(s
ec

)

Xeon_E5440x2_icc_OMP
Xeon_E5440x2_gcc_OMP
T2_suncc_-fast_OMP
T2_suncc_OMP
ATi Radeon HD5850_OCL
nVidia GeForce GTX285_OCL
PS3_Static_Compiling_OCL
PS3_Dyn_Compiling_OCL

Fig. 11: The execution time of Prime Number with OpenMP and
OpenCL paradigms on various platforms.

The second benchmark calculates the number of
prime numbers within integers 2 to 100,000, as shown in
Fig. 11. Since the brute-force method requires branch
operations to search for and determine the prime numbers
in each iteration, the performance of GPUs is limited due
to the divergent threads in GPU [9].

c© 2014 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.8, No. 1L, 333-340 (2014) /www.naturalspublishing.com/Journals.asp 339

The best time achieved by the dual-socket Xeon
server is 0.25 (gcc version) while that for ATi GPU is
0.36 and that for nVidia GPU is 0.38. Results of this
application indicate that GPU performance is limited in
applications such as those with frequently used branches.
In PS3Static, the performance is improved by only 0.5%
when increasing the number of SPEs from 2 to 12, since it
has a weak branch capability. However, another
highly-threaded UltraSPARC T2 adopts a fine-grained
multi-threading scheme to mitigate the performance loss
from branches and even enhanced by fast switching
among threads. The performance enhancement saturated
at 64 threads is achieved using the maximum number of
concurrent threads in UltraSPARC T2 and obtained 6.6
times speedup in -fast version.

Matrix Transpose: Execution Time vs. Matrix Size

0.21 0.21 0.24
0.33

0.00

0.01

0.05

1.46

0.07

0.19

0.68

2.66

0.09

0.85

3.31

0.17 0.17

0.41

1.11

0.24 0.25 0.28

0.91

0.04

0.12

0.47

1.86

17.12 17.62 17.63 18.15
25.25

1.64

0.33

0.04

0.23

0.04

0.20

0.40

8.66

0.001

0.01

0.1

1

10

100

256x256 512x512 1024x1024 2048x2048 4096x4096
Matrix Size

E
xe

cu
tio

n
 T

im
e

(s
ec

)

Xeon E5440x2_icc_OMP Xeon E5440x2_gcc_OMP
T2_suncc_-fast_OMP T2_suncc_OMP
ATi Radeon HD5850_OCL nVidia GeForce GTX285_OCL
PS3_Static_Compiling_OCL PS3_Dyn_Compiling_OCL

Fig. 12: The execution time of Matrix Transposes with OpenMP
and OpenCL paradigms on various platforms.

The next two benchmarks are matrix transpose and
matrix multiplication with various data sizes, which
achieve maximum capabilities of these platforms. For the
dual-socket Xeon server, 8 threads and 16 threads are
used for UltraSPARC T2. In the matrix transpose, the
number of work-items is equivalent to the size of the
matrix in the OpenCL kernel. Additionally, matrix
multiplication is performed with tiling of size 4x4, such
that the number of work-items equals (matrix width/4) x
(matrix height/4). The number of work-items per work
group is set to 8x8 for both benchmarks. Figures 12 and
13 summarize those results.

The matrix operations the above two benchmarks are
memory bounded, in which a large memory bandwidth is
required. When the matrix size is less than or equal to
1024x1024, the operation on CPU is faster than that of
GPUs since it must transfer data into the GPU onboard
memory before processing and copy back when done.
Also, the growing matrix size consumes more latency for
data movement than computation. Accordingly, matrix
multiplication, UltraSPARC T2 outperforms the Intel
Xeon server. Since the memory subsystem in
UltraSPARC T2 is quad on-chip dual-banked memory

controllers, rather than the memory subsystem in
dual-socket Xeon server, a single off-chip memory
controller is shared. This characteristic also diminishes
the limitation of a lower CPU frequency of UltraSPARC
T2. In PS3, all memory accesses must be sent to EIB and
arbitrated to share external memory access. However,
both GPUs are over 100 times faster than the dual-socket
Xeon server and 30 times faster than UltraSPARC T2 in
multiplication with the matrix size of 2048x2048, due to
their extreme parallelisms by massive processing
elements.

Matrix Multiplication: Execution Time vs. Matrix Size

0.21

1.36

88.58

1062.63

0.17

1.43

18.70

1.45

0.05

0.20

21.76

238.58

0.19

0.30

0.67

3.88

2.38

0.14

0.92

7.87

57.25

236.42

20.26 21.21
27.62

77.60

702.37

0.21

108.36

1280.85

0.06

0.21

27.05

280.61

1.48

0.220.24
0.26

0.69

0.36

0.01

0.1

1

10

100

1000

10000

256x256 512x512 1024x1024 2048x2048 4096x4096
Matrix Size

E
xe

cu
tio

n
 T

im
e

(s
ec

)

Xeon E5440x2_icc_OMP
Xeon E5440x2_gcc_OMP
T2_suncc_-fast_OMP
T2_suncc_OMP
ATi HD5850_OCL
nVidia GeForce GTX285_OCL
PS3_Staic_Compile_OCL
PS3_Dyn_Compile_OCL

Fig. 13: The execution time of Matrix Multiplications with
OpenMP and OpenCL paradigms on various platforms.

In these benchmarks, except for the ”Prime” with
many branches, GPUs significantly outperform
commodity multi-core processors, even when using
expensive servers. Since at least one-third of the
execution time in GPU is spent in compiling the kernel
and data transfer, if the data size increases and the
operations become more complex, GPUs significantly
outperform commodity CPUs. GPUs have large number
of processing elements and perform comparative to
supercomputers. However, whereas a server costs more
than $US 10,000, the GPU can achieve a similar
performance with less than $US 500. Additionally,
OpenCL can extract computational power from GPUs
rather than OpenMP on a heterogeneous platform with
supercomputing capability. Nevertheless, the parallel
programming paradigm of OpenCL is more complex than
that of OpenMP, and the performance extracted from
GPU is less expensive and efficient than the conventional
parallel programming paradigm with homogeneous
platforms. Moreover, OpenCL kernels are used across
different architectures without any modifications, thus
achieving portability on different computing devices.

5 Conclusions

The computational capabilities of GPUs increase
annually. An open standard for computation on

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

340 S. L. Chu, C. C. Hsiao: The Comparisons of OpenCL and OpenMP Computing...

heterogeneous platforms, OpenCL, utilizes heterogeneous
CPUs and GPUs. Four benchmarks and five hardware
platforms are evaluated. According to our results, fewer
branches operations improve the performance;
meanwhile, these devices are not handled well for branch
operations. If the kernel code is developed properly, the
computational capabilities can be released from these
device and achieve a high performance at a significantly
lower cost than when using a supercomputer. In contrast
to conventional OpenMP parallelized programs that target
on expensive servers, the OpenCL parallelized
applications that target on relatively inexpensive GPUs.

Acknowledgement

This work is supported in part by the National Science
Council of Republic of China, Taiwan under Grant NSC
100-2221-E-033-043.

References

[1] nVidia, Inc., CUDA Compute Unified Device
Architecture Programming Guide Ver. 2.0, nVidia, (2008).
www.nvidia.com.

[2] The OpenCL Specification 1.0 rev.48, Khronos OpenCL
Working Group, (2009).

[3] AMD Corp., AMD Graphics for Desktop PCs,
www.amd.com.

[4] nVidia Corp., nVidia GeForce Family,www.nvidia.com.
[5] S.-L. Chu, and C.-C. Hsiao, Proc. 12th IEEE International

Conference on High Performance Computing and
Communications, 556 (2008).

[6] OpenMP Specification Ver. 3.0, OpenMP Architecture
Review Board, (2008).

[7] IBM Corp., Cell Broadband Engine Resource Center,
www.ibm.com.

[8] ATi Stream Computing, OpenCL Programming Guide, ATi.,
(2010).

[9] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer and K.
Skadron, Journal of Parallel and Distributed Computing,68,
1370 (2008).

[10] Oracle Corp., UltraSPARC T2: a highly-threaded, power
efficient, SPARC SOC,www.oracle.com.

[11] S. H. Abbas, Applied Mathematics & Information Sciences,
2, 225-235 (2008).

[12] W. K. Wootters & W. H. Zurek, A single quantum cannot be
cloned, Nature,299, 802-803 (1982).

[13] Intel Corp., Intel Microprocessor Export Compliance
Metrics,www.intel.com.

Slo-Li Chu received
his PhD degree in Electrical
Engineering from National
Sun Yat-sen University,
Taiwan, in 2002. He
is currently an associate
professor of Department
of Information and Computer
Engineering, Chung Yuan
Christian University, Taiwan.
His research interests include

computer architectures, parallelizing compilers, system
level modeling, system-on-chip design, embedded system
design, interconnection networks, multicore architectures
and GPU architectures.

Chih-Chieh Hsiao
received his BS degree
in Information and Computer
Engineering from Chung
Yuan Christian University,
Taiwan, in 2007, and the MS
degree in Computer Science
from National Chiao Tung
University, Taiwan, in 2009.
He received his PhD degree
in Electronic Engineering at

Chung Yuan Christian University, in 2013. His research
interests include computer architectures and GPU
architectures.

c© 2014 NSP
Natural Sciences Publishing Cor.

www.nvidia.com
www.amd.com
www.nvidia.com
www.ibm.com
www.oracle.com
www.intel.com

	Introduction
	Evaluation Platforms
	Parallel Programming Paradigms
	Experimental Results
	Conclusions

