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Abstract: When adaptive arrays are applied to practical systems, the perfoentdrthe convention constant modulus algorithm
degrades severely in the presence of array steering vector drinersimilar situation of performance degradation can occur even when
the array steering vector is known exactly, but the training sample sizeaib. $mthis paper, we propose a novel doubly constrained
robust constant modulus algorithm based on the worst case perfoenatimization and oblique projection technique. The proposed
algorithm uses explicit modeling of uncertainties in the desired signal ezsppnse and in data snapshots, which provides sufficiently
robustness to uncertainty in source DOA, and makes the mean outputSINR consistently close to the optimal one. The array
weight vector is derived iteratively by the Lagrange multiplier approachdescent gradient technique, in which the factors can be
precisely obtained at each step. A theoretical analysis for our pra@dgerithm in terms of the optimal step size, convergence and
array output SINR performance is presented in this paper. As cempéth the linearly constrained constant modulus algorithm, our
proposed robust constant modulus algorithm resolves the interéecapture problem, has faster convergence speed, and enhances th
array output performance under practical situations. Computer dionul@sults are presented to show the superiority of our proposed
algorithm on output SINR enhancement and signal sampling resolution.

Keywords: Robust adaptive beamformer, array steering vector errors, eqticpjection technique, worst-case optimization.

1 Introduction array. These algorithms have good performance if there
are no other array imperfections. The most widely used
The constant modulus algorithm (CMA) is known to method, due to its simplicity and effectiveness, is
enjoy widespread popularity as methods for blind sourcegiagonal loading 10]-[13]. The approach addes a scaled
separation, equalization of communication signalg[f]  identity matrix to the covariance matrix prior to inversion
and blind beamforming. CMA is a preferred choice for pjagonal loading can either be viewed as a method to
blind algorithm because of its robustness and its ease oéqualize the least significant eigenvalues of the sample
implementation. In practice, circumstances like local covariance matrix, or to constrain the white noise array
scattering imperfectly calibrated arrays and impreciselygain. In recent years, novel robust approaches have been
known wave field propagation conditions can lead toproposed {4]-[21]. Many robust adaptive beamforming
performance degradation of the conventional algorithmsmethods belong to the family of the diagonal loading
Therefore, robust adaptive beamforming has emerged asdethod. Robust Capon beamformdd]f[15] has been
necessary constituent of most systems using an array qfesigned by assuming that the array steering vector
sensors. To combat DOA uncertainty, linearly constrainedhelongs to an ellipsoidal uncertainty set. It is dependent
minimum variance beamformer is proposé, out the  on the choice of a user parameter related to the size of the
method is conservative and thus suitable only for smallyncertainty set. This guarantees a desired array response
DOA errors. Robust adaptive beamformer based onfrom a specific direction, whose steering vector is
Bayesian method 7] is able to estimate signal when the expected to lie in the ellipsoid. However, it is difficult to
DOA is uncertain or completely unknown. In order to choose this user parameter. With the generalization of
solve the robustness problem against DOA error, robuskphere uncertainty set to ellipsoid, the second order cone

beamforming algorithms based on additional linearprogramming (SOCP) in 16,17] is avoided by the
constraints 8,9] can broaden the main beam of adaptive
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proposed algorithm 1[8]. The approach is developed for i(n) is thek x 1 vector of interference signals, anh) is

the most general case of an arbitrary dimension of theadditive white Gaussian noise. The interference signals
desired signal subspace and is applicable to both th@and noise are considered to be statistically independent.
rank-one and higher rank desired signal models 18], The complex output may be written as

which can efficiently calculate the corresponding

diagonal loading level. Due to its high computational y(n) = W"X(n) 2)
load, there is room for simplification and the development
of low-complexity algorithm 20], which belong to the
category of the above algorithms. The algorithm uses
modified conjugate gradient algorithm performing only S
one iteration per snapshot. In multicall coordinated Performance is given by

where W = [Wl,V\lz,...7\/\4\,|}T is the complex vector of
Jeamformer weights.
The Signal to Interference Noise Ratio(SINR)

beamforming, an efficient approximation method solves WHR.W
the nonconvex centralized problem, using semidefinite SINRopt = His (3)
relaxation, an approximation technique based on convex WHR; W

optimization. This paper extends the worst-case mbus{/vhereRs
beamforming design as well as its decentralized
implantation method to a fully coordinated scenagd][ Rs = E{s(n)sH (n)} (4)

In this paper, to combat the array steering vector
errors and the small training sample size, we propose@dndR;, is the interference plus noise covariance matrix
robust constant modulus algorithm with double
constraints, based on the worst case optimization and the Ritc = E{(i(n)+n(n))(i(n)+n(n))"} 5)
oblique projection of the array steering vector. Unlike the . - .
existing robust adaptive beamforming based on the worst/Nere E is the statistical expectation.
case optimization via a second-order cone program, our
algorithm employs descent gradient technique, which has ) )
the low complexity cost. The array weight vector is 2-2 Linearly Constrained Constant Modulus
updated iteratively by minimizing the objective function Algorithm
subject to double constraints on the array response. The
proposed algorithm is parameter-free and can bdn the conventional constant modulus algorithm, a linear
implemented simply as an iterative process. Somereceiver is chosen comprising the array weight vegtor
performances of our proposed algorithm are analyzed. 1122]. The cost function of the constant modulus algorithm
contrast to the traditional constant modulus algorithra, th is of the form
results show that our algorithm can have a fast | m
convergence speed, yield better array output performance, J(n) =E[(ly(m] — )" (6)
and provide significant robustness to the array steerin
vector errors. Simulations display that the performance o
our algorithm are better than the traditional constant
modulus algorithm.

is the signal covariance matrix

here & is the desired signal amplitude at the array
output. The constant modulus algorithm requires no
knowledge about the signal except that the signal
waveform has a constant envelop.
By minimizing J(n) with respect toV/, the following
descent gradient adaptive algorithm can be written as

W(n+1) =W(n) —2ud(n)X(n+1) @)

2 Background

2.1 Signal Model

wherep is the step size factor, and the paraméetgr) is

We consider an array composed bf sensors with ~Wrttenas

inter-element distance. The desired signal impinges on Z(n) = (ly(m)*~1)y(m) (8)

the antenna array from a certain directifp, together  However, in practical applications, the constant modulus

with directional interferences from other directions algorithm can converge to the transmitted signal which

{61,---,6c1}. The interferences are assumed to behas stronger power according to the feature of constant

uncorrelated with the desired signal. The received arraymodulus. This leads to interference capture problem. To

vector is expressed as solve the above problem, the linearly constrained constant
. : modulus algorithm was propose@3-[ 24].

X(n) = a(Bo)s(n) +i(n) +c(n) The cost function of the Iinear:lil/ constrained CMA is

= AS(n)+¢c(n) (1) the following form

where A = [a(6y),a(61),...,a(6p-1)] is the array . 2 212 H
manifold matrix, a(fo) is the desired signal steering TUNELY(N=D)I"=ly(m[%)7 s.t. Wr(ma(bo) =1
vector, S(n) is the k x 1 vector of transmitting signals, 9)
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The optimization approach used to obtain the arraySuch formulation11) can be equivalently converted to
weight vector will use Lagrange multiplier algorithm,
thus we have min[(ly(n—1)*~[y(m)|*)?]  stW"(Rs—BHW =1

(14)
The weight vector is derived by the Lagrange multiplier
method. So, we can give the Lagrange functibiW,r)

W (n+1) = B[W(n) — ud(W(n))]+a(6p)[a" (60)a(6p)]

whereB =1 —a(6p)[a™ (6p)a(6p)]~1a (6p) is a projection

matrix, andd(W (n)) is an estimation of the gradientofthe  w ) = (ly(n—1)[2 - |y(n)[2)2+r (W (n)PW (n) — 1)

objective function 9). (15)
Note that the linearly constrained constant modulusyhere r is the Lagrange multiplier an® = Rs — fI.

desired signal. The performance of linearly constrainedyector of (L5) is

constant modulus algorithm may degrade significantly in

the presence of array steering vector errors because there f(W,r)=—¢&*(n)X(n) +rPW(n) (16)

are many array imperfections, such as the sensor location

errors, unknown deformation of the antenna, steeringvhere

direction errors, and wavefront distortion. The worst case g(n) = (ly(n—1)[*— ly(n)[*)y(k) (17)

is that the errors cause the linear programming problem t%pplying (16) and (L7) to robust constant modulus

have no feasible solution. It is difficult that many array gigqrithm, the array weight vector is obtained iteratively
imperfections are formulated.
W(n+1) =W(n)— pucf(W,r)

= W(n) — pe(rPW (n) — &* ()X (n)) (18)

3 Robust Constant M odulus Algorithm Inserting (L8) into the quadratic constraint il {), we can
under Double Constraints get

H H
To solve the interference capture problem, robust constan't: (WPF() ch;ReH[F (WPG(n)
modulus algorithm under double constraints is proposed. TG (N)PG(n) =1 (19)
In this algorithm, we use the oblique projection technique\yhere
and the worst-case performance optimization approach to .
improve robustness to the signal vector errors and the (N) = W(n)+ kg™ ()X (n)
small sample size. The minimization problem of robustG(n) = PW(n) (20)

constant modulus algorithm is expressed as The Lagrange factor can be given by

mv\ilnE[(ly(n_ 1)‘2 - |y(n)|2)2] Re[x(n)] _ Re[FH (n) PG(n)]
st. WH(Rs+V)W > 1 ") = =" GFmPom) (21)
forall||v|| <r (11)

where

From (11), we note that the optimization problem is based x*(Mx(n) =G"(NPG(n) —G"(n)PG(n)F™ (n)PF(n)

on the worst-case optimization. The objective function is H 5

optimized so that the distortionless response to the +(ReF7(NPG()])”  (22)

desired signal can be maintained. With this new The another constraint on the array steering vector via the

optimization method, the performance of our robustoblique projection technique2§] is adjoined to the

beamformer is guaranteed. minimization function, thus our proposed algorithm
In this paper, our proposed method has the advantagprovides better robustness to the signal steering vector

of the constraint on array response vector to provideerrors. Therefore, the optimization function can be

robustness to the small training sample size. We defingeformulated as

the errorv as the difference between the actual and

; 2 2
presumed sequences. The constrained conditiohlinig n\1A|/nE[(|y(n— DI = Iy(m)[*)]
minW" (Rs+v)W =1 st v <B (12)  wherea, is the steering vector of oblique projection
\
5; = Za(el)Ai a(Go) (24)

To solve the minimization problem, the erroris
expressed aslp]

where Z,g)a, = a(8)(a™(6)Rpa(6))a(6)RS , here
B " Ry = [ASAH]* is the pseudo-inverse matrix,
vV=—wrw VW 13)  Ai=[a(61),...,a(6k1].
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First form the following Lagrange function
LW, a,v) = [(ly(n—=1) —|y(n)[*)?]+2a(W" (n)a — 1)
+v(WH(kPW(K)—1)  (25)

whereD = yP.
DefineD as
D = UgVqUg (35)

where the diagonal elements of diagonal matfix o1 >

wherea, v are the Lagrange multipliers. The array weight g, > . > gy, are the corresponding eigenvalues, and the
vector Is Updated Iteratlvely by Computlng the gradlent 0fco|umns Ong contain the eigenvectors Bf .

(25

W(n+1) =W(n)— f[aa + vPW(n) —&*(n)X(n)]
(26)
Let the gradient ofZ5) be equal to zero, we can obtain the
optimal array weight vector
1

W, = =P 1e*(n)X(n) — aa]

; 27)

Substituting 26) into the oblique projection constraint, the
Lagrange factoo (n) is given by

a(n) = = @'al " @wn) + aate X n)]

_ 1
fir
1 - g~
*ﬁ[r’??ar}‘l[urvﬁf” PW (n) + 128)
r
Inserting the factora(n) into (26), we have the
formulation of the array weights
W(n+1) =JIW(n) + fre*(n)IX(n)— [ vIPW(n)
+[a'a] e (29)
where J = | — & [al'a]'a is the oblique projection
matrix.
Substituting 29) into the quadratic constraint ir2g),
we can get the following equation

(Q(n) — v IPW (n)"P(Q(n) — viir JPW (n)) = 1 (30)
where

a
— 31
w5 O

Solve the above equatio8@) to derive the Lagrange factor

_ Rel$(n)] — ReQ" (n)PIPW ()]

Q(n) =JIW(n) + [y " (n)IX(n) +

V() = = WH (PR IR PIPW () (32)
where
¢*(Mo(n) = (RefQ" (n)PIPW (n)])?
+WH (n)PH " PIPW (n)

—WH ()P IHPIPW (n)Q™ (N)PQ(n) (33)

4 Performance Analysis

4.1 The Optimal Step Size
The array weights26) can be rewritten as

W(n+1) = — (5D — () + fir (" (X (n) - a&)
(34)

We can multiplyul] in the both sides of equatioB4)
to obtain

UgW(n+1) = —[{1:Vg—1JUgW(n) — U (€*(n)X(n)
—aa) (36)

From equation 36), note that if the proposed method
converges, the parameter is required to satisfy
o 1] <1 (37)

Solving @7), the range of step siz& is expressed as

. 2
O< fly < — (38)
Omax
whereogmay is the maximum eigenvalue
M
(39)

Umax < ZO} - tr[VP]
i=

It is known that the step siz@, is very important in
descent gradient approach. lf is small, the approach
may converge slowly but have little error. i is large,
the approach may converge quickly but the misadjustment
error is large. Iffl; is too large, the approach diverges.

So, we can choose the variable step sizein our
algorithm to assure convergence performance

(40)

4.2 The Convergence of Our Algorithm

To present the convergence performance, we can take the
statistical expectation ir2g)

EW(n+1)] = —(irvP—1EW(n)] +[Ele*(n)X(n)]
—fraay (41)

Let

T(n+1) = EW(n+1)]-W,

(I = B vP)(E[W(n)] = Wo) — firaa — W,

+E[e" (MX(n)] + (I = fArvP)W, (42)
Using @7), the following equation is obtained
(I = I vP)Wz = W7 — i [e* ()X (n)] + fraa,  (43)
The equation42) can be reformulated as
T(n+1) = (I1-vikP)T(n)
= (I-VixP)"™T(0) (44)
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The nonzero eigenvaluay
condition

satisfies the following

'1Umin < ‘-pi < Wmax (45)

iy is chosen as
0 < fir < 1/Ymax
Applying (46), we can obtain
(1= P Ymax) " HIT Q)] <[ T(N+1)]
<(1— [k Wmin)n+l|‘T(0)|| (47)
If the initial difference vector length is finite, we have

(46)

lim W) = W 8)
4.3 Array Output SINR of Our Algorithm
The array output SINRIs given by
H H
SINRy = W2 (@pp )W (49)

WH (AJAH + 02l —apali )W,

whereay, is the presumed steering vector, aogl is the
variance of noise.

In steering vector errors, aa # ap, SO
'R Lap| < [aRGad.
The array output SINR is expressed as
iR Lacl?
SINRy = c2aR-1a. P e
ST (@R ac) (B R ap)
= SINRyco(ap, ac; Ri %) (50)

where SINR = 0ZaR; Lac , 0< cog(ap,ac;Ri %) < 1.
The linearly constrained constant modulus algorithm is

very sensitive to the array steering vector errors. Thereby

it tends to treat the desired signal as interference sigrhl a

yields nulling on the desired signal. So, we can obtain the

array output SINR

SINReon = 0 (51)

This causes the signal cancellation problem. The double
constraints of robust constant modulus algorithm are

expressed as

wHa, =1, wHpw =1 (52)
Using 62), the term can be approximated as
cod(ap,ac;Ri ;%) ~ 1 (53)

5 Numerical Examples

We evaluate the proposed algorithm using Monte-Carlo
simulations consideringyl = 100 training samples from a
ULA with M = 10 omni-directional sensors with half
wavelength spacing. In the examples, we assumed that
one desired signal impinges on the antenna array from the
direction of arrival 5. The directions of arrival (DOA) of
the two interference signals are50° and 50. We
evaluate the performances in array beampattern and array
output SINR. The factof3 = 9 is chosen in our robust
constant modulus algorithm. The noise is spatially and
temporally white and it has a complex Gaussian zero
mean distribution.

1) Comparison of the beampattern performance

The signal-to-noise ratio is 10dB The simulated array
beampatterns are shown in Fig. 1, where the vertical long
lines represent the direction of the desired signal. It can
be seen that the main beams are all at the desired signal,
whereas nulls both appear in the directions of the
interference signals. Fig. 2 shows the array beampatterns
of the two algorithms in a mismatch situation. In Fig. 2,
the vertical long lines represent the direction of the dctua
signal. We note that the linearly constrained constant
modulus algorithm is sensitive to the array steering vector
error and suppress the desired signal. This yields the
signal cancellation problem. Our proposed algorithm can
provide better robustness and have signal sampling
resolution in contrast to the linearly constrained cortstan
modulus algorithm.
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Fig. 1. Comparison of array output beampattern in no mismatch

2) Comparison of array output SINR performance

Using the double constraints, the following inequation yers g\

is derived
SINRqop > SINRcon (54)

where SINRy, is the output SINR of the our proposed
method, and SINRy, is the output SINR of linearly
constrained constant modulus algorithm.

From the performance analysis, we can see that ou
proposed algorithm can improve the beamformer

performance in the presence of array steering vectosignificantly in nonideal situations.

errors.

Fig. 3 shows array output SINR performance versus
in no mismatch. The array output SINR in the array
imperfections is shown in Fig. 4. According to Fig. 3, our
proposed algorithm gives better SINR performance and
maintains output performance close the optimum. From
Fig. 4, it is obvious that array output SINR of the linearly
constrained constant modulus algorithm decreases
In Fig. 4, our

algorithm improves about 27dB over conventional
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Fig. 2. Comparison of array output beampattern in a mismatch

6 Conclusions

By solving an optimization criterion and satisfying the
double constraints, a new robust constant modulus
algorithm based on the worst-case performance
optimization and oblique projection technique is proposed
to solve the problem of array steering vector errors. In
this paper, we analyze the output performance of the
proposed algorithm. The analysis is carried out assuming
that random steering vector errors are present. We can
derive a theoretical expression of the output SINR,
analyze the convergence performance, and obtain the
optimal step size. With one constraint imposed on the
array steering vector and another constraint imposed on
the data snapshots, our proposed robust beamformer

constant modulus algorithm. The proposed algorithmprovides significant robustness against array steering
achieves better output performance in the presence ofector errors and the small training sample size. In this

array steering vector errors.

v |
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1
1751 S B
\“’\ RN ~ . . -, ~
> R N PO NN

Array output SINR /dB

— optimal value
— our robust algorithm
= _the conventional CMA'

Fig. 3: Array output SINR versuBl in no mismatch
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= our robust CMA
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\ — optimal value

S,
T0F TN e N N N i N i =]

L L
50 60
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L L L L L
0 10 20 30 40 70

Fig. 4: Array output SINR versubl in a mismatch

paper, we can update the weights via the Lagrange
multiplier method and descent gradient technique. Our
algorithm has simple on-line implementation, flexible
beampattern control and significant SINR improvement,
as compared with the linearly constrained constant
modulus algorithm. Our simulations suggest that the
proposed method is effective for practical applications.
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