
Appl. Math. Inf. Sci.8, No. 1L, 293-299 (2014) 293

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/081L37

Robust Blind Algorithm based on Oblique Projection
and Worst-Case Optimization
Xin Song∗, Jinkuan Wang, and Ying Guan

College of Computer and Communication Engineering, Northeastern University at Qinhuangdao, Qinghuangdao 066004, P. R. China

Received: 13 May. 2013, Revised: 7 Sep. 2013, Accepted: 8 Sep. 2013
Published online: 1 Apr. 2014

Abstract: When adaptive arrays are applied to practical systems, the performance of the convention constant modulus algorithm
degrades severely in the presence of array steering vector errors.The similar situation of performance degradation can occur even when
the array steering vector is known exactly, but the training sample size is small. In this paper, we propose a novel doubly constrained
robust constant modulus algorithm based on the worst case performance optimization and oblique projection technique. The proposed
algorithm uses explicit modeling of uncertainties in the desired signal arrayresponse and in data snapshots, which provides sufficiently
robustness to uncertainty in source DOA, and makes the mean output array SINR consistently close to the optimal one. The array
weight vector is derived iteratively by the Lagrange multiplier approach and descent gradient technique, in which the factors can be
precisely obtained at each step. A theoretical analysis for our proposed algorithm in terms of the optimal step size, convergence and
array output SINR performance is presented in this paper. As compared with the linearly constrained constant modulus algorithm, our
proposed robust constant modulus algorithm resolves the interference capture problem, has faster convergence speed, and enhances the
array output performance under practical situations. Computer simulation results are presented to show the superiority of our proposed
algorithm on output SINR enhancement and signal sampling resolution.
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1 Introduction

The constant modulus algorithm (CMA) is known to
enjoy widespread popularity as methods for blind source
separation, equalization of communication signals [1]-[5]
and blind beamforming. CMA is a preferred choice for
blind algorithm because of its robustness and its ease of
implementation. In practice, circumstances like local
scattering imperfectly calibrated arrays and imprecisely
known wave field propagation conditions can lead to
performance degradation of the conventional algorithms.
Therefore, robust adaptive beamforming has emerged as a
necessary constituent of most systems using an array of
sensors. To combat DOA uncertainty, linearly constrained
minimum variance beamformer is proposed [6], but the
method is conservative and thus suitable only for small
DOA errors. Robust adaptive beamformer based on
Bayesian method [7] is able to estimate signal when the
DOA is uncertain or completely unknown. In order to
solve the robustness problem against DOA error, robust
beamforming algorithms based on additional linear
constraints [8,9] can broaden the main beam of adaptive

array. These algorithms have good performance if there
are no other array imperfections. The most widely used
method, due to its simplicity and effectiveness, is
diagonal loading [10]-[13]. The approach addes a scaled
identity matrix to the covariance matrix prior to inversion.
Diagonal loading can either be viewed as a method to
equalize the least significant eigenvalues of the sample
covariance matrix, or to constrain the white noise array
gain. In recent years, novel robust approaches have been
proposed [14]-[21]. Many robust adaptive beamforming
methods belong to the family of the diagonal loading
method. Robust Capon beamformer [14]-[15] has been
designed by assuming that the array steering vector
belongs to an ellipsoidal uncertainty set. It is dependent
on the choice of a user parameter related to the size of the
uncertainty set. This guarantees a desired array response
from a specific direction, whose steering vector is
expected to lie in the ellipsoid. However, it is difficult to
choose this user parameter. With the generalization of
sphere uncertainty set to ellipsoid, the second order cone
programming (SOCP) in [16,17] is avoided by the
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proposed algorithm [18]. The approach is developed for
the most general case of an arbitrary dimension of the
desired signal subspace and is applicable to both the
rank-one and higher rank desired signal models in [19],
which can efficiently calculate the corresponding
diagonal loading level. Due to its high computational
load, there is room for simplification and the development
of low-complexity algorithm [20], which belong to the
category of the above algorithms. The algorithm uses a
modified conjugate gradient algorithm performing only
one iteration per snapshot. In multicall coordinated
beamforming, an efficient approximation method solves
the nonconvex centralized problem, using semidefinite
relaxation, an approximation technique based on convex
optimization. This paper extends the worst-case robust
beamforming design as well as its decentralized
implantation method to a fully coordinated scenario [21].

In this paper, to combat the array steering vector
errors and the small training sample size, we proposed
robust constant modulus algorithm with double
constraints, based on the worst case optimization and the
oblique projection of the array steering vector. Unlike the
existing robust adaptive beamforming based on the worst
case optimization via a second-order cone program, our
algorithm employs descent gradient technique, which has
the low complexity cost. The array weight vector is
updated iteratively by minimizing the objective function
subject to double constraints on the array response. The
proposed algorithm is parameter-free and can be
implemented simply as an iterative process. Some
performances of our proposed algorithm are analyzed. In
contrast to the traditional constant modulus algorithm, the
results show that our algorithm can have a fast
convergence speed, yield better array output performance,
and provide significant robustness to the array steering
vector errors. Simulations display that the performance of
our algorithm are better than the traditional constant
modulus algorithm.

2 Background

2.1 Signal Model

We consider an array composed ofM sensors with
inter-element distanced. The desired signal impinges on
the antenna array from a certain directionθ0, together
with directional interferences from other directions
{θ1, · · · ,θk−1}. The interferences are assumed to be
uncorrelated with the desired signal. The received array
vector is expressed as

X(n) = a(θ0)s(n)+ i(n)+ c(n)
= AS(n)+ c(n) (1)

where A = [a(θ0),a(θ1), ...,a(θD−1)] is the array
manifold matrix, a(θ0) is the desired signal steering
vector, S(n) is the k× 1 vector of transmitting signals,

i(n) is thek×1 vector of interference signals, andc(n) is
additive white Gaussian noise. The interference signals
and noise are considered to be statistically independent.
The complex output may be written as

y(n) = WHX(n) (2)

where W = [W1,W2, ...,WM]T is the complex vector of
beamformer weights.

The Signal to Interference Noise Ratio(SINR)
performance is given by

SINRopt =
WHRsW

WHRi+cW
(3)

whereRs is the signal covariance matrix

Rs = E{s(n)sH(n)} (4)

andRi+c is the interference plus noise covariance matrix

Ri+c = E{(i(n)+n(n))(i(n)+n(n))H} (5)

where E is the statistical expectation.

2.2 Linearly Constrained Constant Modulus
Algorithm

In the conventional constant modulus algorithm, a linear
receiver is chosen comprising the array weight vectorW
[22]. The cost function of the constant modulus algorithm
is of the form

J(n) = E[(|y(n)|l −δ l
k)

m] (6)

where δk is the desired signal amplitude at the array
output. The constant modulus algorithm requires no
knowledge about the signal except that the signal
waveform has a constant envelop.

By minimizing J(n) with respect toW, the following
descent gradient adaptive algorithm can be written as

W(n+1) = W(n)−2µζ (n)X(n+1) (7)

whereµ is the step size factor, and the parameterζ (k) is
written as

ζ (n) = (|y(n)|2−1)y(n) (8)

However, in practical applications, the constant modulus
algorithm can converge to the transmitted signal which
has stronger power according to the feature of constant
modulus. This leads to interference capture problem. To
solve the above problem, the linearly constrained constant
modulus algorithm was proposed [23]-[24].

The cost function of the linearly constrained CMA is
the following form

min
W

E[(|y(n−1)|2−|y(n)|2)2] s.t. WH(n)a(θ0) = 1

(9)
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The optimization approach used to obtain the array
weight vector will use Lagrange multiplier algorithm,
thus we have

W(n+1)=B[W(n)−µd(W(n))]+a(θ0)[aH(θ0)a(θ0)]
−1

(10)
whereB= I−a(θ0)[aH(θ0)a(θ0)]

−1aH(θ0) is a projection
matrix, andd(W(n)) is an estimation of the gradient of the
objective function (9).

Note that the linearly constrained constant modulus
algorithm requires direction of arrival (DOA) of the
desired signal. The performance of linearly constrained
constant modulus algorithm may degrade significantly in
the presence of array steering vector errors because there
are many array imperfections, such as the sensor location
errors, unknown deformation of the antenna, steering
direction errors, and wavefront distortion. The worst case
is that the errors cause the linear programming problem to
have no feasible solution. It is difficult that many array
imperfections are formulated.

3 Robust Constant Modulus Algorithm
under Double Constraints

To solve the interference capture problem, robust constant
modulus algorithm under double constraints is proposed.
In this algorithm, we use the oblique projection technique
and the worst-case performance optimization approach to
improve robustness to the signal vector errors and the
small sample size. The minimization problem of robust
constant modulus algorithm is expressed as

min
W

E[(|y(n−1)|2−|y(n)|2)2]

s.t. WH(Rs+v)W ≥ 1

for all‖v‖ ≤ r (11)

From (11), we note that the optimization problem is based
on the worst-case optimization. The objective function is
optimized so that the distortionless response to the
desired signal can be maintained. With this new
optimization method, the performance of our robust
beamformer is guaranteed.

In this paper, our proposed method has the advantage
of the constraint on array response vector to provide
robustness to the small training sample size. We define
the error v as the difference between the actual and
presumed sequences. The constrained condition in (11) is
written as simply

min
v

WH(Rs+v)W = 1 s.t. ‖v‖ ≤ β (12)

To solve the minimization problem, the errorv is
expressed as [18]

v =−
β

WHW
WWH (13)

Such formulation (11) can be equivalently converted to

min
W

[(|y(n−1)|2−|y(n)|2)2] s.t.WH(Rs−β I)W = 1

(14)
The weight vector is derived by the Lagrange multiplier
method. So, we can give the Lagrange functionH(W, r)

H(W, r) = (|y(n−1)|2−|y(n)|2)2+ r(WH(n)PW(n)−1)
(15)

where r is the Lagrange multiplier andP = Rs − β I.
Applying the descent gradient approach, the gradient
vector of (15) is

f (W, r) =−ε∗(n)X(n)+ rPW(n) (16)

where
ε(n) = (|y(n−1)|2−|y(n)|2)y(k) (17)

Applying (16) and (17) to robust constant modulus
algorithm, the array weight vector is obtained iteratively

W(n+1) = W(n)−µc f (W, r)

= W(n)−µc(rPW(n)− ε∗(n)X(n)) (18)

Inserting (18) into the quadratic constraint in (11), we can
get

FH(n)PF(n) −2µcrRe[FH(n)PG(n)]

+µ2
c r2GH(n)PG(n) = 1 (19)

where

F(n) = W(n)+µcε∗(n)X(n)

G(n) = PW(n) (20)

The Lagrange factor can be given by

r(n) =−
Re[χ(n)]−Re[FH(n)PG(n)]

µcGH(n)PG(n)
(21)

where

χ∗(n)χ(n) = GH(n)PG(n) −GH(n)PG(n)FH(n)PF(n)

+(Re[FH(n)PG(n)])2 (22)

The another constraint on the array steering vector via the
oblique projection technique [25] is adjoined to the
minimization function, thus our proposed algorithm
provides better robustness to the signal steering vector
errors. Therefore, the optimization function can be
reformulated as

min
W

E[(|y(n−1)|2−|y(n)|2)]

s.t. WH(n)ār = 1, WH(Rs−β I)W = 1 (23)

whereār is the steering vector of oblique projection

ār = Za(θi)Ai
a(θ0) (24)

where Za(θi)Ai
= a(θi)(aH(θi)R+

P a(θi))a(θi)R+
P , here

R+
P = [ASAH ]+ is the pseudo-inverse matrix,

Ai = [a(θ1), ...,a(θk−1].
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First form the following Lagrange function

L(W,α,ν) = [(|y(n−1)|2 −|y(n)|2)2]+2α(WH(n)ār −1)

+ν(WH(k)PW(k)−1) (25)

whereα, ν are the Lagrange multipliers. The array weight
vector is updated iteratively by computing the gradient of
(25)

W(n+1) = W(n)− µ̂r [α ār +νPW(n)− ε∗(n)X(n)]
(26)

Let the gradient of (25) be equal to zero, we can obtain the
optimal array weight vector

Wz =
1
ν

P−1[ε∗(n)X(n)−α ār ] (27)

Substituting (26) into the oblique projection constraint, the
Lagrange factorα(n) is given by

α(n) =
1
µ̂r

[āH
r ār ]

−1 [āH
r W(n)+ µ̂r āH

r ε∗(n)X(n)]

−
1
µ̂r

[āH
r ār ]

−1[µ̂rν āH
r PW(n)+1](28)

Inserting the factor α(n) into (26), we have the
formulation of the array weights

W(n+1) = JW(n)+ µ̂rε∗(n)JX(n)− µ̂rνJPW(n)

+[āH
r ār ]

−1ār (29)

where J = I − ār [āH
r ār ]

−1ār is the oblique projection
matrix.

Substituting (29) into the quadratic constraint in (23),
we can get the following equation

(Q(n)−νµ̂rJPW(n))HP(Q(n)−νµ̂rJPW(n)) = 1 (30)

where

Q(n) = JW(n)+ µ̂rε∗(n)JX(n)+
ār

āH
r ār

(31)

Solve the above equation (30) to derive the Lagrange factor

ν(n) =−
Re[ϕ(n)]−Re[QH(n)PJPW(n)]

µ̂rWH(n)PHJHPJPW(n)
(32)

where

ϕ∗(n)ϕ(n) = (Re[QH(n)PJPW(n)])2

+WH(n)PHJHPJPW(n)

−WH(n)PHJHPJPW(n)QH(n)PQ(n) (33)

4 Performance Analysis

4.1 The Optimal Step Sizêµr

The array weights (26) can be rewritten as

W(n+1) =−[µ̂rD− I]W(n)+ µ̂r(ε∗(n)X(n)−α ār)
(34)

whereD = γP.
DefineD as

D = UgVgUH
g (35)

where the diagonal elements of diagonal matrixVg, σ1 ≥
σ2 ≥ ...≥ σM, are the corresponding eigenvalues, and the
columns ofUg contain the eigenvectors ofD .

We can multiplyUH
g in the both sides of equation (34)

to obtain

UH
g W(n+1) =−[µ̂rVg− I]UH

g W(n) −µ̂rUH
g (ε∗(n)X(n)

−ārα) (36)

From equation (36), note that if the proposed method
converges, the parameter is required to satisfy

|µ̂rσi −1|< 1 (37)

Solving (37), the range of step sizêµr is expressed as

0< µ̂r <
2

σmax
(38)

whereσmax is the maximum eigenvalue

σmax<
M

∑
i=1

σi = tr[νP] (39)

It is known that the step sizêµr is very important in
descent gradient approach. Ifµ̂r is small, the approach
may converge slowly but have little error. If̂µr is large,
the approach may converge quickly but the misadjustment
error is large. Ifµ̂r is too large, the approach diverges.

So, we can choose the variable step sizeµ̂r in our
algorithm to assure convergence performance

µ̂r =
5

tr[νP]
(40)

4.2 The Convergence of Our Algorithm

To present the convergence performance, we can take the
statistical expectation in (26)

E[W(n+1)] =−(µ̂rνP− I)E[W(n)] +µ̂rE[ε∗(n)X(n)]

−µ̂rα ār (41)

Let

T(n+1) = E[W(n+1)]−Wz

= (I− µ̂rνP)(E[W(n)]−Wz)− µ̂rα ār −Wz

+µ̂rE[ε∗(n)X(n)]+(I− µ̂rνP)Wz (42)

Using (27), the following equation is obtained

(I− µ̂rνP)Wz = Wz− µ̂r [ε∗(n)X(n)]+ µ̂rα ār (43)

The equation (42) can be reformulated as

T(n+1) = (I−νµ̂rP)T(n)

= (I−νµ̂rP)n+1T(0) (44)
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The nonzero eigenvalueψi satisfies the following
condition

ψmin ≤ ψi ≤ ψmax (45)

µ̂r is chosen as
0≤ µ̂r ≤ 1/ψmax (46)

Applying (46), we can obtain

(1− µ̂rψmax)
n+1‖T(0)‖ ≤ ‖T(n+1)‖

≤ (1− µ̂rψmin)
n+1‖T(0)‖ (47)

If the initial difference vector length is finite, we have

lim
n→∞

1
n
[W(n)] = Wz (48)

4.3 Array Output SINR of Our Algorithm

The array output SINRd is given by

SINRd =
WH

z (apaH
p )Wz

WH
z (AiAH

i +σ2
n I−apaH

p )Wz
(49)

whereap is the presumed steering vector, andσ2
n is the

variance of noise.
In steering vector errors, ac 6= ap, so

|aH
c R−1

i+cap|< |aH
c R−1

i+cac|.
The array output SINR is expressed as

SINRd = σ2
s aH

c R−1
i+cac

|aH
p R−1

i+cac|
2

(aH
c R−1

i+cac)(aH
p R−1

i+cap)

= SINR0cos2(ap,ac;R−1
i+n) (50)

where SINR0 = σ2
s aH

c R−1
i+cac , 0≤ cos2(ap,ac;R−1

i+c)≤ 1 .
The linearly constrained constant modulus algorithm is

very sensitive to the array steering vector errors. Thereby,
it tends to treat the desired signal as interference signal and
yields nulling on the desired signal. So, we can obtain the
array output SINR

SINRcon= 0 (51)

This causes the signal cancellation problem. The double
constraints of robust constant modulus algorithm are
expressed as

WH ār = 1, WHPW = 1 (52)

Using (52), the term can be approximated as

cos2(ap,ac;R−1
i+c)≈ 1 (53)

Using the double constraints, the following inequation
is derived

SINRrob > SINRcon (54)

where SINRrob is the output SINR of the our proposed
method, and SINRcon is the output SINR of linearly
constrained constant modulus algorithm.

From the performance analysis, we can see that our
proposed algorithm can improve the beamformer
performance in the presence of array steering vector
errors.

5 Numerical Examples

We evaluate the proposed algorithm using Monte-Carlo
simulations consideringN = 100 training samples from a
ULA with M = 10 omni-directional sensors with half
wavelength spacing. In the examples, we assumed that
one desired signal impinges on the antenna array from the
direction of arrival 5◦. The directions of arrival (DOA) of
the two interference signals are−50◦ and 50◦. We
evaluate the performances in array beampattern and array
output SINR. The factorβ = 9 is chosen in our robust
constant modulus algorithm. The noise is spatially and
temporally white and it has a complex Gaussian zero
mean distribution.

1) Comparison of the beampattern performance
The signal-to-noise ratio is 10dB The simulated array

beampatterns are shown in Fig. 1, where the vertical long
lines represent the direction of the desired signal. It can
be seen that the main beams are all at the desired signal,
whereas nulls both appear in the directions of the
interference signals. Fig. 2 shows the array beampatterns
of the two algorithms in a mismatch situation. In Fig. 2,
the vertical long lines represent the direction of the actual
signal. We note that the linearly constrained constant
modulus algorithm is sensitive to the array steering vector
error and suppress the desired signal. This yields the
signal cancellation problem. Our proposed algorithm can
provide better robustness and have signal sampling
resolution in contrast to the linearly constrained constant
modulus algorithm.

−90 −80 −70 −60 −50 −40 −30 −20 −10 0 10 20 30 40 50 60 70 80 90
−70

−60

−50

−40

−30

−20

−10

0

Degree

T
he

 b
ea

m
pa

tte
rn

 /d
B

our robust algorithm
the conventional CMA

Fig. 1: Comparison of array output beampattern in no mismatch

2) Comparison of array output SINR performance
versusN

Fig. 3 shows array output SINR performance versusN
in no mismatch. The array output SINR in the array
imperfections is shown in Fig. 4. According to Fig. 3, our
proposed algorithm gives better SINR performance and
maintains output performance close the optimum. From
Fig. 4, it is obvious that array output SINR of the linearly
constrained constant modulus algorithm decreases
significantly in nonideal situations. In Fig. 4, our
algorithm improves about 27dB over conventional
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Fig. 2: Comparison of array output beampattern in a mismatch

constant modulus algorithm. The proposed algorithm
achieves better output performance in the presence of
array steering vector errors.
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Fig. 3: Array output SINR versusN in no mismatch
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Fig. 4: Array output SINR versusN in a mismatch

6 Conclusions

By solving an optimization criterion and satisfying the
double constraints, a new robust constant modulus
algorithm based on the worst-case performance
optimization and oblique projection technique is proposed
to solve the problem of array steering vector errors. In
this paper, we analyze the output performance of the
proposed algorithm. The analysis is carried out assuming
that random steering vector errors are present. We can
derive a theoretical expression of the output SINR,
analyze the convergence performance, and obtain the
optimal step size. With one constraint imposed on the
array steering vector and another constraint imposed on
the data snapshots, our proposed robust beamformer
provides significant robustness against array steering
vector errors and the small training sample size. In this
paper, we can update the weights via the Lagrange
multiplier method and descent gradient technique. Our
algorithm has simple on-line implementation, flexible
beampattern control and significant SINR improvement,
as compared with the linearly constrained constant
modulus algorithm. Our simulations suggest that the
proposed method is effective for practical applications.
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